Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Mater ; 36(4): e2310779, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37990853

RESUMEN

Thermosetting polyimide (PI) has attracted extensive attention for its excellent properties, but the approaches to its end-of-life management are not sustainable, posing great threat to the ecosystem. Herein, this work proposes a mild, sustainable, and full recovery path for recycling waste carbon fiber reinforced phenylethynyl end-capped PI resin composites. In addition to recycling reaction reagent and woven carbon fiber, degraded products (DPETI) can be fully and directly used as high-performance and sustainable adhesives. DPETI exhibits strong adhesion to various surfaces, with a maximum adhesion strength of 1.84 MPa. Due to the strong supramolecular polymerization behavior without solvent dependence, DPETI demonstrates higher adhesive strength of 2.22 MPa in the extreme environment (-196 °C), which is maintained even after 10 cycles. This work sparks a new thinking for plastic wastes recycling that is to convert unrecyclable wastes into new and sustainable materials, which has the potential to establish new links within circular economies and influence the development of materials science.

2.
Nucleic Acids Res ; 50(D1): D150-D160, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34718746

RESUMEN

Noncanonical nucleic acid structures, such as G-quadruplex (G4) and i-Motif (iM), have attracted increasing research interests because of their unique structural and binding properties, as well as their important biological activities. To date, thousands of small molecules that bind to varying G4/iM structures have been designed, synthesized and tested for diverse chemical and biological uses. Because of the huge potential and increasing research interests on G4-targeting ligands, we launched the first G4 ligand database G4LDB in 2013. Here, we report a new version, termed G4LDB 2.2 (http://www.g4ldb.com), with upgrades in both content and function. Currently, G4LDB2.2 contains >3200 G4/iM ligands, ∼28 500 activity entries and 79 G4-ligand docking models. In addition to G4 ligand library, we have also added a brand new iM ligand library to G4LDB 2.2, providing a comprehensive view of quadruplex nucleic acids. To further enhance user experience, we have also redesigned the user interface and optimized the database structure and retrieval mechanism. With these improvements, we anticipate that G4LDB 2.2 will serve as a comprehensive resource and useful research toolkit for researchers across wide scientific communities and accelerate discovering and validating better binders and drug candidates.


Asunto(s)
Bases de Datos Genéticas , G-Cuádruplex , Relación Estructura-Actividad , Sitios de Unión/genética , Humanos , Ligandos , Simulación del Acoplamiento Molecular
3.
J Am Chem Soc ; 143(34): 13655-13663, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34404208

RESUMEN

Chemical modification is a powerful approach to expand the chemical diversity and functionality of natural DNA. However, when chemically modified oligonucleotides are employed in DNA-based reactions or structures, it becomes quite difficult to predict, understand, and control their kinetics and thermodynamics. To address this challenge, we introduce a rationally designed DNA balance capable of measuring critical thermodynamic and kinetic properties of chemically modified DNA in their native environment. Our DNA balance is operated using the principle of toehold-exchange, where a panel of weight probes were designed by tuning the lengths of forward and reverse toeholds. Once placed on the DNA balance, the chemical modification will be interrogated using the weight probes to determine changes in both Gibbs free energy and hybridization rate constant. Using cyclic-azobenzene (cAB)-modified DNA as a model system, we demonstrated that our DNA balance could not only measure stable chemical modifications, but also solve more challenging issues where unstable chemical modifications and transient isomerization reactions were involved. We anticipate that our DNA balance will find wide uses for measuring important thermodynamic and kinetic parameters for DNA carrying various chemical modifications, as well as for probing transient chemical changes in DNA.


Asunto(s)
Compuestos Azo/química , ADN/química , Isomerismo , Cinética , Oligonucleótidos/química , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...