Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 22(38): 22116, 2020 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-32966440

RESUMEN

Correction for 'Optical and electrical effects of plasmonic nanoparticles in high-efficiency hybrid solar cells' by Wei-Fei Fu et al., Phys. Chem. Chem. Phys., 2013, 15, 17105-17111, DOI: 10.1039/C3CP52723A.

2.
ACS Nano ; 11(11): 11701-11713, 2017 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-29091396

RESUMEN

Electron-rich (donor) and electron-deficient (acceptor) units to construct donor-acceptor (D-A) conjugated macrocycles were investigated to elucidate their interactions with electron-deficient fullerene. Triphenylamine and 4,7-bisthienyl-2,1,3-benzothiadiazole were alternately linked through acetylene, as the donor and acceptor units, respectively, for pentagonal 3B2A and hexagonal 4B2A macrocycles. As detected by scanning tunneling microscopy, both D-A macrocycles were found to form an interesting concentration-controlled nanoporous monolayer on highly oriented pyrolytic graphite, which could effectively capture fullerene. Significantly, the fullerene filling was cavity-size-dependent with only one C70 or PC71BM molecule accommodated by 3B2A, while two were accommodated by 4B2A. Density functional theory calculations were also utilized to gain insight into the host-guest systems and indicted that the S···π contact is responsible for stabilizing these host-guest systems. Owing to the ellipsoidal shape of C70, C70 molecules are standing or lying in molecular cavities depending on the energy optimization. For the 3B2A/PC71BM blended film, PC71BM was intercalated into the cavity formed by the macrocycle 3B2A and provided excellent power conversion efficiency despite the broad band gap (2.1 eV) of 3B2A. This study of D-A macrocycles incorporating fullerene provides insights into the interaction mechanism and electronic structure in the host-guest complexes. More importantly, this is a representative example using D-A macrocycles as a donor to match with the spherical fullerene acceptor for photovoltaic applications, which offer a good approach to achieve molecular scale p-n junctions for substantially enhanced efficiencies of organic solar cells through replacing linear polymer donors by cyclic conjugated oligomers.

3.
Adv Sci (Weinh) ; 2(4): 1500014, 2015 04.
Artículo en Inglés | MEDLINE | ID: mdl-27980932

RESUMEN

A nonfullerene acceptor based on a 3D tetraperylene diimide is developed for bulk heterojunction organic photovoltaics. The disruption of perylene diimide planarity with a 3D framework suppresses the self-aggregation of perylene diimide and inhibits excimer formation. From planar monoperylene diimide to 3D tetraperylene diimide, a significant improvement of power conversion efficiency from 0.63% to 3.54% can be achieved.

4.
ACS Appl Mater Interfaces ; 6(8): 5798-809, 2014 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-24689752

RESUMEN

Two novel solution-processable acceptor-donor-acceptor (A-D-A)-structured organic small molecules with diketopyrrolopyrrole (DPP) as terminal acceptor units and pentathiophene (PTA) or pyrrole-modified pentathiophene (NPTA) as the central donor unit, namely, DPP2(PTA) and DPP2(NPTA), were designed and synthesized. We examined the effects of changing the central bridging heteroatoms of the five-ring-fused thienoacene core identity from sulfur [DPP2(PTA)] to nitrogen [DPP2(NPTA)] in the small-molecule donor material. Replacement of the bridging atom with a different electronic structure has a visible effect on both the optical and electrical properties: DPP2(NPTA), which contains much more electron-rich pyrrole in the central thienoacene unit, possesses red-shifted absorption and a higher HOMO level relative to DPP2(PTA) with the less electron-rich thiophene in the same position. More importantly, substitution of the bridging atoms results in a change of the substituting alkyl chains due to the nature of the heteroatoms, which significantly tailored the crystallization behavior and the ability to form an interpenetrating network in thin-film blends with an electron acceptor. Compared to DPP2(PTA) with no alkyl chain substituting on the central sulfur atom of the PTA unit, DPP2(NPTA) exhibits improved crystallinity and better miscibility with PC71BM probably because of a dodecyl chain on the central nitrogen atom of the NPTA unit. These features endow the DPP2(NPTA)/PC71BM blend film higher hole mobility and better donor/acceptor interpenetrating network morphology. Optimized photovoltaic device fabrication based on DPP2(NPTA)/PC71BM (1.5:1, w/w) has resulted in an average power conversion efficiency (PCE) as high as 3.69% (the maximum PCE was 3.83%). This study demonstrates that subtle changes and tailoring of the molecular structure, such as simply changing the bridging heteroatom in the thienoacene unit in D/A-type small molecules, can strongly affect the physical properties that govern their photovoltaic performances.

5.
ACS Appl Mater Interfaces ; 6(9): 6765-75, 2014 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-24720695

RESUMEN

In this report, an atom efficient and facile synthetic strategy for accessing multi-diketopyrrolopyrrole (DPP)-based oligomers used in solution-processed organic field effect transistors (OFETs) and organic solar cells (OSCs) has been developed. The DPP units were successfully installed onto benzene and pyrene cores via palladium-catalyzed dehydrohalogenative coupling of mono-capped DPPs with multi-bromo-benzene or -pyrene (direct arylation), affording four oligomer small molecules (SMs 1-4) containing bis-, tri-, tri-, and tetra-DPP, respectively, in high yields of 78-96%. All the designed linear or branched DPP-based oligomers exhibit broad light absorptions, narrow band-gaps (1.60-1.73 eV), deep highest occupied molecular orbital (HOMO) levels (-5.26∼-5.18 eV), and good thermal stability (Td=390-401 °C). OFETs based on SMs 1-4 showed hole mobilities of 0.0033, 0.0056, 0.0005, and 0.0026 cm2 V(-1) s(-1), respectively. OSCs based on SMs 1-4 under one sun achieved power conversion efficiencies of 3.00%, 3.71%, 2.47%, and 1.86% accordingly, along with high open-circuit voltages of 0.86-0.94 V. For OSC devices of SM 1, SM 3, and SM 4, the solvent CHCl3 was solely employed to the formation of active layers; neither high boiling point additives nor annealing post-treatment was needed. Such a simple process benefits the large-scale production of OSCs via roll to roll technology.

6.
Nanotechnology ; 25(1): 014006, 2014 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-24334482

RESUMEN

A diketo-pyrrolo-pyrrole (DPP) oligomer containing three DPP cores (Ph4Th4(DPP)3) was synthesized via direct arylation of C-H bonds (DACH). Ph4Th4(DPP)3 has good solubility in many organic solvents, and shows a broad absorption band from the visible to near-infrared region as well as a field-effect hole mobility as high as 0.006 cm(2) V(-1) s(-1). Solution-processed bulk heterojunction organic solar cells based on blends of Ph4Th4(DPP)3 as electron donor and fullerene derivative as electron acceptor were fabricated. An optimized power conversion efficiency of 3.76% with a high open-circuit voltage of 0.85 V was achieved after finely tuning the morphology by changing the blend ratio and by adding additives. These results indicate that DACH is an effective way to produce π-conjugated oligomers for organic solar cells.

7.
Phys Chem Chem Phys ; 15(40): 17105-11, 2013 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-24006000

RESUMEN

Plasmonics have been proven to be an effective way to harness more incident light to achieve high efficiency in photovoltaic devices. Herein, we explore the possibility that plasmonics can be utilized to enhance light trapping and power conversion efficiency (PCE) for polymer-quantum dot (QD) hybrid solar cells (HSCs). Based on a low band-gap polymer poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b']-dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)] (PCPDTBT) and a CdSe QD bulk-heterojunction (BHJ) system, gold nanoparticles were doped at different locations of the devices. Successfully, an improved PCE of 3.20 ± 0.22% and 3.16 ± 0.15% was achieved by doping the hole transporting layer and the active layer, respectively, which are among the highest values reported for CdSe QD based HSCs. A detailed study of processing, characterization, microscopy, and device fabrication is conducted to understand the underlying mechanism for the enhanced device performance. The success of this work provides a simple and generally applicable approach to enhance light harnessing of polymer-QD hybrid solar cells.

8.
ACS Appl Mater Interfaces ; 5(3): 972-80, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23317637

RESUMEN

Three star-shaped D-A small molecules, (P-DPP)(3)TPA, (4-FP-DPP)(3)TPA, and (4-BuP-DPP)(3)TPA were designed and synthesized with triphenylamine (TPA) as the core, diketopyrrolopyrrole (DPP) as the arm, and unsubstituted or substituted benzene rings (phenyl, P; 4-fluoro-phenyl, 4-FP; 4-n-butyl-phenyl, 4-BuP) as the end-group. All the three small molecules show relatively narrow optical band gaps (1.68-1.72 eV) and low-lying highest occupied molecular orbital (HOMO) energy levels (-5.09∼-5.13 eV), implying that they are potentially good electron donors for organic solar cells (OSCs). Then, photovoltaic properties of the small molecules blended with [6,6]-phenyl-C(61)-butyric acid methyl ester (PC(61)BM) as electron acceptor were investigated. Among three small molecules, the OSC based on (P-DPP)(3)TPA:PCBM blend exhibits a best power conversion efficiency (PCE) of 2.98% with an open-circuit voltage (V(oc)) of 0.72 V, a short-circuit current density (J(sc)) of 7.94 mA/cm(2), and a fill factor (FF) of 52.2%, which may be ascribed to the highest hole mobility of (P-DPP)(3)TPA.

9.
J Colloid Interface Sci ; 388(1): 67-73, 2012 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-23000209

RESUMEN

The design of the oppositely charged ink particles based on titanium dioxide and carbon black for the monochrome electrophoretic display (EPD) was reported. The white ink particles with acidic surface and black ink particles with basic surface were synthesized and sterically stabilized by long alkyl chains, which were charged oppositely by mixing with basic surfactant (OLOA 1200) and acidic surfactant (Span 80), respectively. The electrophoretic mobility and the Zeta potential were -3.87×10(-10)m(2)V(-1)s(-1) and -25.1 mV for the white ink particles, 3.79×10(-10)m(2)V(-1)s(-1) and 24.6 mV for the black ink particles. In addition, the block copolymer, poly(lauryl methacrylate)-b-poly(2-(dimethylamino)ethyl methacrylate) (PLMA-b-PDMAEMA) synthesized by atom transfer radical polymerization (ATRP), was first incorporated in the modification of the pigments for the fine encapsulation. Then, a stable dual-particle electronic ink with contrast ratio of 120:1 was prepared and encapsulated with the gelatin (GE)/sodium carboxymethylcellulose (NaCMC)/sodium dodecyl sulfate (SDS) microcapsules by complex coacervation method. Finally, the matrix character display prototype driven at a low voltage exhibited excellent performance, the contrast ratio of which was 8:1 at 9 V DC.

10.
Nanotechnology ; 22(47): 475301, 2011 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-22049152

RESUMEN

We report the preparation of native polythiophene (n-PT)/[6, 6]-phenyl-C61-butyric acid methyl ester (PCBM) composite nanoparticles from a poly[3-(2-methylhex-2-yl)oxy-carbonyldithiophene] (P3MHOCT)/PCBM aqueous dispersion prepared from an ultrasonically generated emulsion. The subsequent steps involve both ultrasonic generation of microdroplets in argon as a carrier gas and drying followed by thermocleaving of the P3MHOCT component in the gas phase. The chemical transition from P3MHOCT to n-PT was confirmed by Fourier transform infrared (FTIR) spectroscopy. The morphology and size of n-PT/PCBM nanoparticles were determined by atomic force microscopy (AFM), small-angle x-ray scattering (SAXS) and grazing incidence SAXS (GISAXS), giving an average size of ∼ 140 nm. The GISAXS results reveal that n-PT/PCBM nanoparticles pack in an ordered structure as opposed to the P3MHOCT/PCBM nanoparticles. The successful vapour-phase preparation of phase-separated n-PT/PCBM nanoparticles provides a new route to all-aqueous processing of conjugated materials relevant to efficient polymer solar cells with long operational stability. The use of ultrasound was involved in both liquid and gas phases demonstrating it as a low-cost processing method.

11.
J Phys Chem B ; 115(4): 618-23, 2011 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-21142198

RESUMEN

To investigate the relationship between π-π stacking and charge transport property of organic semiconductors, a highly soluble violanthrone derivative, 16,17-bis(2-ethylhexyloxy)anthra[9,1,2-cde-]benzo[rst]pentaphene-5,10-dione (3), is designed and synthesized. The π-π stacking behavior and the aggregation of compound 3 in both solution and thin film were studied in detail by (1)H nuclear magnetic resonance (NMR) spectroscopy, ultraviolet-visible (UV-vis) absorption, X-ray diffraction (XRD), and atomic force microscopy (AFM). When (1)H NMR spectroscopy and theoretical modeling results were combined, the arrangements of compound 3 molecules in the aggregates are demonstrated, where the dipole moments of the two adjacent molecules are nearly reversed to achieve efficient intermolecular π-π overlapping. Furthermore, it is interesting to find that the π-π stacking of compound 3, in both solution and thin films, can be enhanced by introducing a poor solvent n-hexane into the dilute chloroform solution. The resulting film exhibits more red-shifted absorption and higher crystallinity than the film made from pure chloroform solvent, suggesting that π-π interactions in the solid state are intensified by the poor solvent. Organic field-effect transistors (OFETs) with compound 3 film as the transportation layer were fabricated. It is disclosed that the compound 3 film obtained from the chloroform/n-hexane mixed solvents exhibits 1 order of magnitude higher hole mobility than that from the pure chloroform solvent because of the enhanced π-π interactions and the higher crystallinity in the former film. This work provided us valuable information in the improvement of electronic and optoelectronic performances of organic semiconductors by tuning their aggregate structures.

12.
Acta Crystallogr Sect E Struct Rep Online ; 66(Pt 4): m417, 2010 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-21580515

RESUMEN

The title compound, (C(12)H(16)N(2))(2)[PbBr(6)], is an organic-inorganic salt, with two doubly protonated N-(1-naphth-yl)ethyl-enediammonium cations and one octa-hedral hexa-bromidoplumbate(II) anion. The Pb(II) atom is located on a centre of inversion. The crystal structure consists of alternating inorganic and organic layers parallel to the bc plane. Face-to-face aromatic stacking inter-actions [centroid-centroid distance = 3.505 (5) Å] occur between parallel naphthalene systems in the organic layers, and N-H⋯Br hydrogen bonds between the cations and anions stabilize the crystal structure.

13.
Nanotechnology ; 20(41): 415605, 2009 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-19762949

RESUMEN

By exploiting a simple solution approach, we bound ethoxy-terminated Si nanoparticles to surface functionalized multi-walled carbon nanotubes (MWCNTs) via covalent bonds. Quenching of photoluminescence (PL) of the Si nanoparticles was observed once they were conjugated to the MWCNTs. Analysis of the time-resolved PL decay and calculation indicated that Föster resonance energy transfer from the Si nanoparticles to the MWCNTs may be responsible for the PL quenching. The results suggest novel potential applications of the unique Si/MWCNT nanocomposites in optoelectronic devices.


Asunto(s)
Nanopartículas/química , Nanotecnología/métodos , Nanotubos de Carbono/química , Transferencia Resonante de Energía de Fluorescencia , Modelos Teóricos
14.
Sci Technol Adv Mater ; 9(3): 035001, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27877998

RESUMEN

By coating fibers with titania sol to generate a dual-size surface roughness, followed by hydrophobization with stearic acid, 1H,1H,2H,2H-perfluorodecyltrichlorosilane or their combination, hydrophilic cotton fabrics were made superhydrophobic. The surface wettability and topology of cotton fabrics were studied by contact angle measurement and scanning electron microscopy. The UV-shielding property of the treated fabrics was also characterized by UV-vis spectrophotometry.

15.
Sci Technol Adv Mater ; 9(3): 035008, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27878005

RESUMEN

Superhydrophobic surfaces were fabricated by the complex coating of silica nanoparticles with functional groups onto cotton textiles to generate a dual-size surface roughness, followed by hydrophobization with stearic acid, 1H, 1H, 2H, 2H-perfluorodecyltrichlorosilane or their combination. The wettability and morphology of the as-fabricated surfaces were investigated by contact angle measurement and scanning electron microscopy. Characterizations by transmission electron microscopy, Fourier transformation infrared spectroscopy, and thermal gravimetric analysis were also conducted.

16.
Nanotechnology ; 19(11): 115605, 2008 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-21730556

RESUMEN

Water-soluble multi-walled carbon nanotubes (MWNTs) with a high solubility of 29.2 mg ml(-1) were obtained by polymer dispersant hydrolyzed poly(styrene-co-maleic anhydride) (HSMA) assisted exfoliation and centrifugation. The MWNTs were exfoliated and dispersed in aqueous solution by non-covalent modification with polymer dispersant of HSMA. Characterizations of HSMA-coated MWNTs were conducted via transmission electron microscopy (TEM), UV-vis and fluorescence spectroscopy, and thermal gravimetric analysis (TGA). The as-prepared HSMA-coated MWNTs showed good dispersibility and stability in water.

17.
Nanotechnology ; 19(21): 215604, 2008 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-21730577

RESUMEN

Multi-walled carbon nanotubes (MWNTs) have been solubilized in water via a noncovalent method of exfoliation and centrifugation cycles with the assistance of hydrolyzed poly(styrene-co-maleic anhydride) carrying pyrene (HPSMAP). After the obtained solution was micro-filtered and dried, a water-soluble complex of HPSMAP-MWNTs was obtained. The solubility of HPSMAP-MWNTs was measured to be 46.2 mg ml(-1) with a net MWNT concentration of 7.4 mg ml(-1) in water. Thermal gravimetric analyses showed that there was a large amount of polymer remaining on the surface of MWNTs irreversibly after thoroughly removing the free polymer. Other characterizations using transmission electron microscopy, Fourier transform infrared (FTIR) spectroscopy, fluorescence spectra, and fluorescence decay were conducted.

18.
Nanotechnology ; 19(5): 055604, 2008 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-21817612

RESUMEN

Well-defined one-dimensional (1D) perylene-diimide derivative (PDD) nanowire arrays were prepared via a simple electrophoretic deposition method by using anodic aluminum oxide (AAO) templates. The morphology of the as-deposited films was characterized by field emission scanning electron microscope and transmission electron microscopy. The highly ordered nanoarrays were free-standing after removing the AAO supports. Further studies revealed that the growth process of the nanowires in the AAO pores followed a 'bottom-up' growth model. A photoreceptor with PDD nanowire arrays as the charge generation layer was fabricated. It exhibited a better photoconductivity under light illumination when compared to that of its bulk counterpart. Our results suggested that electron-accepting PDD nanowire arrays can be used as a potential candidate for photoconduction devices, which would facilitate further exploration of new technological applications of the photoimaging process.

19.
Nanotechnology ; 19(26): 265702, 2008 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-21828690

RESUMEN

Fe(3)O(4)@Au/polyaniline (PANI) nanocomposites were fabricated by in situ polymerization in the presence of mercaptocarboxylic acid. The mercaptocarboxylic acid was used to introduce hydrogen bonding and/or electrostatic interaction; it acts as a template in the formation of Fe(3)O(4)@Au/PANI nanorods. The morphology and structure of the resulting nanocomposites were analyzed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy, x-ray diffraction and x-ray energy dispersion spectroscopy (EDS). It was found that the nanocomposites were rod-like with an average diameter of 153 nm, and they exhibited a core-shell structure. A UV-visible spectrometer, semiconductor parameter analyzer and vibrating sample magnetometer (VSM) were used to characterize the optical, electrical and magnetic properties of the Fe(3)O(4)@Au/PANI nanocomposites. It was interesting to find that these properties are dependent on the molar ratio of Au to Fe(3)O(4) when the molar ratio of Fe(3)O(4)@Au to PANI is fixed. The magnetic property of the Fe(3)O(4)@Au/PANI nanocomposite is very close to superparamagnetic behavior.

20.
Nanotechnology ; 19(32): 325605, 2008 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-21828818

RESUMEN

A green approach has been developed to synthesize water soluble multi-walled carbon nanotubes (MWNTs). Ag nanoparticles have been loaded on the as-synthesized MWNTs via the in situ solution method. The strategy is based on the introduction of hydroxyl and carboxyl groups through a mild modification of MWNTs via polycondensation of citric acid and D-sorbitol, improving the water solubility of MWNTs, giving rise to preferred sites of Ag nucleation, and providing mild in situ reducing agents. The modification of MWNTs and loading of Ag nanoparticles on MWNTs were demonstrated by Fourier transform infrared spectroscopy, thermogravimetric analysis, transmission electron microscopy, and scanning electron microscopy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...