Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Food Chem X ; 22: 101352, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38601950

RESUMEN

α-Amylase, essential for carbohydrate digestion, relies on calcium (Ca) for its structural integrity and enzymatic activity. This study explored the inhibitory effect of salmon bone peptides on α-amylase activity through their interaction with the enzyme's Ca-binding sites. Among the various salmon bone hydrolysates, salmon bone trypsin hydrolysate (SBTH) exhibited the highest α-amylase inhibition. The peptide IEELEEELEAER (PIE), with a sequence of Ile-Glu-Glu-Leu-Glu-Glu-Glu-Glu-Leu-Glu-Ala-Glu-Arg from SBTH, was found to specifically target the Ca-binding sites in α-amylase, interacting with key residues such as Asp206, Trp203, His201, etc. Additionally, cellular experiments using 3 T3-L1 preadipocytes indicated PIE's capability to suppress adipocyte differentiation, and decreases in intracellular triglycerides, total cholesterol, and lipid accumulation. In vivo studies also showed a significant reduction in weight gain in the group treated with PIE(6.61%)compared with the control group (33.65%). These findings suggest PIE is an effective α-amylase inhibitor, showing promise for obesity treatment.

3.
Sci Total Environ ; 924: 171634, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38471585

RESUMEN

In recent years, the escalating attention on Pharmaceutical and Personal Care Products (PPCPs) and Heavy Metals in urban stormwater runoff highlights the critical role of Road-deposited sediments (RDS) as a significant carrier for pollutant occurrence and transport in runoff. However, existing research has overlooked the composite characteristics of PPCPs and Heavy Metals, hampering a holistic understanding of their transformation in diverse forms within runoff. This limitation impedes the exploration of their subsequent migration and conversion properties, thereby obstructing coordinated strategies for the control of co-pollution in runoff. This study focuses on the typical PPCP sulfamethoxazole (SMX) and heavy metal Cu(II) to analyze their occurrence characteristics in the Runoff-RDS system. Kinetics and isotherm studies reveal that RDS effectively accumulates SMX and Cu(II), with both exhibiting rapid association with RDS in the early stages of runoff. The accumulation of SMX and Cu(II) accounts for over 80 % and 70 % of the total accumulation within the first 240 min and 60 min, respectively. Moreover, as runoff pH values decrease, the initially synergistic effect between the co-pollutant transforms into an antagonistic effect. In the composite system, varying pH values from 2.0 to 6.0 lead to an increase in SMX accumulation from 4.01 mg/kg to 6.19 mg/kg and Cu(II) accumulation from 0.43 mg/g to 3.39 mg/g. Compared to the single system, the composite system capacity for SMX and Cu(II) increases by 0.04 mg/kg and 0.33 mg/g at pH 4.0. However, at pH 3.0, the composite system capacity for SMX and Cu(II) decreases by 0.21 mg/kg and 0.36 mg/g, respectively. Protonation/deprotonation of SMX under different pH conditions influences electrostatic repulsion/attraction between SMX and RDS. The mechanism of RDS accumulation of SMX involves Electron Donor-Acceptor (EDA) interaction, hydrogen bond interaction, and Lewis acid-base interaction. Cu(II) enrichment on RDS includes surface complexation reaction, electrostatic interaction, and surface precipitation. Complex formation enhances the accumulation of both SMX and Cu(II) on RDS in runoff. This study elucidates the co-occurrence characteristics and mechanisms of SMX and Cu(II) co-pollution in runoff systems. The findings contribute valuable insights to understanding the existence patterns and mechanisms of co-pollution, providing a reference for investigating the migration and fate of co-pollutant in runoff. Moreover, these insights could offer guidance for the development of effective strategies to mitigate co-pollution in rainwater.

4.
Environ Sci Pollut Res Int ; 31(15): 22962-22975, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38418787

RESUMEN

As the most common filler in stormwater treatment, zeolite (NZ-Y) has good cation exchange capability and stabilization potential for the removal of heavy metal from aqueous solutions. In this study, sodium dodecyl sulfate (SDS) and NZ-Y were selected to preparing new adsorbent (SDS-NZ) by using a simple hydrothermal method. The sorption-desorption performance and mechanism of Cu(II) onto SDS-NZ were investigated. The results showed that the sorption of Cu(II) on SDS-NZ was in accordance with the pseudo-second-order kinetic model with an equilibrium time of 4 h. The sorption behavior fitted Langmuir isotherm with a saturation sorption capability of 9.03 mg/g, which was three times higher than that of NZ-Y. The modification of SDS increases the average pore size of NZ-Y by 3.96 nm, which results in a richer internal pore structure and more useful sorption sites for Cu(II) sorption. There was a positive correlation between solution pH values and sorption capability of Cu(II) in the range of 3.0-6.0. With the ionic strength increased, the sorption capability of Cu(II) onto SDS-NZ first decreased and then increased, which may be attributed to competitive sorption and compression of the electronic layer. The desorption of Cu(II) on SDS-NZ was favored by the increase in SDS concentration and ionic strength and decrease in solution pH values. The application of SDS-NZ in runoff improved the leaching risk of Cu(II). After several cycles, the ability of reused SDS-NZ to efficiently adsorb most heavy metals was verified with removal rates above 99%.


Asunto(s)
Metales Pesados , Purificación del Agua , Zeolitas , Cobre/química , Zeolitas/química , Tensoactivos , Lluvia , Purificación del Agua/métodos , Abastecimiento de Agua , Adsorción , Concentración de Iones de Hidrógeno , Cinética , Soluciones
5.
Head Face Med ; 20(1): 13, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38378686

RESUMEN

BACKGROUND: Facial infiltrating lipomatosis (FIL) is a rare condition characterized by congenital facial enlargement. Beyond its impact on physical appearance, FIL can also impair essential facial functions such as swallowing, chewing, vision, and breathing, imposing a substantial physiological and psychological burden. Currently, fewer than 80 cases of FIL have been reported, and the characteristics and management strategies for FIL remain unclear. METHODS: We reviewed the clinical, surgical, and radiological records of 39 FIL patients who were treated at our center. Of these, genetic testing was performed for 21 patients. RESULTS: Aberrant overgrowth involves subcutaneous fat, bones, muscles, glands, tongue, lips, and teeth. Epidermal nevi could be observed in the dermatomes innervated by the three branches of the trigeminal nerve, with the highest frequency seen in the dermatome of the mandibular branch. Four patients exhibited concurrent hemimegalencephaly (HMEG), with one case presenting HMEG on the opposite side of the FIL. Nineteen patients were confirmed to harbor the PIK3CA mutation. Thirty-three patients underwent surgical procedures, with a post resection recurrence rate of approximately 25%. CONCLUSIONS: A variety of maxillofacial structures may be involved in FIL. PIK3CA mutations are important pathogenic factors. Emerging targeted therapies could present an additional treatment avenue in the future. However, surgery currently remains the predominant treatment choice for FIL. The timing and modality of surgery should be individually customized, taking into account each patient's unique circumstances. Notably, there is a significant possibility of postoperative recurrence during childhood and adolescence, necessitating early strategic planning of disease management.


Asunto(s)
Cara , Lipomatosis , Adolescente , Humanos , Lipomatosis/diagnóstico por imagen , Lipomatosis/cirugía , Lipomatosis/genética , Grasa Subcutánea , Labio/patología , Mandíbula/patología
7.
J Environ Manage ; 350: 119671, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38039706

RESUMEN

The simultaneous presence of heavy metals and surfactants in runoff induces complexation and ecological harm during migration. However, interactions between these pollutants are often overlooked in past studies. Thus, investigating heavy metal-surfactant complexes in runoff is imperative. In this work, Cu (II) and sodium dodecyl sulfate (SDS) were selected to investigate the interaction between heavy metals and surfactants due to the higher detected frequency in runoff. Through 1H NMR and FTIR observation of hydrogen atom nuclear displacement and functional group displacement of SDS, the change of SDS and Cu (II) complexation was obtained, and then the complexation form of Cu (II) and SDS was verified. The results showed that solution pH values and ionic strength had significant effects on the complexation of Cu (II). When the pH values increase from 3.0 to 6.0, the complexation efficiency of SDS with Cu (II) increased by 12.12% at low concentration of SDS, which may be attributed to the excessive protonation in the aqueous solution at acidic condition. The increase of ionic strength would inhibit the complexation reaction efficiency by 19.57% and finally reached the platform with concentration of NaNO3 was 0.10 mmol/L, which was mainly due to the competitive relationship between Na (I) and Cu (II). As a general filtering material in stormwater treatment measures, natural zeolite could affect the interaction between SDS and Cu (II) greatly. After the addition of SDS, the content of free Cu (II) in the zeolite-SDS-Cu (II) three-phase mixed system was significantly reduced, indicating that SDS had a positive effect on the removal of Cu (II) from runoff. This study is of great significance for investigating the migration and transformation mechanism of SDS and Cu (II) in the future and studying the control technology of storm runoff pollution.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Purificación del Agua , Zeolitas , Dodecil Sulfato de Sodio/química , Lluvia , Purificación del Agua/métodos , Abastecimiento de Agua , Metales Pesados/química , Tensoactivos , Contaminantes Químicos del Agua/química
8.
Orphanet J Rare Dis ; 18(1): 189, 2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37452404

RESUMEN

BACKGROUND: Facial infiltrating lipomatosis (FIL) is a rare congenital disorder characterized by unilateral facial swelling, for which surgery is the prevailing therapeutic option. Several studies have shown that the development of FIL is closely associated with PIK3CA mutations. This study aimed to further identify rare clinical features and underlying molecular variants in patients with FIL. RESULTS: Eighteen patients were included in this study, and all patients presented with infiltrating adipose tissues confirmed by magnetic resonance imaging. Macrodactyly, polydactyly, hemimegalencephaly and hemihyperplasia were also observed in patients with FIL. In total, eight different PIK3CA mutations were detected in tissues obtained from sixteen patients, including the missense mutations p.His1047Arg (n = 4), p.Cys420Arg (n = 2), p.Glu453Lys (n = 2), p.Glu542Lys (n = 2), p.Glu418Lys (n = 1), p.Glu545Lys (n = 1), and p.His1047Tyr (n = 1) and the deletion mutation p.Glu110del (n = 3). Furthermore, the GNAQ mutation p.Arg183Gln was detected in the epidermal nevus tissue of one patient. Imaging revealed that several patients carrying hotspot mutations had more severe adipose infiltration and skeletal deformities. CONCLUSIONS: The abundant clinical presentations and genetic profiles of FIL make it difficult to treat. PIK3CA mutations drive the pathogenesis of FIL, and PIK3CA hotspot mutations may lead to more extensive infiltration of lipomatosis. Understanding the molecular variant profile of FIL will facilitate the application of novel PI3K-targeted inhibitors.


Asunto(s)
Cara , Lipomatosis , Humanos , Cara/patología , Lipomatosis/genética , Fenotipo , Genotipo , Mutación/genética , Fosfatidilinositol 3-Quinasa Clase I/genética
9.
Pediatr Dermatol ; 40(6): 1115-1119, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37190882

RESUMEN

We report an unusual case of facial infiltrating lipomatosis with hemimegalencephaly and lymphatic malformations. In addition to the clinical data and imaging findings, detection of a heterozygous PIK3CA nonhotspot known pathogenic variant C420R in a facial epidermal nevus provided novel insight into the pathogenic effect of somatic PIK3CA mutations.


Asunto(s)
Hemimegalencefalia , Lipomatosis , Humanos , Fosfatidilinositol 3-Quinasa/genética , Dominio Catalítico , Lipomatosis/complicaciones , Lipomatosis/genética , Lipomatosis/diagnóstico , Mutación
10.
Polymers (Basel) ; 15(9)2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37177211

RESUMEN

A wet electrostatic precipitator (WESP) has much higher capture rate for fine particulate matter, PM2.5, than a traditional dry type electrostatic precipitator does. In order to make full use of existing dust removal equipment and reduce the emissions of smoke and dust to zero, a combination of chemical coagulation and humidification coagulation is proposed using a WESP. The results show that the addition of chemical coagulant can promote the coagulation of coal-fired dust particles. After the addition of pectin (PG), the median diameter of dust particles increases from 28.19 µm to 45.28 µm. Water vapor humidification can promote the coagulation of dust particles. When the water vapor injection rate increases from 0 kg/h to 3.2 kg/h, the median diameter of dust particles increases from 28.19 µm to 36.45 µm. The synergistic effect of the coagulant and water vapor can enhance the chemical coagulation effect; when 1.0 × 10-2 g/L PG and 3.2 kg/h water vapor synergize, the collection efficiency reaches 98.17%, and when 1.0 × 10-2 g/L polyacrylamide (PAM) and 3.2 kg/h water vapor synergize, the collection efficiency reaches 96.68%. Both chemical coagulation and water vapor humidification can promote the condensation of coal dust, which is beneficial to improve the efficient capture of fine particles using WESP.

11.
Int J Biol Macromol ; 240: 124287, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37019201

RESUMEN

Developing high-strength hydrogels with biocompatibility and bone conductibility is still desirable for bone regeneration. The nanohydroxyapatite (nHA) was incorporated into a dopamine-modified gelatin (Gel-DA) hydrogel system to create a highly biomimetic native bone tissue microenvironment. In addition, to further increase the cross-linking density between nHA and Gel-DA, nHA was functionalized by mussel-inspired polydopamine (PDA). Compared with nHA, adding polydopamine functionalized nHA (PHA) increased the compressive strength of Gel-Da hydrogel from 449.54 ± 180.32 kPa to 611.18 ± 211.86 kPa without affecting its microstructure. Besides, the gelation time of Gel-DA hydrogels with PHA incorporation (GD-PHA) was controllable from 49.47 ± 7.93 to 88.11 ± 31.18 s, contributing to its injectable ability in clinical applications. In addition, the abundant phenolic hydroxyl group of PHA was beneficial to the cell adhesion and proliferation of Gel-DA hydrogels, leading to the excellent biocompatibility of Gel-PHA hydrogels. Notably, the GD-PHA hydrogels could accelerate the bone repair efficiency in the rat model of the femoral defect. In conclusion, our results suggest the Gel-PHA hydrogel with osteoconductivity, biocompatibility, and enhanced mechanical properties is a potential bone repair material.


Asunto(s)
Gelatina , Hidrogeles , Ratas , Animales , Hidrogeles/farmacología , Hidrogeles/química , Gelatina/química , Polímeros/química , Regeneración Ósea
12.
Cytojournal ; 20: 4, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36895261

RESUMEN

Pulmonary fibrosis is a complication in patients with coronavirus disease 2019 (COVID-19). Extensive pulmonary fibrosis is a severe threat to patients' life and lung transplantation is last resort to prolong the life of patients. We reported a case of critical type COVID-19 patient, though various treatment measures were used, including anti-virus, anti-infection, improving immunity, convalescent plasma, prone position ventilation, and airway cleaning by fiber-optic bronchoscope, although his COVID-19 nucleic acid test turned negative, the patient still developed irreversible extensive pulmonary fibrosis, and respiratory mechanics suggested that lung compliance could not be effectively recovered. After being assisted by ventilator and extracorporeal membrane oxygenation for 73 days, he finally underwent double-lung transplantation. On the 2nd day after the operation, the alveolar lavage fluid of transplanted lung was examined by cytomorphology, and the morphology of alveolar epithelial cells was intact and normal. On the 20th day post-transplantation, the chest radiograph showed a large dense shadow in the middle of the right lung. On the 21st day, the patient underwent fiber-optic bronchoscopy, yeast-like fungal spores were found by cytomorphological examination from a brush smear of the right bronchus, which was confirmed as Candida parapsilosis infection by fungal culture. He recovered well due to the careful treatment and nursing in our hospital. Until July 29, 96 days after transplantation, the patient was recovery and discharged from hospital.

13.
J Thorac Dis ; 15(1): 146-154, 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36794133

RESUMEN

Background: Although chest tube-omitted video-assisted thoracoscopic surgery (VATS) has been proven to be safe and efficacious, its universal application is precluded by a varying morbidity rate due to a lack of standardization. Since digital chest drainage has already shown improved accuracy and consistency in the management of postoperative air leak, we incorporated it in the strategy of intraoperative chest tube withdrawal, aiming to achieve better results. Methods: We collected the clinical data of 114 consecutive patients who underwent elective uniportal VATS pulmonary wedge resection at the Shanghai Pulmonary Hospital from May 2021 to February 2022. Their chest tubes were withdrawn intraoperatively after an air-tightness test facilitated by digital drainage: the end flow rate had to be kept ≤30 mL/min for >15 s at the setting of -8 cmH2O suctioning. The recordings and patterns of the air suctioning process were documented and analyzed as potential standards of chest tube withdrawal. Results: The mean age of the patients was 49.7±11.7 years. The mean size of the nodules was 1.0±0.2 cm. The location of the nodules encompassed all lobes, and 90 (78.9%) patients received preoperative localization. The postoperative morbidity and mortality rates were 7.0% and 0%, respectively. Six patients had clinically overt pneumothorax and two patients had postoperative bleeding that required intervention. All of the patients recovered on conservative treatment except for one case of pneumothorax that required additional tube thoracostomy. The median length of postoperative stay was 2 days; and the median time of suctioning, peak flow rate, and end flow rate were 126 s, 210 mL/min, and 0 mL/min, respectively. The median numeric rating scale for pain was 1 on postoperative day (POD) 1 and 0 on the day of discharge. Conclusions: Chest tube-free VATS assisted by digital drainage is feasible with minimal morbidity. Its strength of quantitative air leak monitoring produces important measurements for the prediction of postoperative pneumothorax and future standardization of the procedure.

14.
Ann Plast Surg ; 90(5S Suppl 2): S209-S215, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36729078

RESUMEN

ABSTRACT: Hyperactivation of the PI3K/AKT/mTOR signaling pathway caused by PIK3CA mutations is associated with a category of overgrowth syndromes that are defined as PIK3CA -related overgrowth spectrum (PROS). The clinical features of PROS are highly heterogeneous and usually present as vascular malformations, bone and soft tissue overgrowth, and neurological and visceral abnormalities. Detection of PIK3CA variants is necessary for diagnosis and provides the basis for targeted therapy for PROS. Drugs that inhibit the PI3K pathway offer alternatives to conventional therapies. This article reviews the current knowledge of PROS and summarizes the latest progress in precise treatment, providing new insights into future therapies and research goals.


Asunto(s)
Fosfatidilinositol 3-Quinasas , Malformaciones Vasculares , Humanos , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Mutación , Transducción de Señal , Fosfatidilinositol 3-Quinasa Clase I/genética , Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Síndrome , Malformaciones Vasculares/diagnóstico , Malformaciones Vasculares/genética , Malformaciones Vasculares/terapia
15.
J Environ Manage ; 329: 117042, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36566735

RESUMEN

As one of the commonly used stormwater management measures, permeable pavement system (PPS) played a prominent role in controlling runoff pollution and alleviating urban waterlogging. In this study, new enhanced infiltration materials (construction waste brick, coal gangue, activated carbon, multi-walled carbon nanotube, multi-layer graphene) were applied in PPS and the control efficiency and mechanism of typical heavy metals (HMs, Mn2+, Pb2+, Zn2+, Cu2+, Cd2+, Ni2+) was investigated in runoff. Furthermore, the influences of different rainfall intensities and antecedent dry periods on HMs removal by PPS were evaluated. The results showed that all PPS with enhanced infiltration materials have little leaching effect on HMs (<3 µg/L). All the selected enhanced infiltration materials meet the requirements of PPS. The concentration of HMs in the effluent of PPS dropped sharply first, followed rebounded and then maintained at a stable range. Activated carbon PPS (AC), Multi-walled carbon nanotube PPS (MCN), and Multi-layer graphene PPS (MG) could significantly improve the control effect of PPS on nearly all selected HMs. The average removal rates of AC, MCN and MG for six HMs were 75.48%-99.35%, 81.30%-97.59%, and 73.03%-99.33%, respectively. Compared with Traditional PPS (TR), the effluent concentrations of HMs in construction waste brick PPS (CW) and coal gangue PPS (CG) were relatively higher and unstable. AC, CN and MG could adapt to different rainfall conditions and the maximum removal rates of most HMs exceed to 99%. With antecedent dry periods increased, the control effect of HMs was significantly improved. The influences of the antecedent drying period on HMs removal followed as: CW>CG>TR>MG>CN>AC. This study provided novel methods to eliminating HMs in runoff and provides implications for the design of PPS.


Asunto(s)
Grafito , Metales Pesados , Nanotubos de Carbono , Contaminantes Químicos del Agua , Carbón Orgánico , Contaminantes Químicos del Agua/análisis , Metales Pesados/análisis , Carbón Mineral , Monitoreo del Ambiente
16.
Front Plant Sci ; 13: 973985, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36570910

RESUMEN

Frequent outbreaks of agricultural pests can reduce crop production severely and restrict agricultural production. Therefore, automatic monitoring and precise recognition of crop pests have a high practical value in the process of agricultural planting. In recent years, pest recognition and detection have been rapidly improved with the development of deep learning-based methods. Although certain progress has been made in the research on pest detection and identification technology based on deep learning, there are still many problems in the production application in a field environment. This work presents a pest detector for multi-category dense and tiny pests named the Pest-YOLO. First, the idea of focal loss is introduced into the loss function using weight distribution to improve the attention of hard samples. In this way, the problems of hard samples arose from the uneven distribution of pest populations in a dataset and low discrimination features of small pests are relieved. Next, a non-Intersection over Union bounding box selection and suppression algorithm, the confluence strategy, is used. The confluence strategy can eliminate the errors and omissions of pest detection caused by occlusion, adhesion and unlabeling among tiny dense pest individuals to the greatest extent. The proposed Pest-YOLO model is verified on a large-scale pest image dataset, the Pest24, which includes more than 20k images with over 190k pests labeled by agricultural experts and categorized into 24 classes. Experimental results show that the Pest-YOLO can obtain 69.59% for mAP and 77.71% for mRecall on the 24-class pest dataset, which is 5.32% and 28.12% higher than the benchmark model YOLOv4. Meanwhile, our proposed model is superior to other several state-of-the-art methods, including the SSD, RetinaNet, Faster RCNN, YOLOv3, YOLOv4, YOLOv5s, YOLOv5m, YOLOX, DETR, TOOD, YOLOv3-W, and AF-RCNN detectors. The code of the proposed algorithm is available at: https://github.com/chr-secrect/Pest-YOLO.

17.
Front Microbiol ; 13: 973568, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36106077

RESUMEN

Red mud (RM) is a highly alkaline polymetallic waste generated via the Bayer process during alumina production. It contains metals that are critical for a sustainable development of modern society. Due to a shortage of global resources of many metals, efficient large-scale processing of RM has been receiving increasing attention from both researchers and industry. This study investigated the solubilization of metals from RM, together with RM dealkalization, via sulfur (S0) oxidation catalyzed by the moderately thermophilic bacterium Sulfobacillus thermosulfidooxidans. Optimization of the bioleaching process was conducted in shake flasks and 5-L bioreactors, with varying S0:RM mass ratios and aeration rates. The ICP analysis was used to monitor the concentrations of dissolved elements from RM, and solid residues were analyzed for surface morphology, phase composition, and Na distribution using the SEM, XRD, and STXM techniques, respectively. The results show that highest metal recoveries (89% of Al, 84% of Ce, and 91% of Y) were achieved with the S0:RM mass ratio of 2:1 and aeration rate of 1 L/min. Additionally, effective dealkalization of RM was achieved under the above conditions, based on the high rates (>95%) of Na, K, and Ca dissolution. This study proves the feasibility of using bacterially catalyzed S0 oxidation to simultaneously dealkalize RM and efficiently extract valuable metals from the amassing industrial waste.

18.
Water Res ; 223: 118957, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35970106

RESUMEN

Mining activities expose sulfidic minerals including arsenopyrite (FeAsS) to acid mine drainage (AMD). The subsequent release of toxic arsenic (As) can have great negative implications for the environment and human health. This study investigated the evolution of secondary products and As speciation transformations during arsenopyrite bio-oxidation in AMD collected from a polymetallic mine. Immobilization of the As solubilized via arsenopyrite bio-oxidation using red mud (RM) was also studied. The results show that the high ionic strength (concentrations of dissolved Fe3+, SO42-, and Ca2+ reached values up to 0.75, 3.38, and 0.35 g/L, respectively) and redox potential (up to +621 mV) of AMD (caused primarily by Fe3+) enhanced the dissolution of arsenopyrite. A high [Fe]aq/[As]aq ratio in the AMD favored the precipitation of tooeleite during arsenopyrite bio-oxidation, and the formation of other poorly crystalline products such as schwertmannite and amorphous ferric arsenate also contributed to As immobilization. Bacterial cells served as important nucleation sites for the precipitation of mineral phases. Arsenopyrite completely dissolved after 12 days of bio-oxidation in AMD and the [As]aq (mainly present as As(III)) reached 1.92 g/L, while a greater [As]aq was observed in a basal salts medium (BSM) assay (reaching 3.02 g/L). An RM addition significantly promoted As(III) immobilization, with final [As(III)]aq decreasing to 0.16 and 1.43 g/L in AMD and BSM assays respectively. No oxidation of As(III) was detected during the immobilization process. These findings can help predict As release from arsenopyrite on contact with AMD and, on a broader scale, assist in designing remediation and treatment strategies to mitigate As contamination in mining.


Asunto(s)
Arsénico , Ácidos , Arseniatos , Arsénico/química , Arsenicales , Humanos , Compuestos de Hierro , Minerales/química , Oxidación-Reducción , Sales (Química) , Sulfuros
19.
Front Microbiol ; 13: 878800, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35814656

RESUMEN

Carbapenem-resistant Klebsiella pneumoniae (CRKP), a pathogen that causes severe nosocomial infections and yields a high mortality rate, poses a serious threat to global public health due to its high antimicrobial resistance. Bacteriophages encode polysaccharide-degrading enzymes referred to as depolymerases that cleave the capsular polysaccharide (CPS), one of the main virulence factors of K. pneumoniae. In this study, we identified and characterized a new capsule depolymerase K19-Dpo41 from K. pneumoniae bacteriophage SH-KP156570. Our characterization of K19-Dpo41 demonstrated that this depolymerase showed specific activities against K19-type K. pneumoniae. K19-Dpo41-mediated treatments promoted the sensitivity of a multidrug-resistant K19-type K. pneumoniae strain to the bactericidal effect of human serum and significantly increased the survival rate of Galleria mellonella infected with K19-type K. pneumoniae. Our results provided strong primary evidence that K19-Dpo41 was not only effective in capsular typing of K19-type K. pneumoniae but promising in terms of developing new alternative therapeutic strategies against K19-type CRKP infections in the future.

20.
J Phys Chem A ; 126(20): 3210-3218, 2022 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-35549278

RESUMEN

2,6-Di-tert-butyl-hydroxytotulene (BHT) is a widely used antioxidant in various fields. In this study, we explored comprehensively the mechanisms and kinetics of BHT degradation to produce isobutene using the density functional theory method. Furthermore, the intrinsic chemical reactivity of BHT was investigated using the electrostatic potential, average local ionization energy, and Fukui function, and the most likely reaction site with OH radical was predicted. Two initiation pathways of BHT with OH radicals were reported. The OH addition pathways at the C2 site of BHT was found more likely to occur than the pathways of H abstracts from the t-butyl group due to the lower energy barrier. Rate constants of two initiation pathways were calculated by transition state theory, and they were promoted by the temperature rise. Mayer bond order and localized molecular orbitals analysis were conducted to reveal the variation of the chemical bonds in the reaction process. The tertiary butyl radical that had been generated in the OH-addition reaction was more likely to generate isobutene with the participation of oxygen. Overall, this research could help to reveal the transformation mechanism of isobutene produced by BHT degradation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...