Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Front Immunol ; 15: 1381340, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38633246

RESUMEN

Background: In addition to abnormal liver inflammation, the main symptoms of non-alcoholic steatohepatitis (NASH) are often accompanied by gastrointestinal digestive dysfunction, consistent with the concept of spleen deficiency (SD) in traditional Chinese medicine. As an important metabolic sensor, whether peroxisome proliferator-activated receptor alpha (PPARα) participates in regulating the occurrence and development of NASH with SD (NASH-SD) remains to be explored. Methods: Clinical liver samples were collected for RNA-seq analysis. C57BL/6J mice induced by folium sennae (SE) were used as an SD model. qPCR analysis was conducted to evaluate the inflammation and metabolic levels of mice. PPARα knockout mice (PPARαko) were subjected to SE and methionine-choline-deficient (MCD) diet to establish the NASH-SD model. The phenotype of NASH and the inflammatory indicators were measured using histopathologic analysis and qPCR as well. Results: The abnormal expression of PPARα signaling, coupled with metabolism and inflammation, was found in the results of RNA-seq analysis from clinical samples. SD mice showed a more severe inflammatory response in the liver evidenced by the increases in macrophage biomarkers, inflammatory factors, and fibrotic indicators in the liver. qPCR results also showed differences in PPARα between SD mice and control mice. In PPARαko mice, further evidence was found that the lack of PPARα exacerbated the inflammatory response phenotype as well as the lipid metabolism disorder in NASH-SD mice. Conclusion: The abnormal NR signaling accelerated the vicious cycle between lipotoxicity and inflammatory response in NAFLD with SD. Our results provide new evidence for nuclear receptors as potential therapeutic targets for NAFLD with spleen deficiency.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , PPAR alfa , Animales , Ratones , Inflamación , Ratones Endogámicos C57BL , Ratones Noqueados , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , PPAR alfa/metabolismo , Bazo/metabolismo , Bazo/patología
2.
Signal Transduct Target Ther ; 9(1): 20, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38263084

RESUMEN

A lasting imbalance between fatty acid synthesis and consumption leads to non-alcoholic fatty liver disease (NAFLD), coupled with hepatitis and insulin resistance. Yet the details of the underlying mechanisms are not fully understood. Here, we unraveled that the expression of the transcription factor Zbtb18 is markedly decreased in the livers of both patients and murine models of NAFLD. Hepatic Zbtb18 knockout promoted NAFLD features like impaired energy expenditure and fatty acid oxidation (FAO), and induced insulin resistance. Conversely, hepatic Zbtb18 overexpression alleviated hepato-steatosis, insulin resistance, and hyperglycemia in mice fed on a high-fat diet (HFD) or in diabetic mice. Notably, in vitro and in vivo mechanistic studies revealed that Zbtb18 transcriptional activation of Farnesoid X receptor (FXR) mediated FAO and Clathrin Heavy Chain (CLTC) protein hinders NLRP3 inflammasome activity. This key mechanism by which hepatocyte's Zbtb18 expression alleviates NAFLD and consequent liver fibrosis was further verified by FXR's deletion and forced expression in mice and cultured mouse primary hepatocytes (MPHs). Moreover, CLTC deletion significantly abrogated the hepatic Zbtb18 overexpression-driven inhibition of NLRP3 inflammasome activity in macrophages. Altogether, Zbtb18 transcriptionally activates the FXR-mediated FAO and CLTC expression, which inhibits NLRP3 inflammasome's activity alleviating inflammatory stress and insulin resistance, representing an attractive remedy for hepatic steatosis and fibrosis.


Asunto(s)
Dominio BTB-POZ , Diabetes Mellitus Experimental , Resistencia a la Insulina , Enfermedad del Hígado Graso no Alcohólico , Animales , Humanos , Ratones , Ácidos Grasos , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Dedos de Zinc
3.
Clin Transl Oncol ; 26(6): 1407-1418, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38194019

RESUMEN

INTRODUCTION: Breast cancer (BC) is the most prevalent type of cancer and has the highest mortality among women worldwide. BC patients have a high risk of depression, which has been recognized as an independent factor in the progression of BC. However, the potential mechanism has not been clearly demonstrated. METHODS: To explore the correlation and mechanism between depression and BC progression, we induced depression and tumor in BC mouse models. Depression was induced via chronic unpredictable mild stress (CUMS) and chronic restraint stress (CRS). Amino acid (AA) neurotransmitter-targeted metabonomics and gut microbiota 16S rDNA gene sequencing were employed in the mouse model after evaluation with behavioral tests and pathological analysis. RESULTS: The tumors in cancer-depression (CD) mice grew faster than those in cancer (CA) mice, and lung metastasis was observed in CD mice. Metabonomics revealed that the neurotransmitters and plasma AAs in CD mice were dysregulated, namely the tyrosine and tryptophan pathways and monoamine neurotransmitters in the brain. Gut microbiota analysis displayed an increased ratio of Firmicutes/Bacteroides. In detail, the abundance of f_Lachnospiraceae and s_Lachnospiraceae increased, whereas the abundance of o_Bacteroidales and s_Bacteroides_caecimuris decreased. Moreover, the gut microbiota was more closely associated with AA neurotransmitters than with plasma AA. CONCLUSION: Depression promoted the progression of BC by modulating the abundance of s_Lachnospiraceae and s_Bacteroides_caecimuris, which affected the metabolism of monoamine neurotransmitters in the brain and AA in the blood.


Asunto(s)
Aminoácidos , Neoplasias de la Mama , Depresión , Progresión de la Enfermedad , Microbioma Gastrointestinal , Neurotransmisores , Animales , Microbioma Gastrointestinal/fisiología , Femenino , Ratones , Neurotransmisores/metabolismo , Aminoácidos/metabolismo , Depresión/metabolismo , Depresión/microbiología , Neoplasias de la Mama/patología , Neoplasias de la Mama/microbiología , Neoplasias de la Mama/metabolismo , Metabolómica , Modelos Animales de Enfermedad , Estrés Psicológico/microbiología , Estrés Psicológico/metabolismo , Estrés Psicológico/complicaciones
4.
Immun Inflamm Dis ; 11(11): e1076, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38018579

RESUMEN

OBJECTIVE: Acute-on-chronic liver failure (ACLF) causes organ system failures in patients and increases the risk of mortality. One of the main predictors of ACLF development in patients is the severity of systemic inflammation. The purpose of this study was to explore the effects of resolvin D1 (RvD1) on the rat model of ACLF. METHODS: The ACLF rats were induced by first intraperitoneally (ip) injecting CCl4 and porcine serum for 6 weeks to establish the chronic liver injury, followed by once administration (ip) of lipopolysaccharide and d-galactose d-GalN to cause acute liver injury (ALI). An hour before the ALI-induced treatment, rats were administrated (ip) with 0.9% saline or different doses of RvD1 (0.3 or 1 µg/kg). Afterward, the control and treated rats were killed and samples were collected. Biochemical analysis, hematoxylin-eosin and Sirius red staining, flow cytometry assay, and real-time polymerase chain reaction were used to assess the rat liver histopathological injury, the percentage of Treg cells in the spleen, and the messenger RNA (mRNA) levels of transcription factors and immunologic cytokines in liver. RESULTS: The necroinflammatory scores and the serum levels of transaminase significantly increased in ACLF rats compared with those in control rats. These impaired changes observed in ACLF rats could be attenuated by the administration of a low dose of RvD1 before the induction of ALI, which was associated with the increased proportion of regulatory T cells (Treg) in the spleen together with the increased gene expression ratio of Foxp3/RORγt and decreased mRNA level of Il-17a and Il-6 in the liver. CONCLUSION: A low dose of RvD1 can promote the resolution of inflammation in ACLF rats by increasing the proportion of Treg cells. RvD1, therefore, may be used as a potential drug for the treatment of patients with ACLF.


Asunto(s)
Insuficiencia Hepática Crónica Agudizada , Linfocitos T Reguladores , Humanos , Ratas , Animales , Porcinos , Insuficiencia Hepática Crónica Agudizada/tratamiento farmacológico , Insuficiencia Hepática Crónica Agudizada/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , ARN Mensajero/metabolismo
5.
ACS Omega ; 8(29): 26158-26169, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37521618

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) has become serious liver disease all over the world. At present, NAFLD caused by high calorie and fat diet is increasing. Calsyntenin-3 (Clstn3) is a transmembrane protein that has recently been found to participate in lipid energy metabolism. But whether Clstn3 affects NAFLD lipid metabolism has not been analyzed. We stimulate the mice primary hepatocytes (MPHs) with oleic acid and palmitic acid (OA&PA) to establish a cell model. Then, potential targets, including Clstn3 gene, were validated for improving lipid metabolism disorder in NAFLD model mice (HFD and db/db) by silencing and overexpressing hepatic Clstn3. Moreover, the effects of Clstn3 on lipid homeostasis were determined by functional determination, triglyceride (TG) levels, total cholesterol (TC) levels, ELISA, and qRT-PCR detection. Our results displayed that Clstn3 was decreased in the NAFLD mice model. Also, overexpression of Clstn3 improved lipid metabolism disorders, gluconeogenesis, and energy homeostasis and reduced liver injury, inflammation, and oxidative stress injury. However, opposite results were obtained in Clstn3-silencing mice, suggesting that the Clstn3 gene is closely related to lipid metabolism disorder in NAFLD. RNAseq expression demonstrated that Farnesoid X Receptor (FXR) expression was increased after overexpression of Clstn3. Clstn3 supplementation in FXRKO mice can improve the dysfunction caused by insufficient FXR, suggesting that Clstn3 can improve the NAFLD lipid metabolism disorder to some extent through FXR, which may provide a new method for the treatment of NAFLD.

6.
Heliyon ; 9(6): e16764, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37313135

RESUMEN

Chronic gastritis (CG) is a persistent inflammation of the gastric mucosa that can cause uncomfortable symptoms in patients. Traditional Chinese medicine (TCM) has been widely used to treat CG due to its precise efficacy, minimal side effects, and holistic approach. Clinical studies have confirmed the effectiveness of TCM in treating CG, although the mechanisms underlying this treatment have not yet been fully elucidated. In this review, we summarized the clinical research and mechanisms of TCM used to treat CG. Studies have shown that TCM mechanisms for CG treatment include H. pylori eradication, anti-inflammatory effects, immune modulation, regulation of gastric mucosal cell proliferation, apoptosis, and autophagy levels.

7.
EMBO Rep ; 24(6): e56390, 2023 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-37154299

RESUMEN

Excessive gluconeogenesis can lead to hyperglycemia and diabetes through as yet incompletely understood mechanisms. Herein, we show that hepatic ZBTB22 expression is increased in both diabetic clinical samples and mice, being affected by nutritional status and hormones. Hepatic ZBTB22 overexpression increases the expression of gluconeogenic and lipogenic genes, heightening glucose output and lipids accumulation in mouse primary hepatocytes (MPHs), while ZBTB22 knockdown elicits opposite effects. Hepatic ZBTB22 overexpression induces glucose intolerance and insulin resistance, accompanied by moderate hepatosteatosis, while ZBTB22-deficient mice display improved energy expenditure, glucose tolerance, and insulin sensitivity, and reduced hepatic steatosis. Moreover, hepatic ZBTB22 knockout beneficially regulates gluconeogenic and lipogenic genes, thereby alleviating glucose intolerance, insulin resistance, and liver steatosis in db/db mice. ZBTB22 directly binds to the promoter region of PCK1 to enhance its expression and increase gluconeogenesis. PCK1 silencing markedly abolishes the effects of ZBTB22 overexpression on glucose and lipid metabolism in both MPHs and mice, along with the corresponding changes in gene expression. In conclusion, targeting hepatic ZBTB22/PEPCK1 provides a potential therapeutic approach for diabetes.


Asunto(s)
Hígado Graso , Intolerancia a la Glucosa , Hiperglucemia , Resistencia a la Insulina , Ratones , Animales , Gluconeogénesis/genética , Resistencia a la Insulina/genética , Hígado/metabolismo , Hiperglucemia/genética , Hiperglucemia/metabolismo , Glucosa/metabolismo , Hígado Graso/metabolismo , Ratones Endogámicos C57BL , Hepatocitos/metabolismo
8.
iScience ; 26(4): 106318, 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-36950116

RESUMEN

Overdose acetaminophen (APAP) can cause acute liver injury (ALI), but the underlying mechanism remains undetermined. This study explored the role of hepatic Zinc Finger And BTB Domain Containing 22 (ZBTB22) in defense against APAP-mediated hepatotoxicity. The results showed that hepatic ZBTB22 expression was significantly reduced in patients with ALI and mice. In mouse primary hepatocytes (MPHs), ZBTB22 deletion aggravated APAP overdose-induced ALI, whereas ZBTB22 overexpression attenuated that pathological progression. The results were further verified in ZBTB22 over-express or knockout mice models. In parallel, hepatocyte-specific ZBTB22 knockout also enhanced ALI. Furthermore, ZBTB22 decreased pregnane X receptor (PXR) expression, and the PXR activator pregnane-16α-carbonitrile suppressed the protective effect of ZBTB22 in APAP-induced ZBTB22-overexpressing mice. Collectively, our findings highlight the protective effect of ZBTB22 against APAP-induced ALI and unravel PXR signaling as the potential mechanism. Strategies to increase hepatic ZBTB22 expression represent a promising therapeutic approach for APAP overdose-induced ALI.

9.
Front Genet ; 13: 851390, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35464847

RESUMEN

Background: Chromobox family proteins (CBXs) are vital components of epigenetic regulation complexes and transcriptionally inhibit target genes by modifying the chromatin. Accumulating evidence indicates that CBXs are involved in the initiation and progression of multiple malignancies. However, the expression, function, and clinical relevance such as the prognostic and diagnostic values of different CBXs in esophageal carcinoma (ESCA) are still unclear. Methods: We applied Oncomine, TCGA, GEO, GEPIA, UALCAN, Kaplan-Meier plotter, cBioPortal, Metascape, and TIMER to investigate the roles of CBX family members in ESCA. Additionally, quantitative real-time PCR (RT-PCR), western blot, and immunofluorescence were used to verify the expression of CBX family members in ESCA clinical samples. Results: Compared with normal tissues, the mRNA expression levels of CBX1/3/8 were significantly increased in ESCA, whereas CBX7 mRNA expression was reduced in both the TCGA cohort and GEO cohort. In the TCGA cohort, ROC curves suggested that CBX1/2/3/4/8 had great diagnostic value in ESCA, and the AUCs were above 0.9. Furthermore, upregulation of CBX1/3/8 and downregulation of CBX7 were closely related to the clinicopathological parameters in ESCA patients, such as tumor grades, tumor nodal metastasis status, and TP53 mutation status. The survival analysis indicated that higher CBX1/3/8 mRNA expressions and lower CBX7 expression suggested an unfavorable prognosis in ESCA. High genetic change rate (52%) of CBXs was found in ESCA patients. Functions and pathways of mutations in CBXs and their 50 frequently altered neighbor genes in ESCA patients were investigated; the results showed that DNA repair and DNA replication were correlated to CBX alterations. Moreover, we found a significant correlation between the expression level of CBX family members and the infiltration of immune cells in ESCA. Finally, we verified the expression of CBX family members in clinical samples and found the results were consistent with the databases. Conclusion: Our study implied that CBX1/3/7/8 are potential targets of precision therapy for ESCA patients and new biomarkers for the prognosis.

10.
Exp Biol Med (Maywood) ; 247(10): 832-841, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35196893

RESUMEN

The degree of activation of hepatic stellate cells (HSCs) is closely related to the level of autophagy in HSCs. We previously showed that interleukin-10 (IL-10) strongly inhibits HSC activation in rat fibrotic liver. However, little is known about the effect of IL-10 on HSC autophagy. For investigation of the effect of IL-10 on starvation-induced autophagy in immortal rat hepatic stellate cells (HSC-T6) and the molecular mechanism, HSC-T6 cells were incubated with serum-free DMEM for different periods and treated with IL-10 at different concentrations. Transmission electron microscopy (TEM), analysis of autophagic flux and Western blotting (WB) assays were used to observe changes in autophagosome morphology and number and autophagy-related protein expression in HSC-T6 cells and to evaluate the regulatory effect of IL-10 on starvation-induced autophagy. Cryptotanshinone (CPT) and rapamycin (Rapa) were used to block activation of the signal transducer and activator of transcription 3 (STAT3) and mTOR signaling pathways, respectively. STAT3-mTOR-p70s6k signaling pathway proteins were analyzed by WB to assess the signaling pathway by which IL-10 regulates autophagy. WB showed an increased LC3II/I ratio, increased Beclin1 expression, and decreased p62 expression in HSC-T6 cells starved for 3 h (p < 0.05). IL-10 inhibited the increases in the LC3II/I ratio and Beclin1 expression and upregulated p62 expression (p < 0.05), and the optimal IL-10 concentration was 20 ng/mL. TEM and double-labeled immunofluorescence analysis showed that IL-10 inhibited autophagosome formation and autophagic flux, as indicated by the decreased numbers of double-membrane autophagosomes and yellow autophagic puncta. Further examination of signaling pathway molecules showed that phosphorylation of the mTOR, STAT3, and p70s6k proteins was significantly decreased during starvation-induced autophagy, but IL-10 could increase mTOR, STAT3, and p70s6k protein phosphorylation (p < 0.05). Blocking either the mTOR or STAT3 pathway reversed the inhibitory effect of IL-10 on starvation-induced autophagy in HSC-T6 cells (p < 0.05). IL-10 suppresses starvation-induced autophagosome formation through activation of the STAT3-mTOR-p70s6k axis in HSC-T6 cells.


Asunto(s)
Células Estrelladas Hepáticas , Proteínas Quinasas S6 Ribosómicas 70-kDa , Animales , Autofagia , Beclina-1/metabolismo , Células Estrelladas Hepáticas/patología , Interleucina-10/metabolismo , Cirrosis Hepática/patología , Ratas , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Proteínas Quinasas S6 Ribosómicas 70-kDa/farmacología , Factor de Transcripción STAT3/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
11.
Exp Cell Res ; 411(2): 113001, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34973945

RESUMEN

Autophagy is involved in the activation of hepatic stellate cells (HSCs) and liver fibrosis. Previous studies have shown that interleukin 10 (IL-10) has a marked therapeutic effect against liver fibrosis. However, few studies have evaluated the effect of IL-10 on autophagy in HSCs and fibrotic livers. The aim of this study was to assess the effect of IL-10 on the autophagy of HSCs in vitro and in vivo and then to explore the underlying pathway. In vitro, The results revealed that IL-10 had inhibitory effects on hydrogen peroxide (H2O2)-induced autophagy, as evidenced by the decreased LC3II/I ratio and Beclin1 expression, increased p62 expression, reduced numbers of autophagosomes, and blocked autophagy initiation in HSCs. Mechanistically, IL-10 significantly promoted the phosphorylation of the signal transducer and activator of transcription 3(STAT3) and mammalian target of rapamycin (mTOR), leading to the activation of STAT3 and mTOR, which in turn inhibited autophagy. In vivo, the increased expression of IL-10 in fibrotic livers inhibited significantly liver fibrosis and decreased the autophagic activity in fibrotic livers and HSCs. Overall, our results indicate that IL-10 suppressed H2O2-induced autophagy in HSCs by activating the STAT3-mTOR signaling pathway. Present study provides a new theoretical basis for the anti-fibrotic effects of IL-10.


Asunto(s)
Células Estrelladas Hepáticas/efectos de los fármacos , Células Estrelladas Hepáticas/metabolismo , Interleucina-10/metabolismo , Interleucina-10/farmacología , Animales , Autofagosomas/efectos de los fármacos , Autofagosomas/patología , Autofagia/efectos de los fármacos , Línea Celular , Células Estrelladas Hepáticas/patología , Humanos , Peróxido de Hidrógeno/farmacología , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Cirrosis Hepática/prevención & control , Modelos Biológicos , Estrés Oxidativo/efectos de los fármacos , Ratas , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo
12.
Nanotoxicology ; 12(6): 571-585, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29732947

RESUMEN

Calcium carbonate nanomaterials (nano-CaCO3) are widely used in both manufacturing and consumer products, but their potential health hazards remain unclear. The objective of this study was to survey workplace exposure levels and health effects of workers exposed to nano-CaCO3. Personal and area sampling, as well as real-time and dust monitoring, were performed to characterize mass exposure, particle size distribution, and particle number exposure. A total of 56 workers (28 exposed workers and 28 unexposed controls) were studied in a cross-sectional study. They completed physical examinations, spirometry, and digital radiography. The results showed that the gravimetric nano-CaCO3 concentration was 5.264 ± 6.987 mg/m3 (0.037-22.192 mg/m3) at the workplace, and 3.577 ± 2.065 mg/m3 (2.042-8.161 mg/m3) in the breathing zone of the exposed workers. The particle number concentrations ranged from 8193 to 39 621 particles/cm3 with a size range of 30-150 nm. The process of packing had the highest gravimetric and particle number concentrations. The particle number concentration positively correlated with gravimetric concentrations of nano-CaCO3. The levels of hemoglobin, creatine phosphokinase (CK), lactate dehydrogenase, and high-density lipoprotein cholesterol (HDL-C) in the nano-CaCO3 exposure group increased significantly, but the white blood cell count (WBC), Complement 3 (C3), total protein (TP), uric acid, and creatinine (CREA) all decreased significantly. The prevalence rate of pulmonary hypofunction was significantly higher (p = 0.037), and the levels of vital capacity (VC), forced vital capacity (FVC), forced expiratory volume in one second (FEV1), FEV1/FVC, peak expiratory flow and forced expiratory flow 25% (FEF 25%), FEF 25-75% were negatively correlated with gravimetric concentrations of nano-CaCO3 (p < 0.05). Logistic analysis showed that nano-CaCO3 exposure level was associated with pulmonary hypofunction (p = 0.005). Meanwhile, a dose-effect relationship was found between the accumulated gravimetric concentrations of nano-CaCO3 and the prevalence rate of pulmonary hypofunction (p = 0.048). In conclusion, long-term and high-level nano-CaCO3 exposure can induce pulmonary hypofunction in workers. Thus, lung function examination is suggested for occupational populations with nano-CaCO3 exposure. Furthermore, future health protection efforts should focus on senior workers with accumulation effects of nano-CaCO3 exposure.


Asunto(s)
Carbonato de Calcio/toxicidad , Pulmón/efectos de los fármacos , Nanoestructuras/toxicidad , Exposición Profesional/efectos adversos , Adulto , Estudios Transversales , Femenino , Humanos , Pulmón/fisiología , Masculino , Persona de Mediana Edad
13.
Exp Cell Res ; 317(14): 2019-30, 2011 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-21683072

RESUMEN

In the human thymus, AIRE (autoimmune regulator) gene is expressed in a very limited type of medullary thymic epithelial cells (mTECs) and no cognate cell lines are available, hence the molecular analysis of AIRE gene function has been difficult. To improve this situation, we attempted to isolate Aire-expressing cells and established three cell lines (Aire⁺TEC1, Aire⁺TEC2, Aire⁺DC) from the abnormally enlarged thymus, which was developed in the transgenic mice expressing SV40 T-antigen driven by the mouse Aire gene promoter. When these Aire⁺ cell lines were co-cultured with fresh thymocytes, they adhered to the majority of thymocytes and induced apoptosis as if negative selection of T-cells in the thymus is occurring in vitro. Further analysis revealed that these Aire⁺ cell lines are derived from mTECs and exhibit characteristic natures of "antigen presenting cells" including several distinct abilities: to express a variety of peripheral tissue-specific antigens, to produce immunoproteasome and immunological synapse, and to express some of TNFSFs (tumor necrosis factor super families). Thus, the newly established Aire⁺ cell lines will be invaluable for the further detailed analysis of AIRE gene function in the central tolerance of immunity and autoimmune disease.


Asunto(s)
Antígenos/biosíntesis , Células Epiteliales/inmunología , Células Epiteliales/metabolismo , Linfocitos T/citología , Linfocitos T/inmunología , Timo/citología , Animales , Antígenos/genética , Antígenos/inmunología , Células Cultivadas , Células Epiteliales/citología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Especificidad de Órganos , Factores de Transcripción/genética , Factores de Transcripción/inmunología , Proteína AIRE
14.
Antivir Ther ; 10(2): 263-75, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-15865221

RESUMEN

Severe acute respiratory syndrome (SARS), caused by a novel coronavirus, emerged in early 2003 as a major international health crisis. We report on serum cytokine levels, viral load and clinical parameters over the course of the disease in a cohort of nine adult SARS patients treated with steroids and interferon alfacon-1 at North York General Hospital in Toronto, Ontario. Considerable variation among SARS patients with respect to circulating viral load and patterns of SARS-CoV-evoked cytokine responses was recorded. No single cytokine profile was observed in all patients, yet serum concentrations of interferon (IFN)-gamma, interleukin (IL)-10, CXCL10, CCL5 and CXCL8 were found to be elevated above normal levels during the course of the disease in all patients. Expression levels for IL-10, IFN-gamma and CXCL10 consistently peaked within 4 days of peak viral load. IL-12p70, IL-4 and tumour necrosis factor-alpha concentrations were consistently highest within 5 days of peak viral load. These results suggest that elevated levels of inflammatory cytokines are sensitive correlates of disease severity, including lung abnormalities and viral load in serum, and may provide a tool for monitoring disease progression in affected individuals.


Asunto(s)
Corticoesteroides/uso terapéutico , Antivirales/uso terapéutico , Glucocorticoides/uso terapéutico , Interferón Tipo I/uso terapéutico , Síndrome Respiratorio Agudo Grave/tratamiento farmacológico , Administración Oral , Adulto , Quimiocina CCL5 , Quimiocina CXCL10 , Quimiocinas CC/sangre , Quimiocinas CXC/sangre , Estudios de Cohortes , Citocinas/sangre , Progresión de la Enfermedad , Quimioterapia Combinada , Femenino , Humanos , Inyecciones Intravenosas , Interferón-alfa , Interferón gamma/sangre , Masculino , Metilprednisolona/uso terapéutico , Persona de Mediana Edad , Prednisona/uso terapéutico , Proteínas Recombinantes , Síndrome Respiratorio Agudo Grave/inmunología , Síndrome Respiratorio Agudo Grave/patología , Factores de Tiempo
15.
J Interferon Cytokine Res ; 24(12): 687-98, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15684736

RESUMEN

Type I interferons (IFNs) include the IFN-alpha family of subtypes, IFN-beta, IFN-omega, IFN-tau, IFN-kappa, IFN-lambda, and IFN-zeta. IFN genes lack introns and encode secretory signal peptide sequences that are proteolytically cleaved prior to secretion from the cell. In contrast to the approximately 50% amino acid sequence identity among the human IFN-alpha subtypes, human IFN-alphas share approximately 22% identity with human IFN-beta and 37% identity with human IFN-omega. Many of the conserved residues among the type I IFNs are implicated in receptor recognition and structural integrity. This report provides an update on the gene annotations for the mouse and human IFN gene clusters on chromosome 4 and 9, respectively, with accompanying amino acid sequence alignments. Based on sequence identities, a phylogenic tree analysis for the different mammalian Type I IFNs is also presented, showing the high degree of relatedness among these IFNs. Notably, sequence alignment of the different human and mouse IFN promoter regions reveals different signature patterns for transcription factor binding sites, implying different inducers might differentially activate the transcription of the different IFNs.


Asunto(s)
Cromosomas Humanos Par 4/genética , Cromosomas Humanos Par 9/genética , Interferón Tipo I/genética , Familia de Multigenes/genética , Filogenia , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Sitios de Unión , Biología Computacional , Variación Genética , Humanos , Interferón Tipo I/clasificación , Ratones , Datos de Secuencia Molecular , Regiones Promotoras Genéticas/genética , Alineación de Secuencia , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...