Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Hepatobiliary Surg Nutr ; 13(4): 575-585, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39175714

RESUMEN

Background: The judgment of the division point of the bile duct has always been one of the difficulties of laparoscopic left lateral sectionectomy (LLLS). The purpose of this study was to assess the effects of indocyanine green (ICG) fluorescence cholangiography during LLLS on the occurrence of biliary complications in both donors and recipients. The optimal dose and injection time of ICG were also investigated. Methods: This is a retrospective cohort study. From October 2016 to December 2022, the clinical data of 103 donors who underwent LLLS and relevant recipients were retrospectively analyzed. According to whether ICG fluorescence cholangiography was used, they were divided into a non-ICG group (n=46) and an ICG group (n=57). Biliary complications were observed and the optimal dose and injection time of ICG were explored. Results: Three donors in the non-ICG group suffered from bile leakage. Four grafts had multiple bile duct openings and biliary complications were observed in the relevant recipients who received these grafts in the non-ICG group. Two recipients had bile leakage, and the other two had biliary stenosis. There was no biliary complications both in donors and recipients in the ICG group. The fluorescence intensity of the liver was 108.1±17.6 at a dose of 0.004 mg/kg 90 minutes after injection, significantly weaker than that at 0.05 mg/kg 30 minutes (200.3±17.6, P=0.001) and 90 minutes after injection (140.2±15.4, P=0.001). The fluorescence intensity contrast value at a dose of 0.004 mg/kg was stronger than that at 0.05 mg/kg, both measured 90 minutes after injection (0.098±0.032 vs. 0.078±0.022, P=0.021). Conclusions: ICG fluorescence cholangiography is safe and feasible in LLLS. It reduces biliary complications in both donors and recipients. The optimal ICG dose was 0.004 mg/kg, and 90 minutes after injection was the best observation time. ICG fluorescence cholangiography is recommended for routine use in LLLS.

2.
Curr Med Sci ; 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39096475

RESUMEN

OBJECTIVE: The activities and products of carbohydrate metabolism are involved in key processes of cancer. However, its relationship with hepatocellular carcinoma (HCC) is unclear. METHODS: The cancer genome atlas (TCGA)-HCC and ICGC-LIRI-JP datasets were acquired via public databases. Differentially expressed genes (DEGs) between HCC and control samples in the TCGA-HCC dataset were identified and overlapped with 355 carbohydrate metabolism-related genes (CRGs) to obtain differentially expressed CRGs (DE-CRGs). Then, univariate Cox and least absolute shrinkage and selection operator (LASSO) analyses were applied to identify risk model genes, and HCC samples were divided into high/low-risk groups according to the median risk score. Next, gene set enrichment analysis (GSEA) was performed on the risk model genes. The sensitivity of the risk model to immunotherapy and chemotherapy was also explored. RESULTS: A total of 8 risk model genes, namely, G6PD, PFKFB4, ACAT1, ALDH2, ACYP1, OGDHL, ACADS, and TKTL1, were identified. Moreover, the risk score, cancer status, age, and pathologic T stage were strongly associated with the prognosis of HCC patients. Both the stromal score and immune score had significant negative/positive correlations with the risk score, reflecting the important role of the risk model in immunotherapy sensitivity. Furthermore, the stromal and immune scores had significant negative/positive correlations with risk scores, reflecting the important role of the risk model in immunotherapy sensitivity. Eventually, we found that high-/low-risk patients were more sensitive to 102 drugs, suggesting that the risk model exhibited sensitivity to chemotherapy drugs. The results of the experiments in HCC tissue samples validated the expression of the risk model genes. CONCLUSION: Through bioinformatic analysis, we constructed a carbohydrate metabolism-related risk model for HCC, contributing to the prognosis prediction and treatment of HCC patients.

3.
Hepatobiliary Pancreat Dis Int ; 23(2): 117-122, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38619051

RESUMEN

Hepatectomy is still the major curative treatment for patients with liver malignancies. However, it is still a big challenge to remove the tumors in the central posterior area, especially if their location involves the retrohepatic inferior vena cava and hepatic veins. Ex vivo liver resection and auto-transplantation (ELRA), a hybrid technique of the traditional liver resection and transplantation, has brought new hope to these patients and therefore becomes a valid alternative to liver transplantation. Due to its technical difficulty, ELRA is still concentrated in a few hepatobiliary centers that have experienced surgeons in both liver resection and liver transplantation. The efficacy and safety of this technique has already been demonstrated in the treatment of benign liver diseases, especially in the advanced alveolar echinococcosis. Recently, the application of ELRA for liver malignances has gained more attention. However, standardization of clinical practice norms and international consensus are still lacking. The prognostic impact in these oncologic patients also needs further evaluation. In this review, we summarized the principles and recent progresses on ELRA.


Asunto(s)
Neoplasias Hepáticas , Trasplante de Hígado , Humanos , Hepatectomía/efectos adversos , Neoplasias Hepáticas/cirugía , Trasplante de Hígado/efectos adversos , Consenso
4.
Front Immunol ; 15: 1308543, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38433845

RESUMEN

Background: This study evaluates the efficacy of alpha-fetoprotein (AFP) response as a surrogate marker for determining recurrence-free survival (RFS) in patients with unresectable hepatocellular carcinoma (uHCC) who undergo salvage hepatectomy following conversion therapy with tyrosine kinase inhibitor (TKI) and anti-PD-1 antibody-based regimen. Methods: This multicenter retrospective study included 74 patients with uHCC and positive AFP (>20 ng/mL) at diagnosis, who underwent salvage hepatectomy after treatment with TKIs and anti-PD-1 antibody-based regimens. The association between AFP response-defined as a ≥ 80% decrease in final AFP levels before salvage hepatectomy from diagnosis-and RFS post-hepatectomy was investigated. Results: AFP responders demonstrated significantly better postoperative RFS compared to non-responders (P<0.001). The median RFS was not reached for AFP responders, with 1-year and 2-year RFS rates of 81.3% and 70.8%, respectively. In contrast, AFP non-responders had a median RFS of 7.43 months, with 1-year and 2-year RFS rates at 37.1% and 37.1%, respectively. Multivariate Cox regression analysis identified AFP response as an independent predictor of RFS. Integrating AFP response with radiologic tumor response facilitated further stratification of patients into distinct risk categories: those with radiologic remission experienced the most favorable RFS, followed by patients with partial response/stable disease and AFP response, and the least favorable RFS among patients with partial response/stable disease but without AFP response. Sensitivity analyses further confirmed the association between AFP response and improved RFS across various cutoff values and in patients with AFP ≥ 200 ng/mL at diagnosis (all P<0.05). Conclusion: The "20-80" rule based on AFP response could be helpful for clinicians to preoperatively stratify the risk of patients undergoing salvage hepatectomy, enabling identification and management of those unlikely to benefit from this procedure.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Pronóstico , Carcinoma Hepatocelular/cirugía , Estudios Retrospectivos , alfa-Fetoproteínas , Hepatectomía , Neoplasias Hepáticas/cirugía
5.
J Cell Physiol ; 239(6): e31245, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38497504

RESUMEN

Parathyroid hormone (PTH) serves dual roles in bone metabolism, exhibiting both anabolic and catabolic effects. The anabolic properties of PTH have been utilized in the treatment of osteoporosis with proven efficacy in preventing fractures. Despite these benefits, PTH can be administered therapeutically for up to 2 years, and its use in patients with underlying malignancies remains a subject of ongoing debate. These considerations underscore the need for a more comprehensive understanding of the underlying mechanisms. p21-activated kinase 4 (PAK4) is involved in bone resorption and cancer-associated osteolysis; however, its role in osteoblast function and PTH action remains unknown. Therefore, in this study, we aimed to clarify the role of PAK4 in osteoblast function and its effects on PTH-induced anabolic activity. PAK4 enhanced MC3T3-E1 osteoblast viability and proliferation and upregulated cyclin D1 expression. PAK4 also augmented osteoblast differentiation, as indicated by increased mineralization found by alkaline phosphatase and Alizarin Red staining. Treatment with PTH (1-34), an active PTH fragment, stimulated PAK4 expression and phosphorylation in a protein kinase A-dependent manner. In addition, bone morphogenetic protein-2 (which is known to promote bone formation) increased phosphorylated PAK4 (p-PAK4) and PAK4 levels. PAK4 regulated the expression of both phosphorylated and total ß-catenin, which are critical for osteoblast proliferation and differentiation. Moreover, p-PAK4 directly interacted with ß-catenin, and disruption of ß-catenin's binding to T-cell factor impaired PAK4- and PTH-induced osteoblast differentiation. Our findings elucidate the effect of PAK4 on enhancing bone formation in osteoblasts and its pivotal role in the anabolic activity of PTH mediated through its interaction with ß-catenin. These insights improve the understanding of the mechanisms underlying PTH activity and should inform the development of more effective and safer osteoporosis treatments.


Asunto(s)
Diferenciación Celular , Proliferación Celular , Osteoblastos , Hormona Paratiroidea , beta Catenina , Quinasas p21 Activadas , Animales , Humanos , Ratones , beta Catenina/metabolismo , beta Catenina/genética , Calcificación Fisiológica/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Ciclina D1/metabolismo , Ciclina D1/genética , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Osteogénesis/efectos de los fármacos , Quinasas p21 Activadas/metabolismo , Quinasas p21 Activadas/genética , Hormona Paratiroidea/farmacología , Hormona Paratiroidea/metabolismo , Fosforilación/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Células Cultivadas
6.
Exp Hematol Oncol ; 13(1): 20, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38388466

RESUMEN

BACKGROUND: Hepatocellular carcinoma (HCC) is closely associatedwith chronic liver diseases, particularly liver cirrhosis, which has an altered extracellular matrix (ECM) composition. The influence and its mechanism of the cirrhotic-ECM on the response of HCC to immune checkpoint inhibitor (ICI) remains less clarified. METHODS: In silico, proteomic and pathological assessment of alteration of cirrhotic-ECM were applied in clinical cohort. Multiple pre-clinical models with ECM manipulation were used to evaluate cirrhotic-ECM's effect on ICI treatment. In silico, flow cytometry and IHC were applied to explore how cirrhotic-ECM affect HCC microenvironment. In vitro and in vivo experiments were carried out to identify the mechanism of how cirrhotic-ECM undermined ICI treatment. RESULTS: We defined "a pro-tumor cirrhotic-ECM" which was featured as the up-regulation of collagen type 1 (Col1). Cirrhotic-ECM/Col1 was closely related to impaired T cell function and limited anti PD-1 (aPD-1) response of HCC patients from the TCGA pan cancer cohort and the authors' institution, as well as in multiple pre-clinical models. Mechanically, cirrhotic-ECM/Col1 orchestrated an immunosuppressive microenvironment (TME) by triggering Col1-DDR1-NFκB-CXCL8 axis, which initiated neutrophil extracellular traps (NETs) formation to shield HCC cells from attacking T cells and impede approaching T cells. Nilotinib, an inhibitor of DDR1, reversed the neutrophils/NETs dominant TME and efficiently enhanced the response of HCC to aPD-1. CONCLUSIONS: Cirrhotic-ECM modulated a NETs enriched TME in HCC, produced an immune suppressive TME and weakened ICI efficiency. Col1 receptor DDR1 could be a potential target synergically used with ICI to overcome ECM mediated ICI resistance. These provide a mechanical insight and novel strategy to overcome the ICI resistance of HCC.

8.
Energy Fuels ; 34(10)2020.
Artículo en Inglés | MEDLINE | ID: mdl-38884099

RESUMEN

The thermogenic transformation of kerogen into hydrocarbons accompanies the development of a pore network within the kerogen that serves as gas storage locations both in pore space and surface area for adsorbed gas within the source rock. Therefore, the successful recovery of gas from these rocks depends on the accessible surface area, surface properties, and interconnectivity of the pore system. These parameters can be difficult to determine because of the nanoscale of the structures within the rock. This study seeks to investigate the pore structure, surface heterogeneity, and composition of recovered kerogens isolated from source rocks with progressively increasing thermogenic maturities. Prompt gamma-ray activation analysis (PGAA), nitrogen and methane volumetric gas sorption, and small-angle neutron scattering (SANS) are combined to explore the relationship between the chemical composition, pore structure, surface roughness, surface heterogeneity, and maturity. PGAA results indicate that higher mature kerogens have lower hydrogen/carbon ratio. Nitrogen gas adsorption indicates that the pore volume and accessible specific surface area are higher for more mature kerogens. The methane isosteric heat at different methane uptake in the kerogens is determined by methane isotherms and shows that approximately two types of binding sites are present in low mature kerogens while the binding sites are relatively homogeneous in the most mature kerogen. The hysteresis effect of the structure during the adsorption and desorption process at different CD4 gas pressures are studied. An extended generalized Porod's scattering law method (GPSLM) is further developed here to analyze kerogens with fractal surfaces. This extended GPSLM quantifies the surface heterogeneity of the kerogens with a fractal surface and shows that kerogen with high maturity is chemically more homogeneous, consistent with the results from methane isosteric heat. SANS analysis also suggests a pronounced surface roughness in the more mature kerogens. A microporous region circling around the nanopores, which contributes to high surface roughness and methane storage, is shown to develop with maturity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA