Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Cancer Res ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38885324

RESUMEN

Cellular oxidative stress plays a key role in the development and progression of hepatocellular carcinoma (HCC). A better understanding of the processes that regulate reactive oxygen species (ROS) homeostasis could uncover improved strategies for treating HCC. Here, we identified WNK1 as an antioxidative factor and therapeutic target in HCC. In human HCC, WNK1 expression was increased and correlated with poor patient prognosis. WNK1 knockdown significantly inhibited cell proliferation and xenograft tumor growth. Mechanistically, WNK1 competed with NRF2 for binding to the partial Kelch domain of KEAP1, reducing NRF2 ubiquitination and promoting NRF2 accumulation and nuclear translocation to increase antioxidant response. WNK1 silencing increased H2O2-induced apoptosis and inhibited cell growth by elevating reactive oxygen species (ROS) levels, which could be rescued by treatment with the antioxidant N-acetylcysteine (NAC) and NRF2 activator tert-butylhydroquinone (tBHQ). Liver-specific WNK1 knockout mouse models of HCC substantiated that WNK1 promoted HCC development by regulating ROS levels. WNK463, an inhibitor of the WNK kinase family, suppressed HCC progression and altered the redox status. These findings suggest that WNK1 plays a critical role in HCC development and progression and that the WNK1-oxidative stress axis may be a promising therapeutic target for HCC.

2.
J Cell Commun Signal ; 18(1): e12017, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38545256

RESUMEN

Gastric cancer (GC) is one of the most common solid cancers with high incidence and mortality worldwide. Chronic gastritis and consequent inflammatory microenvironment is known as a major cause leading to gastric carcinogenesis. Here we report that PIK3CD that encodes p110δ, a catalytic subunit of the class IA PI3Ks, is overexpressed and tumorigenic in GC and associated with tumor inflammatory microenvironment. By investigating the data from TCGA database and our immunohistochemical staining and quantitative real-time PCR results from clinical samples, we found PIK3CD exhibits higher expression level in GC tissues compared with adjacent non-tumorous stomach tissues. Genetic silencing of PIK3CD in GC cells retards proliferation and migration in vitro and tumorigenicity and metastasis in vivo. In contrast, enhanced expression of PIK3CD promotes these phenotypes in vitro. Furthermore, pharmacological inhibition of PIK3CD could reduce GC cell viability and colony formation capacities. More importantly, we reveal a relevant mechanism that PIK3CD, but not PIK3CA and PIK3CB, is transcriptionally regulated by the pro-inflammatory IL2/JAK3/STAT5 axis and tumor-infiltrating immune cells such as lymphocytes. These observations may setup a new crosstalk between tumor inflammatory microenvironment, IL2/JAK3/STAT5 signaling and PI3K/AKT signaling. Targeting PIK3CD may be a promising therapy strategy for GC.

3.
BMC Cancer ; 23(1): 1105, 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37957631

RESUMEN

BACKGROUND: Ubiquitin-specific protease 32 (USP32) is a highly conserved gene that promotes cancer progression. However, its role in hepatocellular carcinoma (HCC) is not well understood. The aim of this project is to explore the clinical significance and functions of USP32 in HCC. METHODS: The expression of USP32 in HCC was evaluated using data from TCGA, GEO, TISCH, tissue microarray, and human HCC samples from our hospital. Survival analysis, PPI analysis and GSEA analysis were performed to evaluate USP32-related clinical significance, key molecules and enrichment pathways. Using the ssGSEA algorithm and TIMER, we investigated the relationships between USP32 and immune infiltrates in the TME. Univariate and multivariate Cox regression analyses were then used to identify key USP32-related immunomodulators and constructed a USP32-related immune prognostic model. Finally, CCK8, transwell and colony formation assays of HCC cells were performed and an HCC nude mouse model was established to verify the oncogenic role of USP32. RESULTS: USP32 is overexpressed in HCC and its expression is an independent predictive factor for outcomes of HCC patients. USP32 is associated with pathways related to cell behaviors and cancer signaling, and its expression is significantly correlated with the infiltration of immune cells in the TME. We also successfully constructed a USP32-related immune prognostic model using 5 genes. Wet experiments confirmed that knockdown of USP32 could repress the proliferation, colony formation and migration of HCC cells in vitro and inhibit tumor growth in vivo. CONCLUSION: USP32 is highly expressed in HCC and closely correlates with the TME of HCC. It is a potential target for improving the efficacy of chemotherapy and developing new strategies for targeted therapy and immunotherapy in HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Ubiquitina Tiolesterasa , Animales , Humanos , Ratones , Adyuvantes Inmunológicos , Algoritmos , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Procesos Neoplásicos , Ubiquitina Tiolesterasa/genética
4.
Pharmacol Res ; 196: 106915, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37689128

RESUMEN

Ferroptosis has been suggested to play a potential role in cancer therapy as an iron-dependent programmed cell death mechanism distinct from other forms. Hepatocellular carcinoma (HCC) remains a great threat, with high mortality and limited therapeutic options. The induction of ferroptosis has emerged as a novel and promising therapeutic strategy for HCC. In the present study, we identified protein inhibitor of activated STAT3 (PIAS3) as a driver of ferroptosis in HCC using TMT-based quantitative proteomics and ferroptosis-related functional assays. Mechanistically, thioredoxin-interacting protein (TXNIP) was confirmed to be PIAS3 in promoting ferroptotic cell death, based on RNA-seq analysis. Knockdown of TXNIP degrades ferroptotic susceptibility caused by PIAS3-overexpression, whereas transfection-forced reexpression of TXNIP restores sensitivity to ferroptosis in PIAS3-downregulated cells. PIAS3 interacts with SMAD2/3 to activate transforming growth factor (TGF)-ß signaling, leading to increased TXNIP expression. Our study revealed the critical role of PIAS3 in ferroptosis and a novel actionable axis-PIAS3/TGF-ß/TXNIP that could govern ferroptotic sensitivity, paving the path for using ferroptosis as an efficient approach in HCC therapies.

5.
Int J Cancer ; 153(11): 1877-1884, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37163613

RESUMEN

Patients with metastatic colorectal cancer (mCRC) have poor long-term survival. Rechallenge with anti-epidermal growth factor receptor (anti-EGFR) based therapy has shown certain activity as late-line therapy. To further improve clinical outcomes, we evaluated the antitumor efficacy and safety of cetuximab in combination with camrelizumab and liposomal irinotecan in patients with RASwt mCRC pretreated with anti-EGFR-based therapy. Patients with RASwt mCRC who had received at least two prior systemic therapies, including anti-EGFR-based treatment in the metastatic or unresectable disease setting, were enrolled in cohort B. Patients were treated with cetuximab (500 mg/m2 ) and camrelizumab (200 mg) plus liposomal irinotecan (HR070803, 60 mg/m2 ) intravenously once every 2 weeks. The primary endpoint was the objective response rate (ORR) by RECIST v1.1. The secondary endpoints included disease control rate (DCR), progression-free survival (PFS), overall survival (OS) and safety. At the data cutoff (23 November 2022), 19 patients were enrolled in the two stages, and 16 were evaluable for efficacy analyses. The ORR was 25% (95% confidence interval [CI]: 10.2%-49.5%), and DCR was 75% (95% CI: 50.5%-89.8%). The median PFS and OS were 6.9 (95% CI: 2.6-11.2) and 15.1 (95% CI: 6.1-24.0) months, respectively. Grade 3 treatment-related adverse events (TRAEs) occurred in 15.8% (3/19) of patients. No grade ≥4 TRAEs were found in the safety population. Our study suggests that anti-EGFR retreatment therapy with cetuximab plus camrelizumab and liposomal irinotecan (HR070803) is a promising late-line treatment option with good antitumor activity and well-tolerated toxicity in RASwt mCRC patients.


Asunto(s)
Neoplasias del Colon , Neoplasias Colorrectales , Neoplasias Gastrointestinales , Neoplasias del Recto , Humanos , Cetuximab/efectos adversos , Irinotecán , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Recto/tratamiento farmacológico , Neoplasias Gastrointestinales/tratamiento farmacológico , Retratamiento , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Proteínas Proto-Oncogénicas p21(ras)/genética , Camptotecina
6.
Biol Proced Online ; 25(1): 6, 2023 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-36870954

RESUMEN

BACKGROUND: YTHDF2 is one of important readers of N6-methyladenosine (m6A) modification on RNA. Growing evidence implicates that YTHDF2 takes an indispensable part in the regulation of tumorigenesis and metastasis in different cancers, but its biological functions and underlying mechanisms remain elusive in gastric cancer (GC). AIM: To investigate the clinical relevance and biological function of YTHDF2 in GC. RESULTS: Compared with matched normal stomach tissues, YTHDF2 expression was markedly decreased in gastric cancer tissues. The expression level of YTHDF2 was inversely associated with gastric cancer patients' tumor size, AJCC classification and prognosis. Functionally, YTHDF2 reduction facilitated gastric cancer cell growth and migration in vitro and in vivo, whereas YTHDF2 overexpression exhibited opposite phenotypes. Mechanistically, YTHDF2 enhanced expression of PPP2CA, the catalytic subunit of PP2A (Protein phosphatase 2A), in an m6A-independent manner, and silencing of PPP2CA antagonized the anti-tumor effects caused by overexpression of YTHDF2 in GC cells. CONCLUSION: These findings demonstrate that YTHDF2 is down-regulated in GC and its down-regulation promotes GC progression via a possible mechanism involving PPP2CA expression, suggesting that YTHDF2 may be a hopeful biomarker for diagnosis and an unrevealed treatment target for GC.

7.
Small ; 19(24): e2207817, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36919945

RESUMEN

Both the uncoordinated Pb2+ and excess PbI2 in perovskite film will create defects and perturb carrier collection, thus leading to the open-circuit voltage (VOC ) loss and inducing rapid performance degradation of perovskite solar cells (PSCs). Herein, an additive of 3-aminothiophene-2-carboxamide (3-AzTca) that contains amide and amino and features a large molecular size is introduced to improve the quality of perovskite film. The interplay of size effect and adequate bonding strength between 3-AzTca and uncoordinated Pb2+ regulates the mineralization of PbI2 and generates low-dimensional PbI2 phase, thereby boosting the crystallization of perovskite. The decreased defect states result in suppressed nonradiative recombination and reduced VOC loss. The power conversion efficiency (PCE) of modified PSC is improved to 22.79% with a high VOC of 1.22 V. Moreover, the decomposition of PbI2 and perovskite films is also retarded, yielding enhanced device stability. This study provides an effective method to minimize the concentration of uncoordinated Pb2+ and improve the PCE and stability of PSCs.

8.
Adv Mater ; 35(6): e2208604, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36440601

RESUMEN

The charge carriers of single-junction solar cells can be fluently extracted and then collected by electrodes, leading to weak charge carrier accumulation and low energy loss (Eloss ). However, in tandem solar cells (TSCs), it is a considerable challenge to obtain a balance between the densities of the holes and electrons extracted from the two respective subcells to facilitate an efficient recombination in the interconnecting layer (ICL). Herein, a charge-carrier-dynamic management strategy for inorganic perovskite/organic TSCs is proposed, centered on the simultaneous regulation of the defect states of CsPbI1.9 Br1.1 perovskite in the front subcell and hole transport ability from the perovskite to ICL. The target hole density on the perovskite surface and the hole loss before reaching the ICL are significantly improved. As a result, the hole/electron density offset in the ICL can be effectively narrowed, leading to a balanced charge carrier recombination, which reduces the Eloss in TSCs. The resulting inorganic perovskite/organic 0.062-cm2 TSC exhibits a remarkable power conversion efficiency (PCE) of 23.17% with an ultrahigh open-circuit voltage (Voc ) of 2.15 V, and the PCE of the 1.004-cm2 device (21.69%) exhibited a weak size-dependence. This charge-carrier-dynamic management strategy can also effectively enhance the operational and ultraviolet-light stabilities of the TSCs.

9.
Pharm Res ; 40(3): 689-699, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36539669

RESUMEN

BACKGROUND: Gastric cancer (GC) has always been a great threat to human health due to its aggressiveness and lethality. Anlotinib, a novel multi-target tyrosine kinase inhibitor (TKI), has been certified its anti-tumor effects on various tumors. Nonetheless, there are few studies on applying anlotinib as a treatment for GC. The underlying mechanism of acquired resistance during anlotinib administration remains unclear. METHODS: We investigated the toxicologic effects of anlotinib on GC cells through CCK8, colony-forming, and flow cytometry assays in vitro and xenograft models in vivo. Anlotinib-resistant GC cells, AGS-R and MGC803-R, were generated and characterized by cell proliferation and apoptosis assays. The signaling pathways involved in anlotinib resistance were probed using Cignal™ Finder 10-Pathway Reporter Array. Western blot and dual-luciferase reporter assays were performed to confirm the relationships. The TGF-ß inhibitor LY364947 was introduced to demonstrate the importance of TGF-ß signaling in anlotinib resistance via a series of functional assays. RESULTS: Anlotinib suppressed cell growth and induced apoptosis in vitro and inhibited tumorigenesis and metastasis in vivo, while its anti-tumor effects were impaired in anlotinib-resistant cells. The results of dual-luciferase reporter assays and western blot indicated TGF-ß signaling was activated in anlotinib-resistant GC cells. LY364947 combined with Anlotinib exerted a better antineoplastic effect than monotherapy and considerably reversed the anlotinib resistance in GC. CONCLUSIONS: Our findings suggested that TGF-ß signaling may take a significant part in anlotinib resistance in GC. The suppression of TGF-ß signaling may be a possible and promising approach for the GC oncotherapy when combined with anlotinib.


Asunto(s)
Antineoplásicos , Quinolinas , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/patología , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Quinolinas/farmacología , Quinolinas/uso terapéutico , Proliferación Celular , Factor de Crecimiento Transformador beta
10.
J Gastrointest Oncol ; 13(5): 2660-2666, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36388683

RESUMEN

Background: Bevacizumab combined with fluorouracil is the currently recommended maintenance treatment for metastatic colorectal cancer, but the use of bevacizumab needs to be carried out in hospitals, which invisibly increases the risk of patients' exposure to coronavirus disease 2019 (COVID-19) during the COVID-19 epidemic. Therefore, except of the advantage of convenience, all oral drugs as the maintenance treatment can reduce hospitalization and potential exposure risk during the COVID-19 epidemic, which is worth further exploration. Case Description: First case was a 49-year-old male with stage IV colon adenocarcinoma and abnormal liver function who was given bevacizumab with FOLFOXIRI (8-cycles), following which his liver function recovered. Oxaliplatin was stopped upon thrombocytopenia development. The patient was finally maintained on oral fruquintinib and capecitabine therapy since November 2020, and has been progression-free for >15 months. Grade 2 leukopenia, neutropenia, and thrombocytopenia; grade 1 terminal nerve injury; and grade 1 hand and foot numbness were observed. The second case was a 48-year-old male with advanced colon cancer who underwent laparoscopic sigmoidectomy. Post-surgery, the patient was commenced on fluorouracil and leucovorin (1-cycle), followed by conversion therapy with cetuximab and chemotherapy (6-cycles). The patient underwent left hemi-hepatectomy, partial hepatectomy of the right lobe, and intraoperative radiofrequency ablation, following which he continued to receive cetuximab and chemotherapy. The patient was maintained on oral fruquintinib and capecitabine since December, 2020 and has been progression-free for >14 months. Grade1 myelosuppression, leukopenia, and neutropenia, grade 2 thrombocytopenia were observed. Conclusions: This case report based on preliminary evidence advocates oral fruquintinib-capecitabine maintenance treatment as an alternative to bevacizumab-capecitabine standard therapy for CRC patients, especially in the era of COVID-19 epidemic. This scheme can reduce hospitalization and potential COVID-19 contact, and is more convenient than intravenous administration. Which should be further explored in future studies.

11.
Cell Death Discov ; 8(1): 297, 2022 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-35760798

RESUMEN

Sorafenib is a classical targeted drug for the treatment of advanced hepatocellular carcinoma (HCC), but intrinsic resistance severely limited its therapeutic effects. In the present study, we aimed to identify crucial genes in HCC cells that affect sorafenib resistance by a CRISPR/Cas9 genome-scale screening. The results indicated that the deficiency of miR-15a and miR-20b contributed to sorafenib resistance, whereas exogenous expression of miR-15a and miR-20b enhanced sorafenib sensitivity of HCC cells by cell viability, colony formation, and flow cytometry analyses. Further analyses revealed that cell division cycle 37 like 1 (CDC37L1) as a common target of miR-15a and 20b, was negatively regulated by the two miRNAs and could enhance sorafenib resistance of HCC cells in vitro and in vivo. Mechanistically, CDC37L1, as a cochaperone, effectively increased the expression of peptidylprolyl isomerase A (PPIA) through strengthening the binding between heat shock protein 90 (HSP90) and PPIA. The results from immunohistochemical staining of a HCC tissue microarray revealed a positive association between CDC37L1 and PPIA expression, and high expression of CDC37L1 and PPIA predicted worse prognosis of HCC patients after sorafenib therapy. Taken together, our findings reveal crucial roles of miR-15a, miR-20b, CDC37L1, and PPIA in sorafenib response of HCC cells. These factors may serve as therapeutic targets and predict prognosis for HCC treated with sorafenib.

12.
Mol Cancer ; 21(1): 118, 2022 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-35619132

RESUMEN

BACKGROUND: PIK3CA mutation and PTEN suppression lead to tumorigenesis and drug resistance in colorectal cancer (CRC). There is no research on the role of circular RNAs (circRNAs) in regulating PIK3CA mutation and MEK inhibitor resistance in CRC. METHODS: The expression of circLHFPL2 in PIK3CA-mutant and wild-type cells and tissues was quantified by RNA-sequencing and qRT-PCR. CCK-8 assay and colony formation assay were used to evaluate cell viability. Annexin V/PI staining was implemented to assess cell apoptosis. Luciferase assay, biotin-coupled microRNA capture, and RIP assay were used to validate the interaction among potential targets. Western blotting and qRT-PCR assays were used to evaluate the expression of involved targets. Xenograft tumor in a nude mouse model was used to explore the role of circRNAs in vivo. RESULTS: RNA sequencing defined downregulated expression of circLHFPL2 in both PIK3CAH1047R (HCT116) and PIK3CAE545K (DLD1) cells. CircLHFPL2 was also downregulated in PIK3CA-mutant CRC primary cells and tissues, which was correlated with poor prognosis. CircLHFPL2 was mainly localized in the cytoplasm and its downregulation was attributed to the PI3K/AKT signaling pathway activated by phosphorylating Foxo3a. CircLHFPL2 inhibited PI3KCA-Mut CRC progression both in vitro and in vivo. Furthermore, our work indicated that circLHFPL2 acts as a ceRNA to sponge miR-556-5p and miR-1322 in CRC cells and in turn modulate the expression of PTEN. Importantly, circLHFPL2 was able to overcome PIK3CA-mediated MEK inhibitor resistance in CRC cells. CONCLUSIONS: Downregulation of circLHFPL2 sustains the activation of the PI3K/AKT signaling pathway via a positive feedback loop in PIK3CA-mutant CRC. In addition, downregulation of circLHFPL2 leads to MEK inhibitor resistance in CRC. Therefore, targeting circLHFPL2 could be an effective approach for the treatment of CRC patients harboring oncogenic PIK3CA mutations.


Asunto(s)
Neoplasias Colorrectales , MicroARNs , Animales , Carcinogénesis , Línea Celular Tumoral , Fosfatidilinositol 3-Quinasa Clase I/genética , Neoplasias Colorrectales/patología , Regulación hacia Abajo , Humanos , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/uso terapéutico , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Circular/genética
13.
Pharm Res ; 39(5): 867-876, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35578065

RESUMEN

BACKGROUND: Gastric cancer (GC) remains a significant health problem and carries with it substantial morbidity and mortality. Chidamide is a novel and orally administered histone deacetylase (HDAC) inhibitor and has been demonstrated its anti-tumor efficacy on different kinds of hematological and solid tumors. However, the underlying mechanism of chidamide resistance is still poorly characterized. METHODS: We established chidamide resistant GC cell lines, AGS ChiR and MGC803 ChiR and investigated the toxicologic effects through cell survival, colony formation and flow cytometry assays in vitro, and a subcutaneous xenograft model in vivo. RNA-sequence was then performed to screen chidamide resistance-associated genes between AGS and AGS ChiR cells. The role of Lymphocyte cytosolic protein 1 (LCP1) in chidamide resistance was explored by gain- and loss-of-function analyses. RESULTS: We found that chidamide significantly inhibited cell proliferation and induced the apoptosis in a concentration-dependent manner in wild-type GC cell lines as compared to chidamide resistant cell lines. The transcriptomic profiling, quantitative RT-PCR, and western blot data revealed that LCP1 was upregulated in AGS ChiR cells compared with parental cells. Overexpression of LCP1 conferred and knockdown of LCP1 attenuated the chidamide resistance of GC cells. Epigenetic derepression of LCP1 by chidamide may be a possible reason for the contribution of LCP1 to chidamide resistance. CONCLUSIONS: These findings illustrated that LCP1 may play a chidamide resistance role in GC, suggesting that LCP1 could be a potential target for the therapy of GC combined with chidamide.


Asunto(s)
Resistencia a Antineoplásicos , Inhibidores de Histona Desacetilasas , Proteínas de Microfilamentos , Neoplasias Gástricas , Aminopiridinas/farmacología , Apoptosis , Benzamidas/farmacología , Línea Celular Tumoral , Proliferación Celular , Resistencia a Antineoplásicos/genética , Perfilación de la Expresión Génica , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Proteínas de Microfilamentos/genética , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/genética
14.
ACS Appl Mater Interfaces ; 13(21): 24692-24701, 2021 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-34008958

RESUMEN

Excess lead iodide (PbI2) plays a crucial role in passivating the defects of perovskite films and boosting the power conversion efficiency (PCE) of perovskite solar cells (PSCs). However, the photolysis of PbI2 is easily triggered by light illumination, which accelerates the decomposition of perovskite materials and weakens the long-term stability of PSCs. Herein, the high light tolerance of lead iodide (PbI2) is reported by introducing an electron-donor molecule, namely, 2-thiophenecarboxamide (2-TCAm), to strengthen the [PbX6]4- frame. Characterization reveals that the retarded decomposition of PbI2 is attributed to the interactions between Pb2+ and the organic functional groups in 2-TCAm as well as the optimized distribution of PbI2. The crystallization and morphology of 2-TCAm-doped perovskite films are improved simultaneously. The 2-TCAm-based PSCs achieve a 16.8% increase in PCE and nearly 12 times increase in the lifetime as compared to the reference device. The demonstrated method provides insight into the stability of PbI2 and its influence on PSCs.

15.
J Cell Mol Med ; 25(2): 1024-1034, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33277798

RESUMEN

Tetraspanin CD63 has been widely implicated in tumour progression of human malignancies. However, its role in the tumorigenesis and metastasis of hepatocellular carcinoma (HCC) remains unclear yet. In the present study, we aimed to investigate the specific function and underlying mechanisms of CD63 in HCC progression. CD63 expression in HCC tissues was detected using immunohistochemistry and quantitative real-time PCR analyses; effects of CD63 on HCC cell proliferation and migration were investigated by CCK-8 assay, colony formation assay, transwell assay and a xenograft model of nude mice. RNA-sequencing, bioinformatics analysis, dual-luciferase reporter assay and Western blot analysis were performed to explore the underlying molecular mechanisms. Results of our experiments showed that CD63 expression was frequently reduced in HCC tissues compared with adjacent normal tissues, and decreased CD63 expression was significantly associated with larger tumour size, distant site metastasis and higher tumour stages of HCC. Overexpression of CD63 inhibited HCC cell proliferation and migration, whereas knockdown of CD63 promoted these phenotypes. IL-6, IL-27 and STAT3 activity was regulated by CD63, and blockade of STAT3 activation impaired the promotive effects of CD63 knockdown on HCC cell growth and migration. Our findings identified a novel CD63-IL-6/IL-27-STAT3 axis in the development of HCC and provided a potential target for the diagnosis and treatment of this disease.


Asunto(s)
Carcinogénesis/patología , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Citocinas/metabolismo , Mediadores de Inflamación/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Factor de Transcripción STAT3/metabolismo , Tetraspanina 30/metabolismo , Animales , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Modelos Animales de Enfermedad , Femenino , Humanos , Inflamación/patología , Masculino , Ratones Endogámicos BALB C , Ratones Desnudos , Persona de Mediana Edad , Transducción de Señal
16.
Med Oncol ; 37(9): 84, 2020 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-32780197

RESUMEN

Musashi 2 (MSI2), a member of the Musashi RNA-binding family, is reported to be an oncoprotein in pancreatic ductal adenocarcinoma (PDAC), but the mechanisms of MSI2 in the development and progression of PDAC have not been fully demonstrated. In this research, we studied the clinical significance, biologic effects and the underlying mechanism of MSI2 in the progression of PDAC. The expression of MSI2, Mps-binding protein 1 (MOB1) and Salvador family WW domain-containing protein 1 (SAV1) in PDAC tissues were analyzed immunohistochemically. The biologic effects of MSI2 regarding PDAC cell proliferation, migration and invasion were studied using gain- and loss-of-function assays. MSI2 regulated Hippo signaling pathway via SAV1 and MOB1 was tested in several PDAC cell lines, and the mechanisms were studied using molecular biologic methods. The expression of MSI2 was significantly increased in PDAC cell lines and tissues, and positively associated with tumor poorer differentiation, lymph nodes metastasis and TNM stages. Overexpression of MSI2 promoted PDAC cells proliferation, migration and invasion. Further studies demonstrated that MSI2 regulated the Hippo signaling pathway via directly binding to the mRNAs of SAV1 and MOB1, and controlled the translation and stability of SAV1 and the translation of MOB1. This study demonstrated that MSI2 regulated the Hippo signaling pathway via suppressing SAV1 and MOB1 at post-transcriptional level and promoted PDAC progression.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Proteínas de Ciclo Celular/metabolismo , Quimiocina CXCL10/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias Pancreáticas/patología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Unión al ARN/metabolismo , Línea Celular Tumoral , Proliferación Celular , Vía de Señalización Hippo , Humanos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Pronóstico , Proteínas de Unión al ARN/genética , Transducción de Señal
17.
ACS Appl Mater Interfaces ; 12(37): 41596-41604, 2020 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-32842734

RESUMEN

All-inorganic perovskite cesium lead iodide/bromide (CsPbI2Br) is considered as a robust absorber for perovskite solar cells (PSCs) because of its excellent thermal stability that guarantees its long-term operation stability. Efficient CsPbI2Br PSCs are available when obtaining low energy loss, which needs efficient charge generation, less charge recombination, and balanced charge extraction. However, numerous traps in perovskites hinder the photon-electron conversion process. Herein, hierarchical manipulation of charge recombination is proposed for CsPbI2Br PSCs featuring low energy loss. Nonselective trap reduction and selective halogen vacancy passivation are performed using 2,2'-(ethylenedioxy)diethylamine and phenylbutylammonium iodide for the bottom and top contacts, respectively. Because of all-around suppressed charge recombination, balanced charge extraction and suppressed hysteresis are realized. The champion PSC achieves an open-circuit voltage of 1.30 eV, a fill factor of 80.2%, and a power conversion efficiency of 16.6% that is 28.6% higher than that of the reference device. Moreover, the thermostability of PSCs is simultaneously enhanced because of the limited defect-assisted degradation.

18.
J Cancer Res Clin Oncol ; 146(10): 2651-2657, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32623573

RESUMEN

PURPOSE: Patients with DNA mismatch repair-deficient (dMMR)/microsatellite instability-high (MSI-H) cancers are prone to response to programmed cell death-1 (PD-1) checkpoint inhibitors. Therefore, we explored the efficacy and safety of a PD-1 checkpoint inhibitor camrelizumab in advanced or metastatic solid tumour with dMMR/MSI-H. METHODS: Patients with dMMR/MSI-H advanced or metastatic solid tumours who had received at least one line of prior systemic chemotherapy were recruited. Camrelizumab was given intravenously 200 mg every 2-week treatment cycle. The primary endpoint was objective response rate according to Response Evaluation Criteria in Solid Tumours v1.1. RESULTS: Twelve patients were enrolled. As data cutoff, eight patients (66.7%, 95% CI 34.9-90.1) achieved objective response. Disease control rate reached 100% (95% CI 73.5-100). Progression-free survival rate at 12 months was 83.3% (95% CI 48.2-95.6), and overall survival rate at 12 months was 90% (95% CI 47.3-98.5). The most common treatment-related adverse events were reactive cutaneous capillary endothelial proliferation (100%), increased alanine aminotransferase (41.7%), and increased aspartate aminotransferase (41.7%). CONCLUSIONS: Camrelizumab provided durable objective response and disease control in pre-treated patients with dMMR/MSI-H advanced or metastatic solid tumour, being a promising treatment option for these patients.


Asunto(s)
Anticuerpos Monoclonales Humanizados/uso terapéutico , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Adulto , Anciano , Anticuerpos Monoclonales Humanizados/efectos adversos , Antineoplásicos Inmunológicos/efectos adversos , Antineoplásicos Inmunológicos/uso terapéutico , Reparación de la Incompatibilidad de ADN , Femenino , Humanos , Masculino , Inestabilidad de Microsatélites , Persona de Mediana Edad , Metástasis de la Neoplasia , Neoplasias/patología , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Supervivencia sin Progresión , Estudios Prospectivos , Resultado del Tratamiento
19.
ACS Nano ; 14(5): 5998-6006, 2020 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-32383860

RESUMEN

The visual aesthetic that involves color, brightness, and glossiness is of great importance for building integrated photovoltaics. Semitransparent organic solar cells (ST-OSCs) are thus considered as the most promising candidate due to their superiority in transparency and efficiency. However, the realization of high color purity with narrow bandpass transmitted light usually causes the severely suppressed transparency in ST-OSCs. Herein, we present a spectrally selective electrode (SSE) by imitating the integrating strategy of beetle cuticle for achieving narrow bandpass ST-OSCs with high efficiency and long-term stability. The proposed SSE allows for efficient light-selective passage, leading to tunable narrow bandpass transmitted light from violet to red. An optimized power conversion efficiency of 15.07% is achieved for colorful ST-OSCs, which exhibit color purity close to 100% and a peak transmittance approaching 30%. Long-term stability is also improved for ST-OSCs made with this SSE due to the light-rejecting and the moisture-blocking abilities. The realization of bright and colorful ST-OSCs also indicates the application potential of SSEs in light-emitting diodes, lasers, and photodetectors.

20.
Cell Death Dis ; 11(4): 299, 2020 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-32350244

RESUMEN

Tetraspanins CD9 and CD81 frequently serve as the surface markers of exosomes, which are involved in intercellular communication during tumor progression. KLF4 is a well-known tumor suppressor in various cancers. This study aims to investigate the relationship between KLF4 and CD9/CD81 in hepatocellular carcinoma (HCC). The results showed that CD9 and CD81 were transcriptionally activated by KLF4 in HCC cell lines. Decreased expressions of CD9 and CD81 were found in most HCC tumor tissues and predicted advanced stages. Furthermore, KLF4 expression was positively associated with CD9 and CD81 expression in HCC specimens. Functionally, overexpression of CD9 and CD81 inhibited HCC cell proliferation in vitro and in vivo and silencing CD9 and CD81 displayed opposite phenotypes. Mechanistically, we found that JNK signaling pathway may be involved in the growth suppression mediated by CD9 and CD81. In addition, increased expression of KLF4, CD9 or CD81 had no obvious impact on exosome secretion from HCC cells. Collectively, we identified CD9 and CD81 as new transcriptional targets of KLF4 and the dysregulated KLF4-CD9/CD81-JNK signaling contributes to HCC development. Our findings will provide new promising targets against this disease.


Asunto(s)
Carcinoma Hepatocelular/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Neoplasias Hepáticas/genética , Sistema de Señalización de MAP Quinasas/genética , Tetraspanina 28/metabolismo , Tetraspanina 29/metabolismo , Carcinoma Hepatocelular/metabolismo , Femenino , Humanos , Factor 4 Similar a Kruppel , Neoplasias Hepáticas/metabolismo , Masculino , Persona de Mediana Edad , Transducción de Señal , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA