Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 7473, 2024 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-38553555

RESUMEN

Orexin signaling plays a facilitatory role in respiration. Abnormalities in orexin levels correlate with disordered breathing patterns and impaired central respiratory chemoreception. Nucleus tractus solitarii (NTS) neurons expressing the transcription factor Phox2b contribute to the chemoreceptive regulation of respiration. However, the extent to which orexinergic signaling modulates respiratory activity in these Phox2b-expressing NTS neurons remains unclear. In the present study, the injection of orexin A into the NTS significantly increased the firing rate of the phrenic nerve. Further analysis using fluorescence in situ hybridization and immunohistochemistry revealed that orexin 1 receptors (OX1Rs) were primarily located in the ventrolateral subdivision of the NTS and expressed in 25% of Phox2b-expressing neurons. Additionally, electrophysiological recordings showed that exposure to orexin A increased the spontaneous firing rate of Phox2b-expressing neurons. Immunostaining experiments with cFos revealed that the OX1R-residing Phox2b-expressing neurons were activated by an 8% CO2 stimulus. Crucially, OX1R knockdown in these NTS neurons notably blunted the ventilatory response to 8% CO2, alongside an increase in sigh-related apneas. In conclusion, orexinergic signaling in the NTS facilitates breathing through the activation of OX1Rs, which induces the depolarization of Phox2b-expressing neurons. OX1Rs are essential for the involvement of Phox2b-expressing NTS neurons in the hypercapnic ventilatory response.


Asunto(s)
Dióxido de Carbono , Núcleo Solitario , Núcleo Solitario/metabolismo , Orexinas/metabolismo , Hibridación Fluorescente in Situ , Respiración
2.
J Ethnopharmacol ; 315: 116653, 2023 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-37236383

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Caesalpinia minax Hance, whose seeds are known as "Ku-shi-lian" in China, have been used in Chinese folk medicine for treatment of rheumatism, dysentery, and skin itching. However, the anti-neuroinflammatory constituents of its leaves and their mechanism are rarely reported. AIM OF THE STUDY: To search for new anti-neuro-inflammatory compounds from the leaves of C. minax and elucidate their mechanism on anti-neuroinflammatory effect. MATERIALS AND METHODS: The main metabolites of the ethyl acetate fraction from C. minax were analyzed and purified via HPLC and various column chromatography techniques. Their structures were elucidated on the basis of 1D and 2D NMR, HR-ESI-MS, and single crystal X-ray diffraction analysis. Anti-neuroinflammatory activity was evaluated in BV-2 microglia cells induced by LPS. The expression levels of molecules in NF-κB and MAPK signaling pathways were analyzed through western blotting. Meanwhile, the time- and dose-dependent expression of associated proteins such as iNOS and COX-2 were detected by western blotting. Furthermore, Compounds 1 and 3 were performed on the NF-κB p65 active site using molecular docking simulation to elucidate the molecular level inhibition mechanism. RESULTS: 20 cassane diterpenoids, including two novel ones (caeminaxins A and B) were isolated from the leaves of C. minax Hance. Caeminaxins A and B possessed a rare unsaturated carbonyl moiety in their structures. Most of the metabolites exhibited potent inhibition effects with IC50 values ranging from 10.86 ± 0.82 to 32.55 ± 0.47 µM. Among them, caeminaxin A inhibited seriously the expression of iNOS and COX-2 proteins and restrained the phosphorylation of MAPK and the activation of NF-κB signaling pathways in BV-2 cells. The anti-neuro-inflammatory mechanism of caeminaxin A has been studied systematically for the first time. Furthermore, biosynthesis pathways for compounds 1-20 were discussed. CONCLUSIONS: The new cassane diterpenoid, caeminaxin A, alleviated the expression of iNOS and COX-2 protein and down-regulated of intracellular MAPK and NF-κB signaling pathways. The results implied that cassane diterpenoids had potential to be developed into therapeutic agents for neurodegenerative disorders such as Alzheimer's disease.


Asunto(s)
Caesalpinia , Diterpenos , FN-kappa B/metabolismo , Caesalpinia/química , Microglía/metabolismo , Ciclooxigenasa 2 , Simulación del Acoplamiento Molecular , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Hojas de la Planta/metabolismo , Diterpenos/farmacología , Diterpenos/uso terapéutico , Diterpenos/química , Lipopolisacáridos/farmacología
3.
Neurosci Bull ; 39(8): 1193-1209, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36588135

RESUMEN

The nucleus tractus solitarii (NTS) is one of the morphologically and functionally defined centers that engage in the autonomic regulation of cardiovascular activity. Phenotypically-characterized NTS neurons have been implicated in the differential regulation of blood pressure (BP). Here, we investigated whether phenylethanolamine N-methyltransferase (PNMT)-expressing NTS (NTSPNMT) neurons contribute to the control of BP. We demonstrate that photostimulation of NTSPNMT neurons has variable effects on BP. A depressor response was produced during optogenetic stimulation of NTSPNMT neurons projecting to the paraventricular nucleus of the hypothalamus, lateral parabrachial nucleus, and caudal ventrolateral medulla. Conversely, photostimulation of NTSPNMT neurons projecting to the rostral ventrolateral medulla produced a robust pressor response and bradycardia. In addition, genetic ablation of both NTSPNMT neurons and those projecting to the rostral ventrolateral medulla impaired the arterial baroreflex. Overall, we revealed the neuronal phenotype- and circuit-specific mechanisms underlying the contribution of NTSPNMT neurons to the regulation of BP.


Asunto(s)
Feniletanolamina N-Metiltransferasa , Núcleo Solitario , Núcleo Solitario/metabolismo , Presión Sanguínea/fisiología , Feniletanolamina N-Metiltransferasa/metabolismo , Neuronas/metabolismo , Núcleo Hipotalámico Paraventricular/metabolismo
4.
J Agric Food Chem ; 71(1): 358-381, 2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36519207

RESUMEN

We explored the protection of mangiferin monosodium salt (MGM) on kidney injury in rats with streptozotocin (STZ)-induced diabetic nephropathy (DN) by "multiomics" analysis combined with systems pharmacology, with a specific focus on ferroptosis, inflammation, and podocyte insulin resistance (IR) signaling events in kidneys. MGM treatment afforded renoprotective effects on rats with STZ-induced DN by alleviating systemic IR-induced renal inflammation and podocyte IR. These mechanisms were correlated mainly with the MGM treatment-induced inhibition of the mitogen-activated protein kinase/nuclear factor-kappa B axis and activation of the phosphorylated insulin receptor substrate 1(Tyr608)/phosphorylated phosphatidylinositol 3-kinase/phosphorylated protein kinase B axis in the kidneys of DN rats. MGM had an ameliorative function in renal ferroptosis in rats with STZ-induced DN by upregulating mevalonate-mediated antioxidant capacities (glutathione peroxidase 4 and ferroptosis suppressor protein 1/coenzyme Q10 axis) and weakening acyl-CoA synthetase long-chain family member 4-mediated proferroptotic generation of lipid drivers in kidneys. MGM may be a promising alternative strategy for the treatment of DN.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Ferroptosis , Resistencia a la Insulina , Podocitos , Ratas , Animales , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/metabolismo , Podocitos/metabolismo , Farmacología en Red , Multiómica , Riñón/metabolismo , Estreptozocina/efectos adversos , Inflamación/tratamiento farmacológico , Inflamación/genética , Inflamación/metabolismo , Diabetes Mellitus/metabolismo
5.
Neurosci Bull ; 38(2): 149-165, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34212297

RESUMEN

Leptin, an adipocyte-derived peptide hormone, has been shown to facilitate breathing. However, the central sites and circuit mechanisms underlying the respiratory effects of leptin remain incompletely understood. The present study aimed to address whether neurons expressing leptin receptor b (LepRb) in the nucleus tractus solitarii (NTS) contribute to respiratory control. Both chemogenetic and optogenetic stimulation of LepRb-expressing NTS (NTSLepRb) neurons notably activated breathing. Moreover, stimulation of NTSLepRb neurons projecting to the lateral parabrachial nucleus (LPBN) not only remarkably increased basal ventilation to a level similar to that of the stimulation of all NTSLepRb neurons, but also activated LPBN neurons projecting to the preBötzinger complex (preBötC). By contrast, ablation of NTSLepRb neurons projecting to the LPBN notably eliminated the enhanced respiratory effect induced by NTSLepRb neuron stimulation. In brainstem slices, bath application of leptin rapidly depolarized the membrane potential, increased the spontaneous firing rate, and accelerated the Ca2+ transients in most NTSLepRb neurons. Therefore, leptin potentiates breathing in the NTS most likely via an NTS-LPBN-preBötC circuit.


Asunto(s)
Leptina , Núcleo Solitario , Leptina/metabolismo , Leptina/farmacología , Potenciales de la Membrana , Neuronas/metabolismo , Núcleo Solitario/metabolismo
6.
Open Life Sci ; 16(1): 583-593, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34179502

RESUMEN

Plant glycosyltransferase 2 (GT2) family genes are involved in plant abiotic stress tolerance. However, the roles of GT2 genes in the abiotic resistance in freshwater plants are largely unknown. We identified seven GT2 genes in duckweed, remarkably more than those in the genomes of Arabidopsis thaliana, Oryza sativa, Amborella trichopoda, Nymphaea tetragona, Persea americana, Zostera marina, and Ginkgo biloba, suggesting a significant expansion of this family in the duckweed genome. Phylogeny resolved the GT2 family into two major clades. Six duckweed genes formed an independent subclade in Clade I, and the other was clustered in Clade II. Gene structure and protein domain analysis showed that the lengths of the seven duckweed GT2 genes were varied, and the majority of GT2 genes harbored two conserved domains, PF04722.12 and PF00535.25. The expression of all Clade I duckweed GT2 genes was elevated at 0 h after salt treatment, suggesting a common role of these genes in rapid response to salt stress. The gene Sp01g00794 was highly expressed at 12 and 24 h after salt treatment, indicating its association with salt stress resilience. Overall, these results are essential for studies on the molecular mechanisms in stress response and resistance in aquatic plants.

7.
Rev Sci Instrum ; 89(2): 023107, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29495856

RESUMEN

Infrared sky background level is an important parameter of infrared astronomy observations from the ground, particularly for a candidate site of an infrared capable observatory since low background level is required for such a site. The Chinese astronomical community is looking for a suitable site for a future 12 m telescope, which is designed for working in both optical and infrared wavelengths. However, none of the proposed sites has been tested for infrared observations. Nevertheless, infrared sky background measurements are also important during the design of infrared observing instruments. Based on the requirement, in order to supplement the current site survey data and guide the design of future infrared instruments, a multiband near-infrared sky brightness monitor (MNISBM) based on an InSb sensor is designed in this paper. The MNISBM consists of an optical system, mechanical structure and control system, detector and cooler, high gain readout electronics, and operational software. It is completed and tested in the laboratory. The results show that the sensitivity of the MNISBM meets the requirements of the measurement of near-infrared sky background level of several well-known astronomical infrared observing sites.

8.
Can J Physiol Pharmacol ; 96(8): 807-814, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29400080

RESUMEN

Many studies have demonstrated that chronic intermittent hypobaric hypoxia (CIHH) can reduce blood pressure in spontaneously hypertensive rats and renovascular hypertensive (RVH) rats in which endothelial dysfunction is determined as a critical factor. However, whether CIHH can regulate vasodilation of the aorta in RVH rats remains unknown. The purpose of this study was to investigate the effect of CIHH on impaired relaxation of the aorta in the 2-kidney, 1-clip (2K1C) RVH rat model. The results showed CIHH improved the impaired endothelium-dependent relaxation in the 2K1C rat aorta. The endothelial dysfunction was prevented by the p38 antagonist SB203580, but not by the ERK1/2 antagonist PD98059 or JNK antagonist SP600125. Furthermore, the expression of p-eNOS, HIF-1α, and HIF-2α increased while that of p-p38 and BMP-4 decreased in CIHH-treated aortas from 2K1C rats. Finally, the p-eNOS expression was upregulated and the p-p38 expression was downregulated by pre-incubation of SB203580 or the BMP-4 antagonist Noggin with the aorta. CIHH ameliorated the impairment of endothelium-dependent relaxation through upregulating the expression of p-eNOS, which may be mediated by the inhibition of BMP-4/p-p38 MAPK, and upregulating the expression of HIFs in the 2K1C rat aorta.


Asunto(s)
Aorta/patología , Hipertensión/patología , Hipoxia/patología , Riñón/patología , Instrumentos Quirúrgicos , Acetilcolina/farmacología , Animales , Antracenos/farmacología , Antracenos/uso terapéutico , Aorta/efectos de los fármacos , Aorta/fisiopatología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Presión Sanguínea/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Proteína Morfogenética Ósea 4/metabolismo , Proteínas Portadoras/farmacología , Enfermedad Crónica , Modelos Animales de Enfermedad , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/patología , Endotelio Vascular/fisiopatología , Flavonoides/farmacología , Flavonoides/uso terapéutico , Hipertensión/tratamiento farmacológico , Hipertensión/fisiopatología , Hipoxia/fisiopatología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Imidazoles/farmacología , Imidazoles/uso terapéutico , Técnicas In Vitro , Masculino , Óxido Nítrico Sintasa de Tipo III/metabolismo , Nitroprusiato/farmacología , Fosforilación/efectos de los fármacos , Piridinas/farmacología , Piridinas/uso terapéutico , Ratas Sprague-Dawley , Sístole , Vasodilatación/efectos de los fármacos , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
9.
Rev Sci Instrum ; 88(10): 103507, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29092513

RESUMEN

Ring-averaged velocity distribution function of ions at a fixed guiding center position is a fundamental quantity in the gyrokinetic plasma physics. We have developed a diagnostic tool for the ring averaged velocity distribution function of ions for laboratory plasma experiments, which is named as the ring-averaged ion distribution function probe (RIDFP). The RIDFP is a set of ion collectors for different velocities. It is designed to be immersed in magnetized plasmas and achieves momentum selection of incoming ions by the selection of the ion Larmor radii. To nullify the influence of the sheath potential surrounding the RIDFP on the orbits of the incoming ions, the electrostatic potential of the RIDFP body is automatically adjusted to coincide with the space potential of the target plasma with the use of an emissive probe and a voltage follower. The developed RIDFP successfully measured the equilibrium ring-averaged velocity distribution function of a laboratory magnetized plasma, which was in accordance with the Maxwellian distribution having an ion temperature of 0.2 eV.

10.
J Physiol ; 595(14): 4973-4989, 2017 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-28488367

RESUMEN

KEY POINTS: Central hypercapnic hypoventilation is highly prevalent in children suffering from congenital central hypoventilation syndrome (CCHS). Mutations of the gene for paired-like homeobox 2b (Phox2b) are aetiologically associated with CCHS and Phox2b is present in central components of respiratory chemoreflex, such as the nucleus tractus solitarius (NTS). Injection of the neurotoxin substance P-saporin into NTS destroys Phox2b-expressing neurons. Impaired hypercapnic ventilatory response caused by this neurotoxin is attributable to a loss of CO2 -sensitive Phox2b-expressing NTS neurons. A subgroup of Phox2b-expressing neurons exhibits intrinsic chemosensitivity. A background K+ channel-like current is partially responsible for such chemosensitivity in Phox2b-expressing neurons. The present study helps us better understand the mechanism of respiratory deficits in CCHS and potentially locates a brainstem site for development of precise clinical intervention. ABSTRACT: The nucleus tractus solitarius (NTS) neurons have been considered to function as central respiratory chemoreceptors. However, the common molecular marker defined for these neurons remains unknown. The present study investigated whether paired-like homeobox 2b (Phox2b)-expressing NTS neurons are recruited in hypercapnic ventilatory response (HCVR) and whether these neurons exhibit intrinsic chemosensitivity. HCVR was assessed using whole body plethysmography and neuronal chemosensitivity was examined by patch clamp recordings in brainstem slices or dissociated neurons from Phox2b-EGFP transgenic mice. Injection of the neurotoxin substance P-saporin (SSP-SAP) into NTS destroyed Phox2b-expressing neurons. Minute ventilation and tidal volume were both reduced by 13% during exposure to 8% CO2 in inspired air when ∼13% of the Phox2b-expressing neurons were eliminated. However, a loss of ∼18% of these neurons was associated with considerable decreases in minute ventilation by ≥18% and in tidal volume by≥22% when challenged by ≥4% CO2 . In both cases, breathing frequency was unaffected. Most CO2 -activated neurons were immunoreactive to Phox2b. In brainstem slices, ∼43% of Phox2b-expressing neurons from Phox2b-EGFP mice displayed a sustained or transient increase in firing rate during physiological acidification (pH 7.0 or 8% CO2 ). Such a response was also present in dissociated neurons in favour of an intrinsic property. In voltage clamp recordings, a background K+ channel-like current was found in a subgroup of Phox2b-expressing neurons. Thus, the respiratory deficits caused by injection of SSP-SAP into the NTS are attributable to proportional lesions of CO2 /H+ -sensitive Phox2b-expressing neurons.


Asunto(s)
Proteínas de Homeodominio/fisiología , Hipercapnia/fisiopatología , Neuronas/fisiología , Núcleo Solitario/fisiología , Factores de Transcripción/fisiología , Animales , Proteínas de Homeodominio/genética , Masculino , Potenciales de la Membrana , Ratones Transgénicos , Neuronas/efectos de los fármacos , Neurotoxinas/toxicidad , Respiración , Proteínas Inactivadoras de Ribosomas Tipo 1/toxicidad , Saporinas , Núcleo Solitario/efectos de los fármacos , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...