Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Neural Regen Res ; 20(4): 1042-1057, 2025 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38989936

RESUMEN

Spinal cord injuries impose a notably economic burden on society, mainly because of the severe after-effects they cause. Despite the ongoing development of various therapies for spinal cord injuries, their effectiveness remains unsatisfactory. However, a deeper understanding of metabolism has opened up a new therapeutic opportunity in the form of metabolic reprogramming. In this review, we explore the metabolic changes that occur during spinal cord injuries, their consequences, and the therapeutic tools available for metabolic reprogramming. Normal spinal cord metabolism is characterized by independent cellular metabolism and intercellular metabolic coupling. However, spinal cord injury results in metabolic disorders that include disturbances in glucose metabolism, lipid metabolism, and mitochondrial dysfunction. These metabolic disturbances lead to corresponding pathological changes, including the failure of axonal regeneration, the accumulation of scarring, and the activation of microglia. To rescue spinal cord injury at the metabolic level, potential metabolic reprogramming approaches have emerged, including replenishing metabolic substrates, reconstituting metabolic couplings, and targeting mitochondrial therapies to alter cell fate. The available evidence suggests that metabolic reprogramming holds great promise as a next-generation approach for the treatment of spinal cord injury. To further advance the metabolic treatment of the spinal cord injury, future efforts should focus on a deeper understanding of neurometabolism, the development of more advanced metabolomics technologies, and the design of highly effective metabolic interventions.

2.
Nanomaterials (Basel) ; 14(13)2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38998746

RESUMEN

A cellulose-based carbon aerogel (CTN) loaded with titanium dioxide (TiO2) and graphitic carbon nitride (g-C3N4) was prepared using sol-gel, freeze-drying, and high-temperature carbonization methods. The formation of the sol-gel was carried out through a one-pot method using refining papermaking pulp, tetrabutyl titanate, and urea as raw materials and hectorite as a cross-linking and reinforcing agent. Due to the cross-linking ability of hectorite, the carbonized aerogel maintained a porous structure and had a large specific surface area with low density (0.0209 g/cm3). The analysis of XRD, XPS, and Raman spectra revealed that the titanium dioxide (TiO2) and graphitic carbon nitride (g-C3N4) were uniformly distributed in the CTN, while TEM and SEM observations demonstrated the uniformly distributed three-dimensional porous structure of CTN. The photocatalytic activity of the CTN was determined according to its ability to degrade rhodamine B. The removal rate reached 89% under visible light after 120 min. In addition, the CTN was still stable after five reuse cycles. The proposed catalyst exhibits excellent photocatalytic performance under visible light conditions.

3.
J Cosmet Dermatol ; 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769897

RESUMEN

BACKGROUND: Extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs) are effective in the treatment of skin photoaging; however, their low yield and functional decline with passage progression limit their clinical application. Cell-derived nanovesicles (CNVs) are potential alternatives that can address the limitations of EVs derived from MSCs and are conducive to clinical transformations. Hair follicle mesenchymal stem cells (HFMSCs), a type of MSCs, have demonstrated the function of repairing skin tissues; nevertheless, the efficacy of CNVs from HFMSCs (HFMSC-CNVs) in the treatment of skin photoaging remains unclear. Therefore, ultraviolet radiation B (UVB)-induced photoaging nude mice and human dermal fibroblasts (HDFs) were used as experimental models to investigate the therapeutic effects of HFMSC-CNVs in photoaging models. METHODS: HFMSC-CNVs were successfully prepared using the mechanical extrusion method. UVB-induced nude mice and HDFs were used as experimental models of photoaging. Multiple approaches, including hematoxylin-eosin and Masson staining, immunohistochemistry, immunofluorescence, detection of reactive oxygen species (ROS), flow cytometry, western blotting, and other experimental methods, were combined to investigate the possible effects and mechanisms of HFMSC-CNVs in the treatment of skin photoaging. RESULTS: In the nude mouse model of skin photoaging, treatment with HFMSC-CNVs reduced UVB-induced skin wrinkles (p < 0.05) and subcutaneous capillary dilation, alleviated epidermis thickening (p < 0.001), and dermal thinning (p < 0.001). Furthermore, HFMSC-CNVs upregulated proliferating cell nuclear antigen (PCNA) expression (p < 0.05) and decreased the levels of ROS, ß-galactosidase (ß-Gal), and CD86 (p < 0.01). In vitro experiments, treatment with HFMSC-CNVs enhanced the cellular activity of UVB-exposed HDFs (p < 0.05), and reduced ROS levels and the percentage of senescent cells (p < 0.001), and alleviated cell cycle arrest (p < 0.001). HFMSC-CNVs upregulated the expression of Collagen I (Col I), SMAD2/3, transforming growth factor beta (TGF-ß), catalase (CAT), glutathione peroxidase-1 (GPX-1), and superoxide dismutase-1 (SOD-1) (p < 0.05) and downregulated the expression of cycle suppressor protein (p53), cell cycle suppressor protein (p21), and matrix metalloproteinase 3 (MMP3) (p < 0.05). CONCLUSION: Conclusively, the anti-photoaging properties of HFMSC-CNVs were confirmed both in vivo and in vitro. HFMSC-CNVs exert anti-photoaging effects by alleviating cell cycle arrest, decreasing cellular senescence and macrophage infiltration, promoting cell proliferation and extracellular matrix (ECM) production, and reducing oxidative stress by increasing the activity of antioxidant enzymes.

4.
Viruses ; 16(5)2024 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-38793686

RESUMEN

Parrot bornavirus (PaBV) is an infectious disease linked with proventricular dilatation disease (PDD) with severe digestive and neurological symptoms affecting psittacine birds. Despite its detection in 2008, PaBV prevalence in Taiwan remains unexplored. Taiwan is one of the leading psittacine bird breeders; hence, understanding the distribution of PaBV aids preventive measures in controlling spread, early disease recognition, epidemiology, and transmission dynamics. Here, we aimed to detect the prevalence rate of PaBV and assess its genetic variation in Taiwan. Among 124 psittacine birds tested, fifty-seven were PaBV-positive, a prevalence rate of 45.97%. Most of the PaBV infections were adult psittacine birds, with five birds surviving the infection, resulting in a low survival rate (8.77%). A year of parrot bornavirus surveillance presented a seasonal pattern, with peak PaBV infection rates occurring in the spring season (68%) and the least in the summer season (25%), indicating the occurrence of PaBV infections linked to seasonal factors. Histopathology reveals severe meningoencephalitis in the cerebellum and dilated cardiomyopathy of the heart in psittacine birds who suffered from PDD. Three brain samples underwent X/P gene sequencing, revealing PaBV-2 and PaBV-4 viral genotypes through phylogenetic analyses. This underscores the necessity for ongoing PaBV surveillance and further investigation into its pathophysiology and transmission routes.


Asunto(s)
Enfermedades de las Aves , Bornaviridae , Infecciones por Mononegavirales , Filogenia , Psittaciformes , Animales , Taiwán/epidemiología , Bornaviridae/genética , Bornaviridae/clasificación , Bornaviridae/aislamiento & purificación , Infecciones por Mononegavirales/veterinaria , Infecciones por Mononegavirales/virología , Infecciones por Mononegavirales/epidemiología , Enfermedades de las Aves/virología , Enfermedades de las Aves/epidemiología , Prevalencia , Psittaciformes/virología , Estaciones del Año , Variación Genética , Loros/virología , Monitoreo Epidemiológico/veterinaria
5.
Front Bioeng Biotechnol ; 12: 1363742, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38558788

RESUMEN

In recent years, stem cells and their secretomes, notably exosomes, have received considerable attention in biomedical applications. Exosomes are cellular secretomes used for intercellular communication. They perform the function of intercellular messengers by facilitating the transport of proteins, lipids, nucleic acids, and therapeutic substances. Their biocompatibility, minimal immunogenicity, targetability, stability, and engineerable characteristics have additionally led to their application as drug delivery vehicles. The therapeutic efficacy of exosomes can be improved through surface modification employing functional molecules, including aptamers, antibodies, and peptides. Given their potential as targeted delivery vehicles to enhance the efficiency of treatment while minimizing adverse effects, exosomes exhibit considerable promise. Stem cells are considered advantageous sources of exosomes due to their distinctive characteristics, including regenerative and self-renewal capabilities, which make them well-suited for transplantation into injured tissues, hence promoting tissue regeneration. However, there are notable obstacles that need to be addressed, including immune rejection and ethical problems. Exosomes produced from stem cells have been thoroughly studied as a cell-free strategy that avoids many of the difficulties involved with cell-based therapy for tissue regeneration and cancer treatment. This review provides an in-depth summary and analysis of the existing knowledge regarding exosomes, including their engineering and cardiovascular disease (CVD) treatment applications.

6.
Research (Wash D C) ; 7: 0336, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38533181

RESUMEN

Circular RNAs (circRNAs) play a critical regulatory role in degenerative diseases; however, their functions and therapeutic applications in intervertebral disc degeneration (IVDD) have not been explored. Here, we identified that a novel circATXN1 highly accumulates in aging nucleus pulposus cells (NPCs) accountable for IVDD. CircATXN1 accelerates cellular senescence, disrupts extracellular matrix organization, and inhibits mitochondrial respiration. Mechanistically, circATXN1, regulated by heterogeneous nuclear ribonucleoprotein A2B1-mediated splicing circularization, promotes progerin translocation from the cell nucleus to the cytoplasm and inhibits the expression of insulin-like growth factor 1 receptor (IGF-1R). To demonstrate the therapeutic potential of circATXN1, siRNA targeting the backsplice junction of circATNX1 was screened and delivered by tetrahedral framework nucleic acids (tFNAs) due to their unique compositional and tetrahedral structural features. Our siRNA delivery system demonstrates superior abilities to transfect aging cells, clear intracellular ROS, and enhanced biological safety. Using siRNA-tFNAs to silence circATXN1, aging NPCs exhibit reduced mislocalization of progerin in the cytoplasm and up-regulation of IGF-1R, thereby demonstrating a rejuvenated cellular phenotype and improved mitochondrial function. In vivo, administering an aging cell-adapted siRNA nucleic acid framework delivery system to progerin pathologically expressed premature aging mice (zmpste24-/-) can ameliorate the cellular matrix in the nucleus pulposus tissue, effectively delaying IVDD. This study not only identified circATXN1 functioning as a cell senescence promoter in IVDD for the first time, but also successfully demonstrated its therapeutic potential via a tFNA-based siRNA delivery strategy.

7.
Ecotoxicol Environ Saf ; 272: 116065, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38330872

RESUMEN

Bisphenol A (BPA) and its substitute bisphenol S (BPS) are desirable materials widely used in manufacturing plastic products but can pose carcinogenic risks to humans. A new conductive iron-based metal-organic framework (Fe-HHTP)-modified pencil graphite electrode (PGE) for electrochemically sensing BPA and BPS was prepared and fully characterized by SEM, TEM, FT-IR, XRD, and XPS. Results showed that the optimal conditions for preparing Fe-HHTP/PGE were a pH of 6.5, a Fe-HHTP concentration of 2 mg·mL-1, a deposition potential of 0 V, and a deposition time of 100 s. The Fe-HHTP/PGE prepared under such conditions harbored a significant electrocatalytic activity with a detection limit of 0.8 nM for BPA and 1.7 nM for BPS (S/N = 3). Correspondingly, the electrochemical response current was linearly correlated to BPA and BPS, ranging from 0.01 to 100 µM. Fe-HHTP/PGE also obtained satisfactory recoveries by 93.8-102.1% and 96.0-101.3% for detecting BPA and BPS in plastic food packaging samples. Our work has provided a novel electrochemical tool to simultaneously detect BPA and BPS in food packaging samples and environmental matrixes.


Asunto(s)
Grafito , Estructuras Metalorgánicas , Fenoles , Humanos , Grafito/química , Espectroscopía Infrarroja por Transformada de Fourier , Compuestos de Bencidrilo/química , Electrodos
8.
Polymers (Basel) ; 16(3)2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38337285

RESUMEN

The design of novel acceptor molecular structures based on classical building blocks is regarded as one of the efficient ways to explore the application of organic conjugated materials in conductivity and electronics. Here, a novel acceptor moiety, thiophene-vinyl-diketopyrrolopyrrole (TVDPP), was envisioned and prepared with a longer conjugation length and a more rigid structure than thiophene-diketopyrrolopyrrole (TDPP). The brominated TVDPP can be sequentially bonded to trimethyltin-containing benzo[c][1,2,5]thiadiazole units via Suzuki polycondensation to efficiently prepare the polymer PTVDPP-BSz, which features high molecular weight and excellent thermal stability. The polymerization process takes only 24 h and eliminates the need for chlorinated organic solvents or toxic tin-based reagents. Density functional theory (DFT) simulations and film morphology analyses verify the planarity and high crystallinity of the material, respectively, which facilitates the achievement of high carrier mobility. Conductivity measurements of the polymeric material in the organic transistor device show a hole mobility of 0.34 cm2 V-1 s-1, which illustrates its potential for functionalized semiconductor applications.

9.
Mol Cancer Res ; 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38180377

RESUMEN

Cervical cancer severely affects women's health with increased incidence and poor survival for patients with metastasis. Our study aims to investigate the mechanism by which lncRNA LRRC75A-AS1 regulates the epithelial-mesenchymal transition (EMT) of cervical cancer through modulating m6A and ubiquitination modification. In this study, tumor tissues were collected from patients to analyze the expression of LRRC75A-AS1 and SYVN1. Migratory and invasive capacities of HeLa and CaSki cells were evaluated with wound healing and transwell assays. CCK-8 and EdU incorporation assays were employed to examine cell proliferation. The interaction between LRRC75A-AS1, IGF2BP1, SYVN1, and NLRP3 was evaluated through RNA immunoprecipitation, RNA pull-down, FISH, and Co-IP assays, respectively. MeRIP-qPCR was applied to analyze the m6A modification of SYVN1 mRNA. A subcutaneous tumor model of cervical cancer was established. We showed LRRC75A-AS1 was upregulated in tumor tissues, and LRRC75A-AS1 enhanced EMT through activating NLRP3/IL-1ß/Smad2/3 signaling in cervical cancer. Furthermore, LRRC75A-AS1 inhibited SYVN1-mediated NLRP3 ubiquitination by destabilizing SYVN1 mRNA. LRRC75A-AS1 competitively bound to IGF2BP1 protein and subsequently impaired the m6A modification of SYVN1 mRNA and its stability. Knockdown of LRRC75A-AS1 repressed EMT and tumor growth via inhibiting NLRP3/IL-1ß/Smad2/3 signaling in mice. In conclusion, LRRC75A-AS1 competitively binds to IGF2BP1 protein to destabilize SYVN1 mRNA, subsequently suppresses SYVN1-mediated NLRP3 ubiquitination degradation and activates IL-1ß/Smad2/3 signaling, thus promoting EMT in cervical cancer. Implications: LRRC75A-AS1 promotes cervical cancer progression, and this study suggests LRRC75A-AS1 as a new therapeutic target for cervical cancer.

10.
J Hazard Mater ; 466: 133622, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38280317

RESUMEN

Ferrous sulfide nanoparticles (nFeS) have proven to be effective in removing heavy metals (HMs) from wastewater. One such approach, which has garnered much attention as a sustainable technology, is via the in situ microbial synthesis of nFeS. Here, a sulfate-reducing bacteria (SRB) strain, Geobacter sulfurreducens, was used to initially biosynthesize ferrous sulfide nanoparticles (SRB-nFeS) and thereafter remove HMs from acid mine drainage (AMD). SRB-nFeS was characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM) coupled to an energy dispersive spectrometer (EDS), three-dimensional excitation-emission matrix (3D-EEM) spectroscopy, Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS). Such characterization showed that SRB mediated the reduction of SO42- to S2- to form nFeS, where the metabolized substances functioned as complexing agents which coordinated with nFeS to form biofunctional SRB-nFeS with improved stability. One advantage of this synthetic route was that the attachment of nFeS to the bacterial surface protected SRB cells from HM toxicity. Furthermore, due to a synergistic effect between nFeS and SRB, HM removal from both solution and AMD by SRB-nFeS was enhanced relative to the constituent components. Thus, after 5 consecutive cycles of HM removal, SRB-nFeS removed, Pb(Ⅱ) (92.6%), Cd(Ⅱ) (78.7%), Cu(Ⅱ) (76.0%), Ni(Ⅱ) (62.5%), Mn(Ⅱ) (62.2%), and Zn(Ⅱ) (88.5%) from AMD This study thus provides new insights into the biosynthesis of SRB-nFeS and its subsequent practical application in the removal of HMs from AMD.


Asunto(s)
Desulfovibrio , Compuestos Ferrosos , Metales Pesados , Sulfatos/química , Metales Pesados/química , Desulfovibrio/metabolismo , Bacterias/metabolismo , Ácidos/metabolismo
11.
Int J Mol Sci ; 25(2)2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38256172

RESUMEN

In this research, two polymers of P1 and P2 based on monomers consisting of thiophene, 3,4-Ethylenedioxythiophene (EDOT) and diketopyrrolopyrrole (DPP) are designed and obtained via Stille coupling polycondensation. The material shows excellent coplanarity and structural regularity due to the fine planarity of DPP itself and the weak non-covalent bonding interactions existing between the three units. Two different lengths of non-conjugated side chains are introduced and this has an effect on the intermolecular chain stacking, causing the film absorption to display different characteristic properties. On the other hand, the difference in the side chains does not have a significant effect on the thermal stability and the energy levels of the frontier orbitals of the materials, which is related to the fact that the materials both feature extremely high conjugation lengths and specific molecular compositions. Microscopic investigations targeting the side chains provide a contribution to the further design of organic semiconductor materials that meet device requirements. Tests based on organic transistors show a slight difference in conductivity between the two polymers, with P2 having better hole mobility than P1. This study highlights the importance of the impact of side chains on device performance, especially in the field of organic electronics.


Asunto(s)
Electrónica , Cetonas , Polímeros , Pirroles , Tiofenos , Conductividad Eléctrica
12.
Molecules ; 29(2)2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38257368

RESUMEN

Oligomers and polymers consisting of multiple thiophenes are widely used in organic electronics such as organic transistors and sensors because of their strong electron-donating ability. In this study, a solution to the problem of the poor solubility of polythiophene systems was developed. A novel π-conjugated polymer material, PDPP-5Th, was synthesized by adding the electron acceptor unit, DPP, to the polythiophene system with a long alkyl side chain, which facilitated the solution processing of the material for the preparation of devices. Meanwhile, the presence of the multicarbonyl groups within the DPP molecule facilitated donor-acceptor interactions in the internal chain, which further improved the hole-transport properties of the polythiophene-based material. The weak forces present within the molecules that promoted structural coplanarity were analyzed using theoretical simulations. Furthermore, the grazing incidence wide-angle X-ray scanning (GIWAXS) results indicated that PDPP-5Th features high crystallinity, which is favorable for efficient carrier migration within and between polymer chains. The material showed hole transport properties as high as 0.44 cm2 V-1 s-1 in conductivity testing. Our investigations demonstrate the great potential of this polymer material in the field of optoelectronics.

13.
Molecules ; 29(1)2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38202843

RESUMEN

Polythiophene, as a class of potential electron donor units, is widely used in organic electronics such as transistors. In this work, a novel polymeric material, PDPPTT-FT, was prepared by incorporating the electron acceptor unit into the polythiophene system. The incorporation of the DPP molecule assists in improving the solubility of the material and provides a convenient method for the preparation of field effect transistors via subsequent solution processing. The introduction of fluorine atoms forms a good intramolecular conformational lock, and theoretical calculations show that the structure displays excellent co-planarity and regularity. Grazing incidence wide-angle X-ray (GIWAXS) results indicate that the PDPPTT-FT is highly crystalline, which facilitates carrier migration within and between polymer chains. The hole mobility of this π-conjugated material is as high as 0.30 cm2 V-1 s-1 in organic transistor measurements, demonstrating the great potential of this polymer material in the field of optoelectronics.

14.
Adv Mater ; 36(4): e2305987, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37639714

RESUMEN

Multifunctional semiconductors integrating unique optical, electrical, mechanical, and chemical characteristics are critical to advanced and emerging manufacturing technologies. However, due to the trade-off challenges in design principles, fabrication difficulty, defects in existing materials, etc., realizing multiple functions through multistage manufacturing is quite taxing. Here, an effective molecular design strategy is established to prepare a class of multifunctional integrated polymer semiconductors. The pyridal[1,2,3]triazole-thiophene co-structured tetrapolymers with full-backbone coplanarity and considerable inter/intramolecular noncovalent interactions facilitate short-range order and excellent (re)organization capability of polymer chains, providing stress-dissipation sites in the film state. The regioregular multicomponent conjugated backbones contribute to dense packing, excellent crystallinity, high crack onset strain over 100%, efficient carrier transport with mobilities exceeding 1 cm2  V-1  s-1 , and controllable near-infrared luminescence. Furthermore, a homologous blending strategy is proposed to further enhance the color-tunable luminescent properties of polymers while effectively retaining mechanical and electrical properties. The blended system exhibits excellent field-effect mobility (µ) and quantum yield (Φ), reaching a record Φ · µ of 0.43 cm2  V-1  s-1 . Overall, the proposed strategy facilitates a rational design of regioregular semicrystalline intrinsically stretchable polymers with high mobility and color-tunable intense luminescence, providing unique possibilities for the development of multifunctional integrated semiconductors in organic optoelectronics.

15.
J Org Chem ; 88(24): 17322-17329, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38044560

RESUMEN

A visible-light-induced annulation/thiolation of 2-isocyanobiaryls with dialkyl(aryl)disulfides has been established, delivering a sustainable and atom-economic route to 6-organoylthiophenanthridines with wild functional group tolerance and good to excellent yields under oxidant-, base-, and transition-metal-free conditions.

16.
Sci Rep ; 13(1): 19409, 2023 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-37938596

RESUMEN

This study aimed to assess the feasibility of using magnetic resonance imaging (MRI)-based Delta radiomics characteristics extrapolated from the Ax LAVA + C series to identify intermediary- and high-risk factors in patients with cervical cancer undergoing surgery following neoadjuvant chemoradiotherapy. A total of 157 patients were divided into two groups: those without any intermediary- or high-risk factors and those with one intermediary-risk factor (negative group; n = 75). Those with any high-risk factor or more than one intermediary-risk factor (positive group; n = 82). Radiomics characteristics were extracted using Ax-LAVA + C MRI sequences. The data was divided into training (n = 126) and test (n = 31) sets in an 8:2 ratio. The training set data features were selected using the Mann-Whitney U test and the Least Absolute Shrinkage and Selection Operator (LASSO) test. The best radiomics features were then analyzed to build a preoperative predictive radiomics model for predicting intermediary- and high-risk factors in cervical cancer. Three models-the clinical model, the radiomics model, and the combined clinic and radiomics model-were developed in this study utilizing the random forest Algorithm. The receiver operating characteristic (ROC) curve, decision curve analysis (DCA), accuracy, sensitivity, and specificity were used to assess the predictive efficacy and clinical benefits of each model. Three models were developed in this study to predict intermediary- and high-risk variables associated with postoperative pathology for patients who underwent surgery after receiving neoadjuvant radiation. In the training and test sets, the AUC values assessed using the clinical model, radiomics model, and combined clinical and radiomics models were 0.76 and 0.70, 0.88 and 0.86, and 0.91 and 0.89, respectively. The use of machine learning algorithms to analyze Delta Ax LAVA + C MRI radiomics features can aid in the prediction of intermediary- and high-risk factors in patients with cervical cancer receiving neoadjuvant therapy.


Asunto(s)
Terapia Neoadyuvante , Neoplasias del Cuello Uterino , Humanos , Femenino , Neoplasias del Cuello Uterino/diagnóstico por imagen , Neoplasias del Cuello Uterino/terapia , Algoritmos , Instituciones de Atención Ambulatoria , Factores de Riesgo
17.
Polymers (Basel) ; 15(22)2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-38006144

RESUMEN

Conjugated polymer semiconductors based on donor-acceptor structures are commonly employed as core materials for optoelectronic devices in the field of organic electronics. In this study, we designed and synthesized a novel acceptor unit thiophene-vinyl-diketopyrrolopyrrole, named TVDPP, based on a four-step organic synthesis procedure. Stille coupling reactions were applied with high yields of polymerization of TVDPP with fluorinated thiophene (FT) monomer. The molecular weight and thermal stability of the polymers were tested and showed high molecular weight and good thermal stability. Theoretical simulation calculations and 2D grazing-incidence wide-angle X-ray scattering (GIWAXS) tests verified the planarity of the material and excellent stacking properties, which are favorable for achieving high carrier mobility. Measurements based on the polymer as an organic thin film transistor (OTFT) device were carried out, and the mobility and on/off current ratio reached 0.383 cm2 V-1 s-1 and 104, respectively, showing its great potential in organic optoelectronics.

18.
Molecules ; 28(22)2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-38005360

RESUMEN

Montmorillonite clay was modified by pillaring with AlMn oxides in different Al/Mn ratios and intercalation of two kinds of N-containing polymers (i.e., chitosan (CS) and polyvinyl pyrrolidinone (PVP)) chains. The modified pillared montmorillonite clay (PM) showed a rich two-dimensional layered porous structure with tunable parameters, such as large interlayer spacing, high specific area, and large porous volume. They were then used as supports for Pd nanoparticles. As applied in coupling reactions of aryl halides with terminal alkynes, Pd@CS/AlMn-PM showed better comprehensive catalytic performance than Pd@PVP/AlMn-PM. This was mainly attributed to its higher specific area, stronger chelation to Pd species, and better solvent resistance.

19.
Viruses ; 15(10)2023 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-37896905

RESUMEN

Domestic cat hepadnavirus (DCH) is an infectious disease associated with chronic hepatitis in cats, which suggests a similarity with hepatitis B virus infections in humans. Since its first identification in Australia in 2018, DCH has been reported in several countries with varying prevalence rates, but its presence in Taiwan has yet to be investigated. In this study, we aimed to identify the presence and genetic diversity of DCH infections in Taiwan. Among the 71 samples tested, eight (11.27%) were positive for DCH. Of these positive cases, three cats had elevated levels of alanine transaminase (ALT) and aspartate transaminase (AST), suggesting an association between DCH infection and chronic hepatitis. Four DCH-positive samples were also tested for feline immunodeficiency virus (FIV) and feline leukemia virus (FeLV) coinfection. One sample (25%) was positive for FIV, whereas there was no positive sample for FeLV (0%). In addition, we performed whole genome sequencing on six samples to determine the viral genome sequences. Phylogenetic analyses identified a distinct lineage compared with previously reported sequences. This study highlights the importance of continuous surveillance of DCH and further research to elucidate the pathophysiology and transmission route of DCH.


Asunto(s)
Enfermedades de los Gatos , Hepadnaviridae , Virus de la Inmunodeficiencia Felina , Humanos , Animales , Gatos , Hepadnaviridae/genética , Filogenia , Taiwán/epidemiología , Virus de la Inmunodeficiencia Felina/genética , Virus de la Leucemia Felina , Hepatitis Crónica , Variación Genética , Enfermedades de los Gatos/epidemiología
20.
ACS Sens ; 8(11): 4272-4280, 2023 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-37862265

RESUMEN

Fluorescent point-of-care (POC) sensors have found great utility in fields like clinical diagnosis, food testing, and environmental monitoring. Herein, we developed a highly stable POC sensor that enabled the visual detection of tetracycline (TC) in a distinct fluorescent-traffic-light manner. In the sensor, a composite material of copper nanoclusters and metal-organic framework (CuNCs@MOF-5) prepared with a facile one-pot synthetic strategy was employed as the core element for target recognition and signal transduction. As evidenced by experiments, the as-prepared CuNCs@MOF-5 exhibited significantly improved fluorescence properties in terms of emission enhancement (about 28-fold) and stability improvement (over 110 days) compared to the CuNCs without confining and protection by MOF-5. More importantly, it was found that TC could uniquely interact with Zn(II) to trigger the disassembly of CuNCs@MOF-5, resulting in green fluorescence emission from the TC-Zn(II) complex and red fluorescence weakening of CuNCs. On the basis of this finding, a simple and stable sensor was proposed for POC detection of TC, which demonstrated high sensitivity, selectivity, and reproducibility. In addition to homogeneous visual detection in a 96-well plate, a CuNCs@MOF-5-contained agarose gel array was easily fabricated to achieve direct detection of TC in milk without any pretreatment, thanks to the size-sieving effect of the gel. Moreover, a test paper array was also put forward for low-cost TC detection, which indicates the extensibility and practicability of this sensing strategy.


Asunto(s)
Antibacterianos , Sistemas de Atención de Punto , Reproducibilidad de los Resultados , Tetraciclina , Colorantes Fluorescentes , Cobre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA