Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 3598, 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38678049

RESUMEN

Organic room temperature phosphorescence (RTP) has significant potential in various applications of information storage, anti-counterfeiting, and bio-imaging. However, achieving robust organic RTP emission of the single-component system is challenging to overcome the restriction of the crystalline state or other rigid environments with cautious treatment. Herein, we report a single-component system with robust persistent RTP emission in various aggregated forms, such as crystal, fine powder, and even amorphous states. Our experimental data reveal that the vigorous RTP emissions rely on their tight dimers based on strong and large-overlap π-π interactions between polycyclic aromatic hydrocarbon (PAH) groups. The dimer structure can offer not only excitons in low energy levels for visible-light excited red long-lived RTP but also suppression of the nonradiative decays even in an amorphous state for good resistance of RTP to heat (up to 70 °C) or water. Furthermore, we demonstrate the water-dispersible nanoparticle with persistent RTP over 600 nm and a lifetime of 0.22 s for visible-light excited cellular and in-vivo imaging, prepared through the common microemulsion approach without overcaution for nanocrystal formation.

2.
Sci Adv ; 10(10): eadk3354, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38457505

RESUMEN

Developing stable room-temperature phosphorescence (RTP) emission without being affected by moisture and mechanical force remains a great challenge for purely organic systems, due to their triplet states sensitive to the infinitesimal motion of phosphors and the oxygen quencher. We report a kind of highly robust phosphorescent systems, by doping a rigid phosphor into a copolymer (polyvinyl butyral resin) matrix with a balance of mutually exclusive features, including a rigidly hydrophilic hydrogen bond network and elastically hydrophobic constituent. Impressively, these RTP polymeric films have superior adhesive ability on various surfaces and showed reversible photoactivated RTP with lifetimes up to 5.82 seconds, which can be used as in situ modulated anticounterfeit labels. They can maintain a bright afterglow for over 25.0 seconds under various practical conditions, such as storage in refrigerators, soaking in natural water for a month, or even being subjected to strong collisions and impacts. These findings provide deep insights for developing stable ultralong RTP materials with desirable comprehensive performance.

3.
Anal Methods ; 13(45): 5467-5477, 2021 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-34755153

RESUMEN

The rapid analysis of fuel properties is important for the utilization of solid biomass due to its great variation in feedstock. Laser-induced breakdown spectroscopy (LIBS) technology combined with quantitative analysis models can be used for this analysis. Most existing prediction models used in LIBS for fuel property analysis are linear methods, such as the partial least squares (PLS) model, which fail to reflect the non-linear relationships between the LIBS spectrum and the fuel property index being predicted. In the present work, LIBS data combined with a kernel partial least squares (KPLS) method are used to analyze the gross calorific value, and the volatile matter, ash and fixed carbon content of the solid biomass fuel. Quantitative analysis performance of the KPLS model was compared to that of the widely used PLS method, with the results showing some improvements. The KPLS model was further improved using three data normalization methods (i.e., C internal standardization, total intensity standardization and standard normal variate). The best quantitative analysis results of the volatile matter and ash content were obtained when the KPLS model was combined with C internal standardization, with root mean square errors of prediction (RMSEP) of 1.365% and 0.290%, and average standard deviations (ASD) of 0.277% and 0.080%, respectively. The best quantitative analysis results of the gross calorific value and fixed carbon content were obtained when using KPLS without normalization. The RMSEP and ASD of the gross calorific value and fixed carbon content were 0.198 MJ kg-1 and 0.746%, and 0.070 MJ kg-1 and 0.111% respectively.


Asunto(s)
Carbono , Rayos Láser , Biomasa , Análisis de los Mínimos Cuadrados , Análisis Espectral/métodos
4.
BMC Genomics ; 17(1): 929, 2016 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-27852215

RESUMEN

BACKGROUND: Symplocos paniculata, asiatic sweetleaf or sapphire berry, is a widespread shrub or small tree from Symplocaceae with high oil content and excellent fatty acid composition in fruit. It has been used as feedstocks for biodiesel and cooking oil production in China. Little transcriptome information is available on the regulatory molecular mechanism of oil accumulation at different fruit development stages. RESULTS: The transcriptome at four different stages of fruit development (10, 80,140, and 170 days after flowering) of S. paniculata were analyzed. Approximately 28 million high quality clean reads were generated. These reads were trimmed and assembled into 182,904 non-redundant putative transcripts with a mean length of 592.91 bp and N50 length of 785 bp, respectively. Based on the functional annotation through Basic Local Alignment Search Tool (BLAST) with public protein database, the key enzymes involved in lipid metabolism were identified, and a schematic diagram of the pathway and temporal expression patterns of lipid metabolism was established. About 13,939 differentially expressed unigenes (DEGs) were screened out using differentially expressed sequencing (DESeq) method. The transcriptional regulatory patterns of the identified enzymes were highly related to the dynamic oil accumulation along with the fruit development of S. paniculata. In addition, quantitative real-time PCR (qRT-PCR) of six vital genes was significantly correlated with DESeq data. CONCLUSIONS: The transcriptome sequences obtained and deposited in NCBI would enrich the public database and provide an unprecedented resource for the discovery of the genes associated with lipid metabolism pathway in S. paniculata. Results in this study will lay the foundation for exploring transcriptional regulatory profiles, elucidating molecular regulatory mechanisms, and accelerating genetic engineering process to improve the yield and quality of seed oil of S. paniculata.


Asunto(s)
Magnoliopsida/genética , Aceites de Plantas/metabolismo , Transcriptoma , Bases de Datos Genéticas , Enzimas/genética , Enzimas/metabolismo , Ácidos Grasos/análisis , Ácidos Grasos/biosíntesis , Frutas/genética , Cromatografía de Gases y Espectrometría de Masas , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Aceites de Plantas/análisis , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , ARN de Planta/aislamiento & purificación , ARN de Planta/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA