Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Langmuir ; 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39010301

RESUMEN

Hierarchical polymer structures have garnered widespread application across various fields owing to their distinct surface properties and expansive surface areas. Conventional hierarchical polymer structures, however, often lack postfabrication scalability and spatial selectivity. In this study, we propose a novel strategy to prepare light-assisted hierarchical polymer structures using azopolymers (PAzo), the breath figure method, and anodic aluminum oxide (AAO) templates. Initially, the breath figure PAzo films are prepared by dripping a PAzo chloroform solution onto glass substrates in a high-humidity environment. The AAO templates are then placed on the breath figure PAzo film. Upon ultraviolet (UV) light exposure, the azobenzene groups in the azopolymers undergo trans-cis photoisomerization. This process causes the glass transition temperature (Tg) of the PAzo to become lower than room temperature, allowing the azopolymer to enter the nanopores of the AAO templates. The hierarchical azopolymer structures are then formed by using a sodium hydroxide solution to remove the templates. Furthermore, exploring the effects of PAzo concentration and UV light exposure duration on the film morphology reveals optimized conditions for hierarchical structure formation. Additionally, the water contact angles of these polymer structures are measured. The hierarchical PAzo structures exhibit higher hydrophobicity compared with the flat PAzo films and the PAzo breath figure films. Finally, patterned breath figure films can be prepared using designed photomasks, demonstrating the method's capability for spatial selectivity.

2.
Langmuir ; 40(27): 14166-14172, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38916980

RESUMEN

In recent years, liquid crystal materials have drawn great interest because of their wide range of applications. Among various thermochromic materials, cholesteric liquid crystalline (CLC) materials have been well studied and reported. CLC materials have the advantages of ready manipulation and multiple color transitions. For the further development of smart clothing and wearable electronics, however, the incorporation of CLC materials into polymers still remains challenging. The difficulties lie in the prevention of leakage of CLC and retention of the cholesteric liquid crystalline phase. In this work, we demonstrate a versatile nonsolvent and phase separation method using polar solvents to incorporate CLC microspheres into polymer matrix. Poly(vinyl alcohol) (PVA), a water-soluble polymer, is chosen as the polymer because of its high transparency and ease to handle. Using spin-coating and wet spinning techniques, PVA/CLC films and fibers can be fabricated. The formation of CLC microspheres in the polymer matrix is characterized through optical and polarized microscopy. Compared with the CLC films, the PVA/CLC composites demonstrate superior thermal stability. Moreover, both PVA/CLC films and fibers exhibit good color stability from the electrical tests. This work provides an effective strategy to prepare polymer/CLC composites, paving a wide avenue toward applications in smart textiles, display technologies, and medical devices.

3.
Small ; : e2402472, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38813745

RESUMEN

Despite significant advancements, current self-healing materials often suffer from a compromise between mechanical robustness and functional performance, particularly in terms of conductivity and responsiveness to environmental stimuli. Addressing this issue, the research introduces a self-healable and conductive copolymer, poly(ionic liquid-co-acrylic acid) (PIL-co-PAA), synthesized through free radical polymerization, and further optimized by incorporating thermoplastic polyurethane (TPU). This combination leverages the unique properties of each component, especially ion-dipole interactions and hydrogen bonds, resulting in a material that exhibits exceptional self-healing abilities and demonstrates enhanced mechanical properties and electrical conductivity. Moreover, the PIL-co-PAA/TPU films showcase alkaline-responsive behavior, a feature that broadens their applicability in dynamic environments. Through systematic characterization, including thermogravimetric analysis, tensile testing, and electrical properties measurements, the mechanisms behind the improved performance and functionality of these films are elucidated. The conductivities and ultimate tensile strength (σuts) of the PIL-co-PAA/TPU films regain 80% under 8 h healing process. To extend the applications for wearable devices, the self-healing properties of commercial cotton fabrics coated with the self-healable PIL-co-PAA are also investigated, demonstrating both self-healing and electrical properties. This study advances the understanding of self-healable conductive polymers and opens new avenues for their application in wearable technology.

4.
ACS Appl Mater Interfaces ; 16(22): 29153-29161, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38770559

RESUMEN

While polymer fabrics are integral to a wide range of applications, their vulnerability to mechanical damage limits their sustainability and practicality. Addressing this challenge, our study introduces a versatile strategy to develop photohealable fabrics, utilizing a composite of polystyrene (PS) and an azobenzene-containing polymer (PAzo). This combination leverages the structural stability of PS to compensate for the mechanical weaknesses of PAzo, forming the fiber structures. Key to our approach is the reversible trans-cis photoisomerization of azobenzene groups within the PAzo under UV light exposure, enabling controlled morphological alterations in the PS/PAzo blend fibers. The transition of PAzo sections from a solid to a liquid state at a low glass transition temperature (Tg ∼ 13.7 °C) is followed by solidification under visible light, thus stabilizing the altered fiber structures. In this study, we explore various PS/PAzo blend ratios to optimize surface roughness and mechanical properties. Additionally, we demonstrate the capability of these fibers for photoinduced self-healing. When damaged fabrics are clamped and subjected to UV irradiation for 20 min and pressed for 24 h, the mobility of the cis-form PAzo sections facilitates healing while retaining the overall fabric structure. This innovative approach not only addresses the critical issue of durability in polymer fabrics but also offers a sustainable and practical solution, paving the way for its application in smart clothing and advanced fabric-based materials.

5.
Small ; 20(28): e2400491, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38456574

RESUMEN

Multiresponsive materials with reversible and durable characteristics are indispensable because of their promising applications in environmental change detections. To fabricate multiresponsive materials in mass production, however, complex reactions and impractical situations are often involved. Herein, a dual responsive (light and pH) spiropyran-based smart sensor fabricated by a simple layer-by-layer (LbL) assembly process from upcycled thermoplastic polyester elastomer (TPEE) materials derived from recycled polyethylene terephthalate (r-PET) is proposed. Positively charged chitosan solutions and negatively charged merocyanine-COOH (MC-COOH) solutions are employed in the LbL assembly technique, forming the chitosan-spiropyran deposited TPEE (TPEE-CH-SP) film. Upon UV irradiation, the spiropyran-COOH (SP-COOH) molecules on the TPEE-CH-SP film undergo the ring-opening isomerization, along with an apparent color change from colorless to purple, to transform into the MC-COOH molecules. By further exposing the TPEE-CH-MC film to hydrogen chloride (HCl) and nitric acid (HNO3) vapors, the MC-COOH molecules can be transformed into protonated merocyanine-COOH (MCH-COOH) with the simultaneous color change from purple to yellow.

6.
Langmuir ; 40(9): 4732-4738, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38374656

RESUMEN

In recent years, hafnium oxide (HfO2) has gained increasing interest because of its high dielectric constant, excellent thermal stability, and high band gap. Although HfO2 bulk and film materials have been prepared and well-studied, HfO2 fibers, especially hollow fibers, have been less investigated. In this study, we present a facile preparation method for HfO2 hollow fibers through a unique integration of the sol-gel process and electrospinning technique. Initially, polystyrene (PS) fibers are fabricated by using electrospinning, followed by dipping in a HfO2 precursor solution, resulting in HfO2-coated PS fibers. Subsequent thermal treatment at 800 °C ensures the selective pyrolysis of the PS fibers and complete condensation of the HfO2 precursors, forming HfO2 hollow fibers. Scanning electron microscopy (SEM) characterizations reveal HfO2 hollow fibers with rough surfaces and diminished diameters, a transformation attributed to the removal of the PS fibers and the condensation of the HfO2 precursors. Our study also delves into the influence of precursor solution molar ratios, showcasing the ability to achieve smaller HfO2 fiber diameters with reduced precursor quantities. Validation of the material composition is achieved through thermogravimetric analysis (TGA) and energy-dispersive spectroscopy (EDS) mapping. Additionally, X-ray diffraction (XRD) analysis provides insights into the crystallinity of the HfO2 hollow fibers, highlighting a higher crystallinity in fibers annealed at 800 °C compared with those treated at 400 °C. Notably, the HfO2 hollow fibers demonstrate a water contact angle (WCA) of 38.70 ± 5.24°, underscoring the transformation from hydrophobic to hydrophilic properties after the removal of the PS fibers. Looking forward, this work paves the way for extensive research on the surface properties and potential applications of HfO2 hollow fibers in areas such as filtration, energy storage, and memory devices.

7.
Nat Commun ; 15(1): 916, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38296994

RESUMEN

Living in the global-changing era, intelligent and eco-friendly electronic components that can sense the environment and recycle or reprogram when needed are essential for sustainable development. Compared with solid-state electronics, composite hydrogels with multi-functionalities are promising candidates. By bridging the self-assembly of azobenzene-containing supramolecular complexes and MXene nanosheets, we fabricate a MXene-based composite gel, namely MXenegel, with reversible photo-modulated phase behavior. The MXenegel can undergo reversible liquefication and solidification under UV and visible light irradiations, respectively, while maintaining its conductive nature unchanged, which can be integrated into traditional solid-state circuits. The strategy presented in this work provides an example of light-responsive conducting material via supramolecular bridging and demonstrates an exciting platform for functional soft electronics.

8.
Small ; 20(2): e2305317, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37670223

RESUMEN

Stimuli-responsive ion nanochannels have attracted considerable attention in various fields because of their remote controllability of ionic transportation. For photoresponsive ion nanochannels, however, achieving precise regulation of ion conductivity is still challenging, primarily due to the difficulty of programmable structural changes in confined environments. Moreover, the relationship between noncontact photo-stimulation in nanoscale and light-induced ion conductivity has not been well understood. In this work, a versatile design for fabricating guard cell-inspired photoswitchable ion channels is presented by infiltrating azobenzene-cross-linked polymer (AAZO-PDAC) into nanoporous anodic aluminum oxide (AAO) membranes. The azobenzene-cross-linked polymer is formed by azobenzene chromophore (AAZO)-cross-linked poly(diallyldimethylammonium chloride) (PDAC) with electrostatic interactions. Under UV irradiation, the trans-AAZO isomerizes to the cis-AAZO, causing the volume compression of the polymer network, whereas, in darkness, the cis-AAZO reverts to the trans-AAZO, leading to the recovery of the structure. Consequently, the resultant nanopore sizes can be manipulated by the photomechanical effect of the AAZO-PDAC polymers. By adding ionic liquids, the ion conductivity of the light-driven ion nanochannels can be controlled with good repeatability and fast responses (within seconds) in multiple cycles. The ion channels have promising potential in the applications of biomimetic materials, sensors, and biomedical sciences.

9.
ACS Appl Mater Interfaces ; 16(2): 2716-2725, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38085978

RESUMEN

Block copolymer composite electrolytes have gained extensive attention for their promising performance in ionic conductivity and mechanical properties, making them valuable for future technologies. The control of the ionic conductivity through the self-assembly of block copolymers, however, remains a great challenge, especially in confined environments. In this study, we prepare block copolymer composite electrolytes using polystyrene-block-poly(ethylene oxide) (PS-b-PEO, SEO) as the polymer matrix and anodic aluminum oxide (AAO) templates as the ceramic skeleton. The self-assembly of SEO creates nanoscale ion transport pathways in the PEO regions through ionic interactions with lithium salts. The nanopores of the AAO templates provide a confined environment for complex phase separation of SEO controlled by selective solvent vapor annealing. Our findings demonstrate that transforming self-assembled SEO structures allows for precise control of ion transport pathways with cylindrical structures exhibiting 20 times higher ionic conductivities than those of helical structures. For AAO templates with pore diameters of 20 nm (SEO-LiTFSI@AAO-20), the ionic conductivities are approximately 410 times higher than those with pore diameters of 200 nm (SEO-LiTFSI@AAO-200), owing to the larger specific surface areas within the smaller nanopores. Utilizing the self-assembly of SEO not only enables the construction of vertically aligned ion transport channels on various scales but also offers a fascinating approach to tailor the conductive capabilities of composite electrolytes, enhancing the ion transport efficiency and allowing for the flexible design of block copolymer composite electrolytes.

10.
ACS Appl Mater Interfaces ; 16(4): 5302-5307, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38156405

RESUMEN

Atomically thin oxide semiconductors are emerging as potential materials for their potentiality in monolithic 3D integration and sensor applications. In this study, a charge transfer method employing viologen, an organic compound with exceptional reduction potential among n-type organics, is presented to modulate the carrier concentration in atomically thin In2O3 without the need of annealing. This study highlights the critical role of channel thickness on doping efficiency, revealing that viologen charge transfer doping is increasingly pronounced in thinner channels owing to their increased surface-to-volume ratio. Upon viologen doping, an electron sheet density of 6.8 × 1012 cm-2 is achieved in 2 nm In2O3 back gate device while preserving carrier mobility. Moreover, by the modification of the functional groups, viologens can be conveniently removed with acetone and an ultrasonic cleaner, making the viologen treatment a reversible process. Based on this doping scheme, we demonstrate an n-type metal oxide semiconductor inverter with viologen-doped In2O3, exhibiting a voltage gain of 26 at VD = 5 V. This complementary pairing of viologen and In2O3 offers ease of control over the carrier concentration, making it suitable for the next-generation electronic applications.

11.
ACS Appl Mater Interfaces ; 15(50): 58683-58692, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38073043

RESUMEN

Alkoxy side chain engineering on the ß-position of the thienothiophene units of Y6 derivatives plays a vital role in improving photovoltaic performances with simultaneously increasing open-circuit voltage (Voc) and fill factor (FF). In this work, we prepared a series of asymmetric non-fullerene acceptors (NFAs) by introducing alkoxy side chains and phenoxy groups on the state-of-the-art Y6-derivative BTP-BO-4F. For the comparison, 2O-BO-4F with a symmetric alkoxy side chain on the outer thiophene units and BTP-PBO-4F with an asymmetric N-attached phenoxy alkyl chain on the pyrrole ring are synthesized from BTP-BO-4F. Thereafter, we construct four asymmetric NFAs by introducing different lengths of linear/branched alkoxy chains on the ß-position of the thienothiophene units of BTP-PBO-4F. The resulting NFAs, named L10-PBO, L12-PBO, B12-PBO, and B16-PBO (L = linear and B = branched alkoxy side chains), are collectively called OR-PBO-series. Unexpectedly, all OR-PBO NFAs exhibit strong edge-on molecular packing and weaker π-π interactions in the film state, which diminish the charge transfer in organic solar cell (OSC) devices. As a consequence, the optimal devices of OR-PBO-based binary blends show poor photovoltaic performances [power conversion efficiency (PCE) = 6.52-9.62%] in comparison with 2O-BO-4F (PCE = 12.42%) and BTP-PBO-4F (PCE = 15.30%) reference blends. Nevertheless, the OR-PBO-based binary devices show a higher Voc and smaller Vloss. Especially, B12-PBO- and B16-PBO-based devices achieve Voc over 1.00 V, which is the highest value of Y-series OSC devices to the best of our knowledge. Therefore, by utilizing higher Voc of OR-PBO binary blends, B12-PBO and B16-PBO are incorporated into the PM6:BTP-PBO-4F-based binary blend and fabricated ternary devices. As a result, the PM6:BTP-PBO-4F:B12-PBO ternary device delivers the best PCE of 15.60% with an increasing Voc and FF concurrently.

12.
ACS Appl Mater Interfaces ; 15(38): 45418-45425, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37677063

RESUMEN

Exploring stimuli-responsive ion-conductive materials is a challenging task, but it has gained increasing attention because of their enormous potential applications in actuators, sensors, and smart electronics. Here, we demonstrate a distinctive photoresponsive ion-conductive device that utilizes azobenzene-based ionic liquids ([AzoCnMIM][Br], where n = 2, 6, and 10), confined in nanochannels of anodic aluminum oxide (AAO) templates for photoisomerization. The structure of [AzoCnMIM][Br] comprises photoresponsive and hydrophobic azobenzene moieties, hydrophilic imidazolium cations, and negatively charged bromide ions. Therefore, [AzoCnMIM][Br] can form micelles and exhibit photoresponsive ion conductivities. The nanochannels of AAO templates exhibit a confinement effect on the formation of azobenzene-based ionic liquid micelles due to the pore size, thereby preventing the formation of larger micelles that could lead to a decrease in conductivity. Consequently, the ion conductivities of the azobenzene-based ionic liquids are higher in the nanochannels of the AAO templates. The effects of the length of carbon chains on the azobezene-based ionic liquids and the pore size of the AAO templates have also been investigated. Additionally, through irradiation with UV/vis light, [AzoCnMIM][Br] can undergo reversible isomerization, thereby reversibly changing the sizes of the micelles and subsequently altering the ion conductivities.

13.
ACS Appl Mater Interfaces ; 15(23): 28817-28824, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37264593

RESUMEN

Area-selective atomic layer deposition (AS-ALD) has drawn significant attention in the past decade because of the potential applications in bottom-up processing, which enables fabricating nanostructures at the atomic level without multiple patterning and lithographic processing that could easily cause alignment issues. Although AS-ALD has been demonstrated using various self-assembled monolayers (SAMs), it is still challenging to develop wet SAM deposition for AS-ALD that is suitable for industrial and semiconductor processes. In this work, we demonstrate highly effective AS-ALD of Al2O3 on Co/SiO2 patterned wafers using fluorinated thiol in both solution and vapor phase. Compared with conventional SAMs using alky-thiols, the fluorinated-thiol SAMs demonstrate greater blocking ability against ALD precursors owing to excellent hydrophobicity. Furthermore, much shorter deposition times can be achieved in vaporizable fluorinated thiol molecules, improving processing throughput and productivity. Most importantly, the SAM regeneration and redosing processes can further enhance the selectivity of AS-ALD, opening a promising avenue to realize the bottom-up approach in practical semiconductor applications.

14.
ACS Appl Mater Interfaces ; 15(20): 24658-24669, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37186869

RESUMEN

Terminal acceptor atoms and side-chain functionalization play a vital role in the construction of efficient nonfullerene small-molecule acceptors (NF-SMAs) for AM1.5G/indoor organic photovoltaic (OPV) applications. In this work, we report three dithienosilicon-bridged carbazole-based (DTSiC) ladder-type (A-DD'D-A) NF-SMAs for AM1.5G/indoor OPVs. First, we synthesize DTSiC-4F and DTSiC-2M, which are composed of a fused DTSiC-based central core with difluorinated 1,1-dicyanomethylene-3-indanone (2F-IC) and methylated IC (M-IC) end groups, respectively. Then, alkoxy chains are introduced in the fused carbazole backbone of DTSiC-4F to form DTSiCODe-4F. From solution to film absorption, DTSiC-4F exhibits a bathochromic shift with strong π-π interactions, which improves the short-circuit current density (Jsc) and the fill factor (FF). On the other hand, DTSiC-2M and DTSiCODe-4F display up-shifting lowest unoccupied molecular orbital (LUMO) energy levels, which enhances the open-circuit voltage (Voc). As a result, under both AM1.5G/indoor conditions, the devices based on PM7:DTSiC-4F, PM7:DTSiC-2M, and PM7:DTSiCOCe-4F show power conversion efficiencies (PCEs) of 13.13/21.80%, 8.62/20.02, and 9.41/20.56%, respectively. Furthermore, the addition of a third component to the active layer of binary devices is also a simple and efficient strategy to achieve higher photovoltaic efficiencies. Therefore, the conjugated polymer donor PTO2 is introduced into the PM7:DTSiC-4F active layer because of the hypsochromically shifted complementary absorption, deep highest occupied molecular orbital (HOMO) energy level, good miscibility with PM7 and DTSiC-4F, and optimal film morphology. The resulting ternary OSC device based on PTO2:PM7:DTSiC-4F can improve exciton generation, phase separation, charge transport, and charge extraction. As a consequence, the PTO2:PM7:DTSiC-4F-based ternary device achieves an outstanding PCE of 13.33/25.70% under AM1.5G/indoor conditions. As far as we know, the obtained PCE results under indoor conditions are one of the best binary/ternary-based systems processed from eco-friendly solvents.

15.
Chemistry ; 29(43): e202301012, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37173870

RESUMEN

Over the past few decades, stimuli-responsive materials have been widely applied to porous surfaces. Permeability and conductivity control of ions confined in nanochannels modified with stimuli-responsive materials, however, have been less investigated. In this work, the permeability and conductivity control of ions confined in nanochannels of anodic aluminum oxide (AAO) templates modified with thermo-responsive poly(N-isopropylacrylamide) (PNIPAM) brushes are demonstrated. By surface-initiated atom transfer radical polymerization (SI-ATRP), PNIPAM brushes are successfully grafted onto the hexagonally packed cylindrical nanopores of AAO templates. The surface hydrophilicities of the membranes can be reversibly altered because of the lower critical solution temperature (LCST) behavior of the PNIPAM polymer brushes. From electrochemical impedance spectroscopy (EIS) analysis, the temperature-gating behaviors of the AAO-g-PNIPAM membranes exhibit larger impedance changes than those of the pure AAO membranes at higher temperatures because of the aggregation of the grafted PNIPAM chains. The reversible surface properties caused by the extended and collapsed states of the polymer chains are also demonstrated by dye release tests. The smart thermo-gated and ion-controlled nanoporous membranes are suitable for future smart membrane applications.

16.
Macromol Rapid Commun ; 44(2): e2200547, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36208074

RESUMEN

Untethered small actuators have drawn tremendous interest owing to their reversibility, flexibility, and widespread applications in various fields. For polymer actuators, however, it is still challenging to achieve programmable structural changes under different stimuli caused by the intractability and single-stimulus responses of most polymer materials. Herein, multi-stimuli-responsive polymer actuators that can respond to light and solvent via structural changes are developed. The actuators are based on bilayer films of polydimethylsiloxane (PDMS) and azobenzene chromophore (AAZO)-crosslinked poly(diallyldimethylammonium chloride) (PDAC). Upon UV light irradiation, the AAZO undergoes trans-cis-trans photoisomerization, causing the bending of the bilayer films. When the UV light is off, a shape recovery toward an opposite direction occurs spontaneously. The reversible deformation can be repeated at least 20 cycles. Upon solvent vapor annealing, one of the bilayer films can be selectively swollen, causing the bending of the bilayer films with the directions controlled by the solvent vapors. The effects of different parameters, such as the weight ratios of AAZO and film thicknesses, on the bending angles and curvatures of the polymer films are also analyzed. The results demonstrate that multi-stimuli-responsive actuators with fast responses and high reproducibility can be fulfilled.


Asunto(s)
Polímeros , Polímeros de Estímulo Receptivo , Polímeros/química , Solventes , Reproducibilidad de los Resultados , Rayos Ultravioleta
17.
ACS Appl Mater Interfaces ; 15(1): 1718-1725, 2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36548433

RESUMEN

Developing new electron transport layers has been an effective way to fabricate high-performance bulk-heterojunction organic solar cells (OSCs). Resolving the longstanding problems associated with commonly used zinc oxide (ZnO), such as electron traps and light-induced device deterioration, however, is still a great challenge. In this study, glycerol diglycidyl ether (GDE) and 1,4-butanesultone (BS) are blended with polyethyleneimine (PEI) to produce cross-linkable PEI-based materials, PEI-GDE and PEI-GDE-BS, which can function as alternative electron transport layers to replace conventional ZnO cathode-modifying layers in inverted OSCs. PEI-GDE and PEI-GDE-BS are amendable to low-temperature annealing processes to produce cross-linked films. The inverted device structure of ITO/ETL/PM6:BTP-BO-4F:PC71BM/MoO3/Ag was used to evaluate the effects of incorporating PEI-GDE and PEI-GDE-BS as electron transport materials. Compared with ZnO-based devices, the PEI-GDE- and PEI-GDE-BS-based devices exhibit significant improvements in photovoltaic performances due to smoother surface roughness, higher charge collection and exciton dissociation efficiencies, higher electron mobilities, and stronger π-π interactions. In particular, a PEI-GDE-BS-based device shows an outstanding power conversion efficiency (PCE) of 17.55% with a VOC of 0.83 V, a JSC of 27.88 mA/cm2, and an FF of 75.96%, which offers great possibilities in the applications of flexible solar cells.

18.
ACS Appl Mater Interfaces ; 14(36): 41264-41274, 2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36041037

RESUMEN

Molecular backbone modification, alkyl-chain engineering, and end-group functionalization are promising strategies for developing efficient high-performance non-fullerene acceptors (NFAs). Herein, two new NFAs, named TPQ-eC7-4F and TPQ-eC7-4Cl, are designed and synthesized. Both molecules have linear octyl chains on fused quinoxaline-containing heterocyclics as the central backbone and difluorinated (2F)/dichlorinated (2Cl) 1,1-dicyanomethylene-3-indanone (IC) as the end-group units. The influences of alkyl-chains on fused quinoxaline backbone and different halogenated end-groups on optical, electrochemical, and photovoltaic performances of organic solar cells (OSCs) are studied. In comparison with TPQ-eC7-4Cl, TPQ-eC7-4F exhibits blue-shifted absorptions with higher molar extinction coefficients in the film state as well as in the donor/acceptor (D/A) blend film state and up-shifting lowest unoccupied molecular orbital (LUMO) energy level. As a result, the OSC devices based on the PBDB-T:TPQ-eC7-4F display an outstanding power conversion efficiency (PCE) of 15.83% with a simultaneously increased open-circuit voltage (Voc) of 0.85 V, a short-circuit current-density (Jsc) of 25.89 mA cm-2, and a fill factor (FF) of 72.20%, whereas the PBDB-T:TPQ-eC7-4Cl-based OSC device shows a decent PCE of 14.48% with a Voc of 0.84 V, a Jsc of 24.56 mA/cm2, and an FF of 69.77%. To the best of our knowledge, this is the highest photovoltaic performance of PBDB-T-based single-junction binary-OSCs. In comparison, ascribed to the high crystallinity and low solubility of BTP-eC7-4Cl, the corresponding PBDB-T:BTP-eC7-4Cl-based OSC device shows poor photovoltaic performance (PCE of 11.87%). The experimental results demonstrate that fine-tuning the fused quinoxaline backbone with alkyl-chain and end-group functionalization are promising strategies to construct high-performance NFAs for PBDB-T-based single-junction binary-OSCs.

19.
ACS Appl Mater Interfaces ; 14(35): 40322-40330, 2022 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-35994422

RESUMEN

Developing a smart responsive surface for on-demand delivery of organic, inorganic, and biological cargo in vitro cellular uptake is always in constant demand. Herein, we present carbon quantum dot (CQD)-loaded (poly(N-isopropylacrylamide) (PNIPAAm)/poly(methyl methacrylate (PMMA)) blend nanofiber sheets having a thermoresponsive nature. As a model cargo, fluorescent CQDs are used for the demonstration of the on-demand delivery mechanism. In addition, a thermoresponsive nature is produced by the PNIPAAm polymer in the nanofiber matrix while the PMMA polymer provides extra stability and firmness to the nanofibers against the sudden dissolution of the nanofibers in aqueous media. The synthesis of CQDs and their loading into a blend nanofiber matrix are confirmed using fluorescence spectrophotometry, transmission electron microscopy, and fluorescence microscopy. The morphologies and diameters of the nanofibers are analyzed by scanning electron microscopy. Burst effect analysis proves that 30% (w/w) PNIPAAm-containing nanofibers possess the highest stability with the least dissolution in aqueous media. Thermoresponsiveness of the nanofibers is further confirmed through water contact angle measurements. Quantitative fluorescence results show that more than 80% of loaded CQDs can be released upon thermal stimulation. The fluorescence micrographs reveal that the blend nanofiber sheets can effectively improve the cellular uptake of CQDs by simply increasing the local concentrations via applying thermal stimulation as the released mechanism.


Asunto(s)
Nanofibras , Puntos Cuánticos , Carbono , Polímeros , Polimetil Metacrilato
20.
ACS Appl Mater Interfaces ; 14(19): 22353-22362, 2022 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-35511580

RESUMEN

The molecular design of wide-bandgap conjugated polymer donors (WB-CPDs) is a promising strategy for tuning the bulk heterojunction blend film morphologies to achieve high-performance organic photovoltaic (OPV) devices. Herein, we synthesize two WB-CPDs, namely, PBQ-H and PBQ-M, with and without methyl groups on the fused-dithieno[3,2-f:2',3'-h]quinoxaline (DTQx) moiety. We systematically investigate their structure-property relationship and OPV performances. The AFM and 2D grazing-incidence wide-angle X-ray scattering (GIWAXS) studies reveal that the PBQ-H:BO-4Cl BHJ blend shows strengthened aggregation behavior and stronger π-π stacking on face-on orientation compared with the PBQ-M:BO-4Cl BHJ blend, enhancing the phase separation, charge transport, and fill factor (FF). Blend film absorption spectra, however, show that the PBQ-H:BO-4Cl BHJ blend exhibits a lower absorption coefficient than that of the PBQ-M:BO-4Cl BHJ blend, which decreases the short-circuit current density (JSC). As a consequence, the optimized PBQ-H:BO-4Cl BHJ blend delivers a higher power conversion efficiency (PCE) of 12.88% with a JSC of 23.97 mA/cm2, an open-circuit voltage (VOC) of 0.86 V, and an FF of 62.46%, compared with the PBQ-M:BO-4Cl BHJ blend (PCE of 11.81% with a JSC of 24.78 mA/cm2, a VOC of 0.85 V, and an FF of 56.11%). Overall, this work demonstrates that alkyl group substitution on the DTQx moiety on the basis of WB-CPDs is critical for controlling the film morphology and thus obtaining high OPV performances.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA