Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Plant Biol ; 24(1): 105, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38342903

RESUMEN

BACKGROUND: Nitrogen (N) metabolism-related key genes and conserved amino acid sites in key enzymes play a crucial role in improving N use efficiency (NUE) under N stress. However, it is not clearly known about the molecular mechanism of N deficiency-induced improvement of NUE in the N-sensitive rhizomatous medicinal plant Panax notoginseng (Burk.) F. H. Chen. To explore the potential regulatory mechanism, the transcriptome and proteome were analyzed and the three-dimensional (3D) information and molecular docking models of key genes were compared in the roots of P. notoginseng grown under N regimes. RESULTS: Total N uptake and the proportion of N distribution to roots were significantly reduced, but the NUE, N use efficiency in biomass production (NUEb), the recovery of N fertilizer (RNF) and the proportion of N distribution to shoot were increased in the N0-treated (without N addition) plants. The expression of N uptake- and transport-related genes NPF1.2, NRT2.4, NPF8.1, NPF4.6, AVP, proteins AMT and NRT2 were obviously up-regulated in the N0-grown plants. Meanwhile, the expression of CIPK23, PLC2, NLP6, TCP20, and BT1 related to the nitrate signal-sensing and transduction were up-regulated under the N0 condition. Glutamine synthetase (GS) activity was decreased in the N-deficient plants, while the activity of glutamate dehydrogenase (GDH) increased. The expression of genes GS1-1 and GDH1, and proteins GDH1 and GDH2 were up-regulated in the N0-grown plants, there was a significantly positive correlation between the expression of protein GDH1 and of gene GDH1. Glu192, Glu199 and Glu400 in PnGS1 and PnGDH1were the key amino acid residues that affect the NUE and lead to the differences in GDH enzyme activity. The 3D structure, docking model, and residues of Solanum tuberosum and P. notoginseng was similar. CONCLUSIONS: N deficiency might promote the expression of key genes for N uptake (genes NPF8.1, NPF4.6, AMT, AVP and NRT2), transport (NPF1.2 and NRT2.4), assimilation (proteins GS1 and GDH1), signaling and transduction (genes CIPK23, PLC2, NLP6, TCP20, and BT1) to enhance NUE in the rhizomatous species. N deficiency might induce Glu192, Glu199 and Glu400 to improve the biological activity of GS1 and GDH, this has been hypothesized to be the main reason for the enhanced ability of N assimilation in N-deficient rhizomatous species. The key genes and residues involved in improving NUE provide excellent candidates for the breeding of medicinal plants.


Asunto(s)
Panax notoginseng , Plantas Medicinales , Nitrógeno/metabolismo , Plantas Medicinales/genética , Plantas Medicinales/metabolismo , Panax notoginseng/genética , Panax notoginseng/metabolismo , Simulación del Acoplamiento Molecular , Fitomejoramiento , Aminoácidos/metabolismo , Regulación de la Expresión Génica de las Plantas
2.
Gene ; 901: 148163, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38224922

RESUMEN

BACKGROUND: Nitrogen (N) is an important macronutrient involved in the biosynthesis of primary and secondary metabolites in plants. However, the metabolic regulatory mechanism of low-N-induced triterpenoid saponin and flavonoid accumulation in rhizomatous medicinal Panax notoginseng (Burk.) F. H. Chen remains unclear. METHODS: To explore the potential regulatory mechanism and metabolic basis controlling the response of P. notoginseng to N deficiency, the transcriptome and metabolome were analysed in the roots. RESULTS: The N content was significantly reduced in roots of N0-treated P. notoginseng (0 kg·N·667 m-2). The C/N ratio was enhanced in the N-deficient P. notoginseng. N deficiency promotes the accumulation of amino acids (L-proline, L-leucine, L-isoleucine, L-norleucine, L-arginine, and L-citrulline) and sugar (arabinose, xylose, glucose, fructose, and mannose), thus providing precursor metabolites for the biosynthesis of flavonoids and triterpenoid saponins. Downregulation of key structural genes (PAL, PAL3, ACC1, CHS2, PPO, CHI3, F3H, DFR, and FGT), in particular with the key genes of F3H, involved in the flavonoid biosynthesis pathway possibly induced the decrease in flavonoid content with increased N supply. Notoginsenoside R1, ginsenoside Re, Rg1, Rd, F1, R1 + Rg1 + Rb1 and total triterpenoid saponins were enhanced in the N0 groups than in the N15 (15 kg·N·667 m-2) plants. Higher phosphoenolpyruvate (an intermediate of glycolyticwith pathway metabolism) and serine (an intermediate of photorespiration) levels induced by N deficiency possibly promote saponin biosynthesis through mevalonic acid (MVA) and methylerythritol (MEP) pathways. Genes (MVD2, HMGS, HMGR1, HMGR2, DXR, and HMGR1) encoding the primary enzymes HMGS, HMGR, DXR, and MVD in the MVA and MEP pathways were significantly upregulated in the N0-treated P. notoginseng. The saponin biosynthesis genes DDS, DDS, CYP716A52, CYP716A47, UGT74AE2, and FPS were upregulated in the N-deficient plants. Upregulation of genes involved in saponin biosynthesis promotes the accumulation of triterpenoid saponins in the N0-grown P. notoginseng. CONCLUSIONS: N deficiency enhances primary metabolisms, such as amino acids and sugar accumulation, laying the foundation for the synthesis of flavonoids and triterpenoid saponins in P. notoginseng. F3H, DDS, FPS, HMGR, HMGS and UGT74AE2 can be considered as candidates for functional characterisation of the N-regulated accumulation of triterpenoid saponins and flavonoids in future.


Asunto(s)
Panax notoginseng , Saponinas , Saponinas/farmacología , Panax notoginseng/genética , Panax notoginseng/química , Panax notoginseng/metabolismo , Flavonoides/metabolismo , Nitrógeno/metabolismo , Perfilación de la Expresión Génica , Metaboloma , Aminoácidos/genética , Azúcares/metabolismo
3.
Front Plant Sci ; 14: 1054736, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36866363

RESUMEN

The seeds of Panax notoginseng (Burk.) F. H. Chen are typically characterized by their recalcitrance and after-ripening process and exhibit a high water content at harvest as well as a high susceptibility to dehydration. Storage difficulty and the low germination of recalcitrant seeds of P. notoginseng are known to cause an obstacle to agricultural production. In this study, the ratio of embryo to endosperm (Em/En) in abscisic acid (ABA) treatments (1 mg·l-1 and 10 mg·l-1, LA and HA) was 53.64% and 52.34%, respectively, which were lower than those in control check (CK) (61.98%) at 30 days of the after-ripening process (DAR). A total of 83.67% of seeds germinated in the CK, 49% of seeds germinated in the LA treatment, and 37.33% of seeds germinated in the HA treatment at 60 DAR. The ABA, gibberellin (GA), and auxin (IAA) levels were increased in the HA treatment at 0 DAR, while the jasmonic acid (JA) levels were decreased. ABA, IAA, and JA were increased, but GA was decreased with HA treatment at 30 DAR. A total of 4,742, 16,531, and 890 differentially expressed genes (DEGs) were identified between the HA-treated and CK groups, respectively, along with obvious enrichment in the ABA-regulated plant hormone pathway and the mitogen-activated protein kinase (MAPK) signaling pathway. The expression of pyracbactin resistance-like (PYL) and SNF1-related protein kinase subfamily 2 (SnRK2s) increased in the ABA-treated groups, whereas the expression of type 2C protein phosphatase (PP2C) decreased, both of which are related to the ABA signaling pathway. As a result of the changes in expression of these genes, increased ABA signaling and suppressed GA signaling could inhibit the growth of the embryo and the expansion of developmental space. Furthermore, our results demonstrated that MAPK signaling cascades might be involved in the amplification of hormone signaling. Meanwhile, our study uncovered that the exogenous hormone ABA could inhibit embryonic development, promote dormancy, and delay germination in recalcitrant seeds. These findings reveal the critical role of ABA in regulating the dormancy of recalcitrant seeds, and thereby provide a new insight into recalcitrant seeds in agricultural production and storage.

4.
BMC Genomics ; 24(1): 126, 2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36932328

RESUMEN

BACKGROUND: Late embryogenesis abundant (LEA) proteins play an important role in dehydration process of seed maturation. The seeds of Panax notoginseng (Burkill) F. H. Chen are typically characterized with the recalcitrance and are highly sensitive to dehydration. However, it is not very well known about the role of LEA proteins in response to dehydration stress in P. notoginseng seeds. We will perform a genome-wide analysis of the LEA gene family and their transcriptional responses to dehydration stress in recalcitrant P. notoginseng seeds. RESULTS: In this study, 61 LEA genes were identified from the P. notoginseng genome, and they were renamed as PnoLEA. The PnoLEA genes were classified into seven subfamilies based on the phylogenetic relationships, gene structure and conserved domains. The PnoLEA genes family showed relatively few introns and was highly conserved. Unexpectedly, the LEA_6 subfamily was not found, and the LEA_2 subfamily contained 46 (75.4%) members. Within 19 pairs of fragment duplication events, among them 17 pairs were LEA_2 subfamily. In addition, the expression of the PnoLEA genes was obviously induced under dehydration stress, but the germination rate of P. notoginseng seeds decreased as the dehydration time prolonged. CONCLUSIONS: We found that the lack of the LEA_6 subfamily, the expansion of the LEA_2 subfamily and low transcriptional levels of most PnoLEA genes might be implicated in the recalcitrant formation of P. notoginseng seeds. LEA proteins are essential in the response to dehydration stress in recalcitrant seeds, but the protective effect of LEA protein is not efficient. These results could improve our understanding of the function of LEA proteins in the response of dehydration stress and their contributions to the formation of seed recalcitrance.


Asunto(s)
Panax notoginseng , Panax notoginseng/genética , Panax notoginseng/metabolismo , Deshidratación/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia , Semillas/metabolismo , Desarrollo Embrionario , Regulación de la Expresión Génica de las Plantas
5.
PeerJ ; 11: e14933, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36846464

RESUMEN

Nitrogen (N) is an important macronutrient and is comprehensively involved in the synthesis of secondary metabolites. However, the interaction between N supply and crop yield and the accumulation of effective constituents in an N-sensitive medicinal plant Panax notoginseng (Burkill) F. H. Chen is not completely known. Morphological traits, N use and allocation, photosynthetic capacity and saponins accumulation were evaluated in two- and three-year-old P. notoginseng grown under different N regimes. The number and length of fibrous root, total root length and root volume were reduced with the increase of N supply. The accumulation of leaf and stem biomass (above-ground) were enhanced with increasing N supply, and LN-grown plants had the lowest root biomass. Above-ground biomass was closely correlated with N content, and the relationship between root biomass and N content was negatives in P. notoginseng (r = -0.92). N use efficiency-related parameters, NUE (N use efficiency, etc.), NC (N content in carboxylation system component) and P n (the net photosynthetic rate) were reduced in HN-grown P. notoginseng. SLN (specific leaf N), Chl (chlorophyll), NL (N content in light capture component) increased with an increase in N application. Interestingly, root biomass was positively correlated with NUE, yield and P n. Above-ground biomass was close negatively correlated with photosynthetic N use efficiency (PNUE). Saponins content was positively correlated with NUE and P n. Additionally, HN improved the root yield of per plant compared with LN, but reduced the accumulation of saponins, and the lowest yield of saponins per unit area (35.71 kg·hm-2) was recorded in HN-grown plants. HN-grown medicinal plants could inhibit the accumulation of root biomass by reducing N use and photosynthetic capacity, and HN-induced decrease in the accumulation of saponins (C-containing metabolites) might be closely related to the decline in N efficiency and photosynthetic capacity. Overall, N excess reduces the yield of root and C-containing secondary metabolites (active ingredient) in N-sensitive medicinal species such as P. notoginseng.


Asunto(s)
Panax notoginseng , Plantas Medicinales , Saponinas , Plantas Medicinales/metabolismo , Saponinas/metabolismo , Panax notoginseng/metabolismo , Nitrógeno/metabolismo , Biomasa
6.
BMC Plant Biol ; 23(1): 67, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36721119

RESUMEN

BACKGROUND: Panax notoginseng (Burk) F.H. Chen is an essential plant in the family of Araliaceae. Its seeds are classified as a type of morphophysiological dormancy (MPD), and are characterized by recalcitrance during the after-ripening process. However, it is not clear about the molecular mechanism on the after-ripening in recalcitrant seeds. RESULTS: In this study, exogenous supply of gibberellic acid (GA3) with different concentrations shortened after-ripening process and promoted the germination of P. notoginseng seeds. Among the identified plant hormone metabolites, exogenous GA3 results in an increased level of endogenous hormone GA3 through permeation. A total of 2971 and 9827 differentially expressed genes (DEGs) were identified in response to 50 mg L-1 GA3 (LG) and 500 mg L-1 GA3 (HG) treatment, respectively, and the plant hormone signal and related metabolic pathways regulated by GA3 was significantly enriched. Weighted gene co-expression network analysis (WGCNA) revealed that GA3 treatment enhances GA biosynthesis and accumulation, while inhibiting the gene expression related to ABA signal transduction. This effect was associated with higher expression of crucial seed embryo development and cell wall loosening genes, Leafy Contyledon1 (LEC1), Late Embryogenesis Abundant (LEA), expansins (EXP) and Pectinesterase (PME). CONCLUSIONS: Exogenous GA3 application promotes germination and shorts the after-ripening process of P. notoginseng seeds by increasing GA3 contents through permeation. Furthermore, the altered ratio of GA and ABA contributes to the development of the embryo, breaks the mechanical constraints of the seed coat and promotes the protrusion of the radicle in recalcitrant P. notoginseng seeds. These findings improve our knowledge of the contribution of GA to regulating the dormancy of MPD seeds during the after-ripening process, and provide new theoretical guidance for the application of recalcitrant seeds in agricultural production and storage.


Asunto(s)
Panax notoginseng , Plantas Medicinales , Reguladores del Crecimiento de las Plantas , Germinación , Semillas
7.
Front Plant Sci ; 13: 819843, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35463455

RESUMEN

Light intensity is highly heterogeneous in nature, and plants have evolved a series of strategies to acclimate to dynamic light due to their immobile lifestyles. However, it is still unknown whether there are differences in photoprotective mechanisms among different light-demanding plants in response to dynamic light, and thus the role of non-photochemical quenching (NPQ), electron transport, and light energy allocation of photosystems in photoprotection needs to be further understood in different light-demanding plants. The activities of photosystem II (PSII) and photosystem I (PSI) in shade-tolerant species Panax notoginseng, intermediate species Polygonatum kingianum, and sun-demanding species Erigeron breviscapus were comparatively measured to elucidate photoprotection mechanisms in different light-demanding plants under dynamic light. The results showed that the NPQ and PSII maximum efficiency (F v'/F m') of E. breviscapus were higher than the other two species under dynamic high light. Meanwhile, cyclic electron flow (CEF) of sun plants is larger under transient high light conditions since the slope of post-illumination, P700 dark reduction rate, and plastoquinone (PQ) pool were greater. NPQ was more active and CEF was initiated more readily in shade plants than the two other species under transient light. Moreover, sun plants processed higher quantum yield of PSII photochemistry (ΦPSII), quantum yield of photochemical energy conversion [Y(I)], and quantum yield of non-photochemical energy dissipation due to acceptor side limitation (Y(NA), while the constitutive thermal dissipation and fluorescence (Φf,d) and quantum yield of non-photochemical energy dissipation due to donor side limitation [Y(ND)] of PSI were higher in shade plants. These results suggest that sun plants had higher NPQ and CEF for photoprotection under transient high light and mainly allocated light energy through ΦPSII and ΦNPQ, while shade plants had a higher Φf,d and a larger heat dissipation efficiency of PSI donor. Overall, it has been demonstrated that the photochemical efficiency and photoprotective capacity are greater in sun plants under transient dynamic light, while shade plants are more sensitive to transient dynamic light.

8.
Curr Med Res Opin ; 38(6): 1037-1044, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35414310

RESUMEN

BACKGROUND: Systemic lupus erythematosus (SLE) is a heterogeneous autoimmune disorder characterized by disturbed cellular and humoral immune responses. Dysregulations of immune system and immunosuppressive medications predispose SLE patients to infection. This study aims to investigate the alterations and absolute concentrations of lymphocyte subpopulations in SLE patients with different infection and their responses of low-dose IL-2 therapy. METHODS: A total of 333 patients with SLE without recent infection, 162 patients suffering infection, and age and sex-matched 132 healthy controls (HCs) were recruited. Of them, 54 SLE patients (including 41 non-infected group and 13 infected group) received a 5-day course of low-dose IL-2 administration at a dose of 0.5 million IU per day. Lymphocyte subpopulations were analyzed by flow cytometry. RESULTS: Patients with SLE had lower levels of lymphocyte subpopulations in peripheral blood such as T, B, NK, CD4 + T, CD8+ T, Th1, Th2, Th17, and Treg cells, and the reduction in these cells was more obvious in patients with infection (p <.05 to p <.01). Low-dose IL-2 effectively expanded T (p <.001), B (p <.001), CD4 + T (p <.01), CD8 + T (p <.001), Th1 (p <.01), Th17 (p <.1), and Treg cells (p <.01) of SLE patients, these cells were comparable to that of HCs after the IL-2 treatment. CONCLUSIONS: Patients with SLE had insufficiency of circulating lymphocyte subsets. This phenomenon was more obverse in those accompanying infection, suggesting the low concentration of lymphocytes may be used as indicators of high infection risk in SLE patients. Low-dose IL-2 induced expansion of Treg cells and NK cells, which may contribute to the restoration of immune homeostasis in SLE patients.


Asunto(s)
Interleucina-2 , Lupus Eritematoso Sistémico , Citometría de Flujo , Humanos , Interleucina-2/uso terapéutico , Lupus Eritematoso Sistémico/tratamiento farmacológico , Linfocitos T Reguladores , Células Th17
9.
Front Plant Sci ; 13: 796931, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35242152

RESUMEN

Nitrogen (N) is a primary factor limiting leaf photosynthesis. However, the mechanism of N-stress-driven photoinhibition of the photosystem I (PSI) and photosystem II (PSII) is still unclear in the N-sensitive species such as Panax notoginseng, and thus the role of electron transport in PSII and PSI photoinhibition needs to be further understood. We comparatively analyzed photosystem activity, photosynthetic rate, excitation energy distribution, electron transport, OJIP kinetic curve, P700 dark reduction, and antioxidant enzyme activities in low N (LN), moderate N (MN), and high N (HN) leaves treated with linear electron flow (LEF) inhibitor [3-(3,4-dichlorophenyl)-1,1-dimethyl urea (DCMU)] and cyclic electron flow (CEF) inhibitor (methyl viologen, MV). The results showed that the increased application of N fertilizer significantly enhance leaf N contents and specific leaf N (SLN). Net photosynthetic rate (P n) was lower in HN and LN plants than in MN ones. Maximum photochemistry efficiency of PSII (F v/F m), maximum photo-oxidation P700+ (P m), electron transport rate of PSI (ETRI), electron transport rate of PSII (ETRII), and plastoquinone (PQ) pool size were lower in the LN plants. More importantly, K phase and CEF were higher in the LN plants. Additionally, there was not a significant difference in the activity of antioxidant enzyme between the MV- and H2O-treated plants. The results obtained suggest that the lower LEF leads to the hindrance of the formation of ΔpH and ATP in LN plants, thereby damaging the donor side of the PSII oxygen-evolving complex (OEC). The over-reduction of PSI acceptor side is the main cause of PSI photoinhibition under LN condition. Higher CEF and antioxidant enzyme activity not only protected PSI from photodamage but also slowed down the damage rate of PSII in P. notoginseng grown under LN.

10.
Front Plant Sci ; 13: 1095726, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36714733

RESUMEN

Photosynthetic adaptive strategies vary with the growth irradiance. The potential photosynthetic adaptive strategies of shade-tolerant species Panax notoginseng (Burkill) F. H. Chen to long-term high light and low light remains unclear. Photosynthetic performance, photosynthesis-related pigments, leaves anatomical characteristics and antioxidant enzyme activities were comparatively determined in P. notoginseng grown under different light regimes. The thickness of the upper epidermis, palisade tissue, and lower epidermis were declined with increasing growth irradiance. Low-light-grown leaves were declined in transpiration rate (Tr) and stomatal conductance (Cond), but intercellular CO2 concentration (C i) and net photosynthesis rate (P n) had opposite trends. The maximum photo-oxidation P 700 + (P m) was greatly reduced in 29.8% full sunlight (FL) plants; The maximum quantum yield of photosystem II (F v/F m) in 0.2% FL plants was significantly lowest. Electron transport, thermal dissipation, and the effective quantum yield of PSI [Y(I)] and PSII [Y(II)] were declined in low-light-grown plants compared with high-light-grown P. notoginseng. The minimum value of non-regulated energy dissipation of PSII [Y(NO)] was recorded in 0.2% FL P. notoginseng. OJIP kinetic curve showed that relative variable fluorescence at J-phase (V J) and the ratio of variable fluorescent F K occupying the F J-F O amplitude (W k) were significantly increased in 0.2% FL plants. However, the increase in W k was lower than the increase in V J. In conclusion, PSI photoinhibition is the underlying sensitivity of the typically shade-tolerant species P. notoginseng to high light, and the photodamage to PSII acceptor side might cause the typically shade-tolerant plants to be unsuitable for long-term low light stress.

11.
Funct Plant Biol ; 49(1): 68-88, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34822750

RESUMEN

Panax notoginseng (Burk) F.H. Chen is an important economic and medicinal plant from the family of Araliaceae, and its seed is characterised by the recalcitrance and after-ripening process. However, the molecular mechanism on the dehydration sensitivity is not clear in recalcitrant seeds. In the present study, isobaric tag for relative and absolute quantification (iTRAQ) and RNA-seq were used to analyse the proteomic and transcriptomic changes in seeds of P. notoginseng in days after-ripening (DAR). A total of 454 differentially expressed proteins (DEPs) and 12000 differentially expressed genes (DEGs) were obtained. The activity of enzymes related to antioxidant system were significantly increased, and the late embryogenesis abundant (LEA) protein family and most members of glutathione metabolism enzymes have been downregulated during the after-ripening process. The lack or inadequate accumulation of LEA proteins in the embryo and the low activity of antioxidant defense in glutathione metabolism might be the key factors leading to the dehydration sensitivity in recalcitrant seeds of P. notoginseng. In addition, the increased activity of elycolysis (EMP), citric acid cycle (TCA) and pentose phosphate pathway (PPP) pathways might be one of important signals to complete the after-ripening process. Overall, our study might provide a new insight into the molecular mechanism on dehydration sensitivity of recalcitrant seeds.


Asunto(s)
Panax notoginseng , Plantas Medicinales , Proteómica , RNA-Seq , Semillas/genética
12.
Front Plant Sci ; 12: 718981, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34721452

RESUMEN

Light is highly heterogeneous in natural conditions, and plants need to evolve a series of strategies to acclimate the dynamic light since it is immobile. The present study aimed to elucidate the response of light reaction of photosynthesis to dynamic sunflecks in a shade-tolerant species Panax notoginseng and to examine the regulatory mechanisms involved in an adaptation to the simulated sunflecks. When P. notoginseng was exposed to the simulated sunflecks, non-photochemical quenching (NPQ) increased rapidly to the maximum value. Moreover, in response to the simulated sunflecks, there was a rapid increase in light-dependent heat dissipation quantum efficiency of photosystem II (PSII) (ΦNPQ), while the maximum quantum yield of PSII under light (F v'/F m') declined. The relatively high fluorescence and constitutive heat dissipation quantum efficiency of PSII (Φf,d) in the plants exposed to transient high light (400, 800, and 1,600 µmol m-2 s-1) was accompanied by the low effective photochemical quantum yield of PSII (ΦPSII) after the dark recovery for 15 min, whereas the plants exposed to transient low light (50 µmol m-2 s-1) has been shown to lead to significant elevation in ΦPSII after darkness recovery. Furthermore, PSII fluorescence and constitutive heat dissipation electron transfer rate (J f,d) was increased with the intensity of the simulated sunflecks, the residual absorbed energy used for the non-net carboxylative processes (J NC) was decreased when the response of electron transfer rate of NPQ pathway of PSII (J NPQ) to transient low light is restricted. In addition, the acceptor-side limitation of PSI [Y(NA)] was increased, while the donor-side limitation of photosystems I (PSI) [Y(ND)] was decreased at transient high light conditions accompanied with active cyclic electron flow (CEF). Meanwhile, when the leaves were exposed to transient high light, the xanthophyll cycle (V cycle) was activated and subsequently, the J NPQ began to increase. The de-epoxidation state [(Z + A)/(V + A + Z)] was strongly correlated with NPQ in response to the sunflecks. In the present study, a rapid engagement of lutein epoxide (Lx) after the low intensity of sunfleck together with the lower NPQ contributed to an elevation in the maximum photochemical quantum efficiency of PSII under the light. The analysis based on the correlation between the CEF and electron flow devoted to Ribulose-1, 5-bisphosphate (RuBP) oxygenation (J O) indicated that at a high light intensity of sunflecks, the electron flow largely devoted to RuBP oxygenation would contribute to the operation of the CEF. Overall, photorespiration plays an important role in regulating the CEF of the shade-tolerant species, such as P. notoginseng in response to transient high light, whereas active Lx cycle together with the decelerated NPQ may be an effective mechanism of elevating the maximum photochemical quantum efficiency of PSII under light exposure to transient low light.

13.
Photosynth Res ; 147(3): 283-300, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33587246

RESUMEN

Nitrogen (N) is a primary factor limiting leaf photosynthesis. However, the mechanism of high-N-driven inhibition on photosynthetic efficiency and photoprotection is still unclear in the shade-tolerant and N-sensitive species such as Panax notoginseng. Leaf chlorophyll (Chl) content, Ribulose-1,5-bisphosphate carboxylase oxygenase (Rubisco) activity and content, N allocation in the photosynthetic apparatus, photosynthetic performance and Chl fluorescence were comparatively analyzed in a shade-tolerant and N-sensitive species P. notoginseng grown under the levels of moderate nitrogen (MN) and high nitrogen (HN). The results showed that Rubisco content, Chl content and specific leaf nitrogen (SLN) were greater in the HN individuals. Rubisco activity, net photosynthetic rate (Anet), photosynthetic N use efficiency (PNUE), maximum carboxylation rate (Vcmax) and maximum electron transport rate (Jmax) were lower when plants were exposed to HN as compared with ones to MN. A large proportion of leaf N was allocated to the carboxylation component under the levels of MN. More N was only served as a form of N storage and not contributed to photosynthesis in HN individuals. Compared with the MN plants, the maximum quantum yield of photosystem II (Fv/Fm), non-photochemical quenching of PSII (NPQ), effective quantum yield and electron transport rate were obviously reduced in the HN plants. Cycle electron flow (CEF) was considerably enhanced in the MN individuals. There was not a significant difference in maximum photo-oxidation P700+ (Pm) between the HN and MN individuals. Most importantly, the HN individuals showed higher K phase in the fast chlorophyll fluorescence induction kinetic curve (OJIP kinetic curve) than the MN ones. The results obtained suggest that photosynthetic capacity might be primarily inhibited by the inactivated Rubisco in the HN individuals, and HN-induced depression of photoprotection might be caused by the photodamage to the donor side of PSII oxygen-evolving complex.


Asunto(s)
Nitrógeno/administración & dosificación , Panax notoginseng/efectos de los fármacos , Fotosíntesis/efectos de los fármacos , Clorofila , Luz , Panax notoginseng/fisiología , Fotosíntesis/fisiología , Hojas de la Planta/química , Hojas de la Planta/fisiología , Ribulosa-Bifosfato Carboxilasa/metabolismo
14.
Respiration ; 100(2): 116-126, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33486496

RESUMEN

BACKGROUND: There is still no clinical evidence available to support or to oppose corticosteroid treatment for coronavirus disease 2019 (COVID-19) pneumonia. OBJECTIVE: To investigate the efficacy and safety of corticosteroid given to the hospitalized patients with COVID-19 pneumonia. METHODS: This was a prospective, multicenter, single-blind, randomized control trial. Adult patients with COVID-19 pneumonia who were admitted to the general ward were randomly assigned to either receive methylprednisolone or not for 7 days. The primary end point was the incidence of clinical deterioration 14 days after randomization. RESULTS: We terminated this trial early because the number of patients with COVID-19 pneumonia in all the centers decreased in late March. Finally, a total of 86 COVID-19 patients underwent randomization. There was no difference of the incidence of clinical deterioration between the methylprednisolone group and control group (4.8 vs. 4.8%, p = 1.000). The duration of throat viral RNA detectability in the methylprednisolone group was 11 days (interquartile range, 6-16 days), which was significantly longer than that in the control group (8 days [2-12 days], p = 0.030). There were no significant differences between the 2 groups in other secondary outcomes. Mass cytometry discovered CD3+ T cells, CD8+ T cells, and NK cells in the methylprednisolone group which were significantly lower than those in the control group after randomization (p < 0.05). CONCLUSIONS: From this prematurely closed trial, we found that the short-term early use of corticosteroid could suppress the immune cells, which may prolong severe acute respiratory syndrome coronavirus 2 shedding in patients with COVID-19 pneumonia. TRIAL REGISTRATION: ClinicalTrials.gov, NCT04273321.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Glucocorticoides/uso terapéutico , Hospitalización , Metilprednisolona/uso terapéutico , Faringe/química , ARN Viral/aislamiento & purificación , Esparcimiento de Virus , Adulto , Anciano , Antibacterianos/uso terapéutico , Antivirales/uso terapéutico , Complejo CD3 , Linfocitos T CD8-positivos , COVID-19/sangre , COVID-19/terapia , COVID-19/transmisión , Prueba de Ácido Nucleico para COVID-19 , Progresión de la Enfermedad , Intervención Médica Temprana , Oxigenación por Membrana Extracorpórea , Femenino , Humanos , Células Asesinas Naturales , Recuento de Linfocitos , Masculino , Persona de Mediana Edad , Terapia por Inhalación de Oxígeno , Habitaciones de Pacientes , Faringe/virología , Modelos de Riesgos Proporcionales , Respiración Artificial , SARS-CoV-2 , Método Simple Ciego , Subgrupos de Linfocitos T , Linfocitos T , Factores de Tiempo , Resultado del Tratamiento
15.
Plant Physiol Biochem ; 154: 564-580, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32912490

RESUMEN

The medicinal plant Panax notoginseng is considered a promising source of secondary metabolites due to its saponins. However, there are relatively few studies on the response of saponins to nitrogen (N) availability and the mechanisms underlying the N-driven regulation of saponins. Saponins content and saponins -related genes were analyzed in roots of P. notoginseng grown under low N (LN), moderate N (MN) and high N (HN). Saponins was obviously increased in LN individuals with a reduction in ß-glucosidase activity. LN facilitated root architecture and N uptake rate. Compared with the LN individuals, 2872 and 1122 genes were incorporated into as differently expressed genes (DEGs) in the MN and HN individuals. Clustering and enrichment showed that DEGs related to "carbohydrate biosynthesis", "plant hormone signal transduction", "terpenoid backbone biosynthesis", "sesquiterpenoid and triterpenoid biosynthesis" were enriched. The up-regulation of some saponins-related genes and microelement transporters was found in LN plants. Whereas the expression of IPT3, AHK4 and GS2 in LN plants fell far short of that in HN ones. Anyways, LN-induced accumulation of C-based metabolites as saponins might derive from the interaction between N and phytohormones in processing of N acquisition, and HN-induced reduction of saponins might be result from an increase in the form of ß-glucosidase activity and N-dependent cytokinins (CKs) biosynthesis.


Asunto(s)
Panax notoginseng/química , Plantas Medicinales/química , Saponinas/análisis , Transcriptoma , Nitrógeno , Panax notoginseng/genética , Raíces de Plantas/química , Raíces de Plantas/genética
16.
BMC Plant Biol ; 20(1): 273, 2020 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-32593292

RESUMEN

BACKGROUND: Nitrogen (N) is an essential component of photosynthetic apparatus. However, the mechanism that photosynthetic capacity is suppressed by N is not completely understood. Photosynthetic capacity and photosynthesis-related genes were comparatively analyzed in a shade-tolerant species Panax notoginseng grown under the levels of low N (LN), moderate N (MN) and high N (HN). RESULTS: Photosynthetic assimilation was significantly suppressed in the LN- and HN-grown plants. Compared with the MN-grown plants, the HN-grown plants showed thicker anatomic structure and larger chloroplast accompanied with decreased ratio of mesophyll conductance (gm) to Rubisco content (gm/Rubisco) and lower Rubisco activity. Meanwhile, LN-grown plants displayed smaller chloroplast and accordingly lower internal conductance (gi). LN- and HN-grown individuals allocated less N to light-harvesting system (NL) and carboxylation system (NC), respectively. N surplus negatively affected the expression of genes in Car biosynthesis (GGPS, DXR, PSY, IPI and DXS). The LN individuals outperformed others with respect to non-photochemical quenching. The expression of genes (FBA, PGK, RAF2, GAPC, CAB, PsbA and PsbH) encoding enzymes of Calvin cycle and structural protein of light reaction were obviously repressed in the LN individuals, accompanying with a reduction in Rubisco content and activity. Correspondingly, the expression of genes encoding RAF2, RPI4, CAB and PetE were repressed in the HN-grown plants. CONCLUSIONS: LN-induced depression of photosynthetic capacity might be caused by the deceleration on Calvin cycle and light reaction of photosynthesis, and HN-induced depression of ones might derive from an increase in the form of inactivated Rubisco.


Asunto(s)
Nitrógeno/metabolismo , Panax notoginseng/fisiología , Fotosíntesis , Transporte de Electrón , Genes de Plantas , Luz , Panax notoginseng/genética , Fotosíntesis/genética , Hojas de la Planta/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Transcriptoma
17.
J Med Microbiol ; 69(1): 120-131, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31916929

RESUMEN

Introduction. Staphylococcus aureus biofilms are difficult to treat and the effect of telithromycin treatment is still unclear.Aim. This study aimed to explore the effect of telithromycin against Staphylococcus aureus biofilms compared with azithromycin, clindamycin, vancomycin and daptomycin.Methodology. Eight methicillin-susceptible and eight methicillin-resistant S. aureus isolates (MSSA and MRSA, respectively) were used for this study. Biofilm biomasses were detected by crystal violet staining and the adherent cells in the established biofilms were quantified by determination of colony-forming units (c.f.u.). The RNA levels of biofilm formation-related genes were determined by RT-qPCR.Results. Telithromycin [8× minimum inhibitory concentration (MIC)] eradicated more established biofilms than azithromycin or clindamycin in the four MSSA isolates, and eliminated the established biofilms of six MRSA isolates more effectively than vancomycin or daptomycin. Telithromycin (8× MIC) killed more adherent cells in the established biofilms than azithromycin or clindamycin in the six MSSA isolates, and killed more adherent cells than vancomycin in all eight MRSA isolates. Daptomycin also showed an excellent effect on the adherent cells of MRSA isolates, with similarresults to telithromycin. The effect of a subinhibitory concentration of telithromycin (1/4× MIC) was significantly superior to that of azithromycin or clindamycin, inhibiting the biofilm formation of six MSSA isolates and seven MRSA isolates more effectively than vancomycin or daptomycin. The RNA levels of agrA, agrC, clfA, icaA and sigB decreased when treated with telithromycin (1/4× MIC).Conclusions. Telithromycin is more effective than azithromycin, clindamycin, vancomycin, or daptomycin against S. aureus biofilms.


Asunto(s)
Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Cetólidos/farmacología , Staphylococcus aureus/efectos de los fármacos , Recuento de Colonia Microbiana , Pruebas de Sensibilidad Microbiana , Viabilidad Microbiana/efectos de los fármacos , ARN Bacteriano/análisis , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
18.
Microb Pathog ; 139: 103866, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31715321

RESUMEN

PURPOSE: This study aims to evaluate the antimicrobial activities of linezolid and radezolid against Streptococcus agalactiae in vitro and compared for genetic resistance factors. METHOD: Nonduplicate S. agalactiae clinical isolates (n = 136) were collected and the minimal inhibitory concentrations of antimicrobials were determined by agar dilution methodology. The linezolid-resistant mechanism in the clinical linezolid-non-susceptible S. agalactiae isolates and that induced by linezolid pressure in vitro were analyzed by PCR and sequence alignment. Antimicrobial activities and resistance mechanism distinctions between linezolid and radezolid were further investigated in the clinical linezolid-non-susceptible S. agalactiae isolates and that induced by linezolid pressure in vitro. RESULTS: Our data indicated that 17 (13%) of the 136 clinical S. agalactiae isolates were not susceptible to linezolid. For individual S. agalactiae isolates, including linezolid-nonsusceptible isolates with 23S rRNA V domain mutations, radezolid MIC90 values were generally one-half to one-quarter of the linezolid MIC90 values. Radezolid MICs remained low relative to linezolid MICs among linezolid-resistant S. agalactiae isolates, but exhibited the synchronous increases with the increasing copy numbers of 23S rRNA V domain mutations. Overall, 13 optrA-carrying clinical S. agalactiae isolates were found in this study and their MICs all remained sensitive to both linezolid and radezolid. Clinical S. agalactiae isolates with high radezolid MICs showed clonality clustering to sequence type (ST)10. CONCLUSION: Radezolid exhibits stronger potency against S. agalactiae than linezolid and there is a concerning presence of linezolid-nonsusceptible S. agalactiae in clinical samples.


Asunto(s)
Antibacterianos/farmacología , Linezolid/farmacología , Pruebas de Sensibilidad Microbiana , Oxazolidinonas/farmacología , Infecciones Estreptocócicas/microbiología , Streptococcus agalactiae/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Farmacorresistencia Bacteriana , Humanos , Tipificación Molecular , ARN Ribosómico 23S/genética , Infecciones Estreptocócicas/tratamiento farmacológico , Streptococcus agalactiae/clasificación , Streptococcus agalactiae/genética , Streptococcus agalactiae/aislamiento & purificación
19.
BMC Plant Biol ; 19(1): 451, 2019 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-31655543

RESUMEN

BACKGROUND: Taproot thickening is a complex biological process that is dependent on the coordinated expression of genes controlled by both environmental and developmental factors. Panax notoginseng is an important Chinese medicinal herb that is characterized by an enlarged taproot as the main organ of saponin accumulation. However, the molecular mechanisms of taproot enlargement are poorly understood. RESULTS: A total of 29,957 differentially expressed genes (DEGs) were identified during the thickening process in the taproots of P. notoginseng. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment revealed that DEGs associated with "plant hormone signal transduction," "starch and sucrose metabolism," and "phenylpropanoid biosynthesis" were predominantly enriched. Further analysis identified some critical genes (e.g., RNase-like major storage protein, DA1-related protein, and Starch branching enzyme I) and metabolites (e.g., sucrose, glucose, fructose, malate, and arginine) that potentially control taproot thickening. Several aspects including hormone crosstalk, transcriptional regulation, homeostatic regulation between sugar and starch, and cell wall metabolism, were identified as important for the thickening process in the taproot of P. notoginseng. CONCLUSION: The results provide a molecular regulatory network of taproot thickening in P. notoginseng and facilitate the further characterization of the genes responsible for taproot formation in root medicinal plants or crops.


Asunto(s)
Redes Reguladoras de Genes , Metaboloma , Panax notoginseng/genética , Proteínas de Plantas/metabolismo , Transducción de Señal , Transcriptoma , Regulación de la Expresión Génica de las Plantas , Panax notoginseng/crecimiento & desarrollo , Panax notoginseng/fisiología , Proteínas de Plantas/genética , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/fisiología
20.
Physiol Plant ; 167(4): 597-612, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30548605

RESUMEN

Panax notoginseng (Burk) F.H. Chen is an economically and medicinally important plant of the family Araliacease, with seed dormancy being a key factor limiting the extended cultivation of P. notoginseng. The seeds belong to the morphophysiological dormancy (MPD) group, and it has also been described as the recalcitrant seed. To date, the molecular mechanism of dormancy release in the recalcitrant seed of P. notoginseng is unknown. In the present study, the transcript profiles of seeds from different after-ripening stages (0, 20, 40 and 60 days) were investigated using Illumina Hiseq 2500 technology. 91 979 946 clean reads were generated, and 81 575 unigenes were annotated in at least one database. In addition, the differentially expressed genes (DEGs) were identified by the pairwise comparisons. We screened out 2483 DEGs by the three key groups of 20 days vs 0 d, 40 d vs 0 d and 60 d vs 0 d. The DEGs were analyzed by gene ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway annotation. Meanwhile, we obtained 78 DEGs related to seeds dormancy release at different after-ripening stages of P. notoginseng, of which 15 DEGs were associated with abscisic acid and gibberellin. 26 DEGs that encode late embryogenesis abundant protein and antioxidant enzyme were correlated with desiccation tolerance in seeds. In summary, the results obtained here showed that PECTINESTERASE-2-LIKE, GA-INSENSITIVE, ENT-KAURENE SYNTHASE, PROTEIN PHOSPHATASE 2C, GIBBERELLIN 2-BETA-DIOXYGENASE, SUPEROXIDE DISMUTASE, L-ASCORBATE PEROXIDASE, CATALASE, LATE EMBRYOGENESIS ABUNDANT PROTEIN DC3 and DEHYDRIN 9 were potentially involved in dormancy release and desiccation sensitivity of P. notoginseng seeds. The data might provide a basis for researches on MPD.


Asunto(s)
Panax notoginseng/genética , Latencia en las Plantas , Semillas/genética , Transcriptoma , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Germinación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...