Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Physiol ; 191(1): 177-198, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36271861

RESUMEN

Phosphoglucose isomerase (PGI) catalyzes the interconversion of fructose-6-phosphate and glucose-6-phosphate, which impacts cell carbon metabolic flow. Arabidopsis (Arabidopsis thaliana) contains two nuclear PGI genes respectively encoding plastidial PGI1 and cytosolic PGI (cPGI). The loss of PGI1 impairs the conversion of F6P of the Calvin-Benson cycle to G6P for the synthesis of transitory starch in leaf chloroplasts. Since cpgi knockout mutants have not yet been obtained, they are thought to be lethal. The cpgi lethality can be rescued by expressing CaMV 35S promoter (p35S)-driven cPGI; however, the complemented line is completely sterile due to pollen degeneration. Here, we generated a cpgi mutant expressing p35S::cPGI-YFP in which YFP fluorescence in developing anthers was undetectable specifically in the tapetum and in pollen, which could be associated with male sterility. We also generated RNAi-cPGI knockdown lines with strong cPGI repression in floral buds that exhibited reduced male fertility due to the degeneration of most pollen. Histological analyses indicated that the synthesis of intersporal callose walls was impaired, causing microsporocytes to fail to separate haploid daughter nuclei to form tetrads, which might be responsible for subsequent pollen degeneration. We successfully isolated cpgi knockout mutants in the progeny of a heterozygous cpgi mutant floral-dipped with sugar solutions. The rescued cpgi mutants exhibited diminished young vegetative growth, reduced female fertility, and impaired intersporal callose wall formation in a meiocyte, and, thus, male sterility. Collectively, our data suggest that cPGI plays a vital role in carbohydrate partitioning, which is indispensable for microsporogenesis and early embryogenesis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Glucosa-6-Fosfato Isomerasa , Arabidopsis/enzimología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Gametogénesis en la Planta , Glucosa-6-Fosfato Isomerasa/genética , Glucosa-6-Fosfato Isomerasa/metabolismo , Infertilidad Vegetal
2.
Plant Cell ; 31(9): 2169-2186, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31266901

RESUMEN

In Arabidopsis (Arabidopsis thaliana) leaves, starch is synthesized during the day and degraded at night to fuel growth and metabolism. Starch is degraded primarily by ß-amylases, liberating maltose, but this activity is preceded by glucan phosphorylation and is accompanied by dephosphorylation. A glucan phosphatase family member, LIKE SEX4 1 (LSF1), binds starch and is required for normal starch degradation, but its exact role is unclear. Here, we show that LSF1 does not dephosphorylate glucans. The recombinant dual specificity phosphatase (DSP) domain of LSF1 had no detectable phosphatase activity. Furthermore, a variant of LSF1 mutated in the catalytic cysteine of the DSP domain complemented the starch-excess phenotype of the lsf1 mutant. By contrast, a variant of LSF1 with mutations in the carbohydrate binding module did not complement lsf1 Thus, glucan binding, but not phosphatase activity, is required for the function of LSF1 in starch degradation. LSF1 interacts with the ß-amylases BAM1 and BAM3, and the BAM1-LSF1 complex shows amylolytic but not glucan phosphatase activity. Nighttime maltose levels are reduced in lsf1, and genetic analysis indicated that the starch-excess phenotype of lsf1 is dependent on bam1 and bam3 We propose that LSF1 binds ß-amylases at the starch granule surface, thereby promoting starch degradation.


Asunto(s)
Arabidopsis/metabolismo , Metabolismo de los Hidratos de Carbono/fisiología , Fosfatasas de Especificidad Dual/metabolismo , Almidón/metabolismo , beta-Amilasa/metabolismo , Arabidopsis/enzimología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Metabolismo de los Hidratos de Carbono/genética , Proteínas Portadoras , Clonación Molecular , Fosfatasas de Especificidad Dual/genética , Regulación de la Expresión Génica de las Plantas , Glucanos/metabolismo , Fosforilación , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente , Dominios y Motivos de Interacción de Proteínas , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Recombinantes , Alineación de Secuencia , Nicotiana/genética , Nicotiana/metabolismo , beta-Amilasa/genética
3.
Plant Physiol ; 164(3): 1175-90, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24453164

RESUMEN

In illuminated chloroplasts, one mechanism involved in reduction-oxidation (redox) homeostasis is the malate-oxaloacetate (OAA) shuttle. Excess electrons from photosynthetic electron transport in the form of nicotinamide adenine dinucleotide phosphate, reduced are used by NADP-dependent malate dehydrogenase (MDH) to reduce OAA to malate, thus regenerating the electron acceptor NADP. NADP-MDH is a strictly redox-regulated, light-activated enzyme that is inactive in the dark. In the dark or in nonphotosynthetic tissues, the malate-OAA shuttle was proposed to be mediated by the constitutively active plastidial NAD-specific MDH isoform (pdNAD-MDH), but evidence is scarce. Here, we reveal the critical role of pdNAD-MDH in Arabidopsis (Arabidopsis thaliana) plants. A pdnad-mdh null mutation is embryo lethal. Plants with reduced pdNAD-MDH levels by means of artificial microRNA (miR-mdh-1) are viable, but dark metabolism is altered as reflected by increased nighttime malate, starch, and glutathione levels and a reduced respiration rate. In addition, miR-mdh-1 plants exhibit strong pleiotropic effects, including dwarfism, reductions in chlorophyll levels, photosynthetic rate, and daytime carbohydrate levels, and disordered chloroplast ultrastructure, particularly in developing leaves, compared with the wild type. pdNAD-MDH deficiency in miR-mdh-1 can be functionally complemented by expression of a microRNA-insensitive pdNAD-MDH but not NADP-MDH, confirming distinct roles for NAD- and NADP-linked redox homeostasis.


Asunto(s)
Arabidopsis/embriología , Arabidopsis/metabolismo , Cloroplastos/enzimología , Procesos Heterotróficos , Malato Deshidrogenasa/metabolismo , Semillas/embriología , Semillas/enzimología , Arabidopsis/enzimología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Procesos Autotróficos/genética , Clorofila/metabolismo , Cloroplastos/genética , Cloroplastos/ultraestructura , Ritmo Circadiano/genética , Elementos Transponibles de ADN/genética , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Genes de Plantas/genética , Procesos Heterotróficos/genética , Homocigoto , Malato Deshidrogenasa/genética , Metaboloma/genética , Morfogénesis/genética , Mutagénesis Insercional/genética , Fotosíntesis , Transporte de Proteínas
4.
Plant Mol Biol ; 81(4-5): 347-61, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23329372

RESUMEN

Germination followed by seedling growth constitutes two essential steps in the initiation of a new life cycle in plants, and in cereals, completion of these steps is regulated by sugar starvation and the hormone gibberellin. A calcium-dependent protein kinase 1 gene (OsCDPK1) was identified by differential screening of a cDNA library derived from sucrose-starved rice suspension cells. The expression of OsCDPK1 was found to be specifically activated by sucrose starvation among several stress conditions tested as well as activated transiently during post-germination seedling growth. In gain- and loss-of-function studies performed with transgenic rice overexpressing a constitutively active or RNA interference gene knockdown construct, respectively, OsCDPK1 was found to negatively regulate the expression of enzymes essential for GA biosynthesis. In contrast, OsCDPK1 activated the expression of a 14-3-3 protein, GF14c. Overexpression of either constitutively active OsCDPK1 or GF14c enhanced drought tolerance in transgenic rice seedlings. Hence, our studies demonstrated that OsCDPK1 transduces the post-germination Ca(2+) signal derived from sugar starvation and GA, refines the endogenous GA concentration and prevents drought stress injury, all essential functions to seedling development at the beginning of the life cycle in rice.


Asunto(s)
Proteínas 14-3-3/metabolismo , Adaptación Fisiológica , Carbohidratos/deficiencia , Giberelinas/biosíntesis , Oryza/enzimología , Proteínas Quinasas/biosíntesis , Plantones/fisiología , Adaptación Fisiológica/efectos de los fármacos , Adaptación Fisiológica/genética , Sequías , Inducción Enzimática/efectos de los fármacos , Retroalimentación Fisiológica/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Giberelinas/farmacología , Homocigoto , Modelos Biológicos , Tamaño de los Órganos/efectos de los fármacos , Oryza/efectos de los fármacos , Oryza/genética , Oryza/crecimiento & desarrollo , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Proteínas Quinasas/genética , Plantones/anatomía & histología , Plantones/efectos de los fármacos , Plantones/genética , Regulación hacia Arriba/efectos de los fármacos
5.
Plant J ; 72(2): 175-84, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22702636

RESUMEN

Floral initiation is orchestrated by systemic floral activators and inhibitors. This remote-control system may integrate environmental cues to modulate floral initiation. Recently, FLOWERING LOCUS T (FT) was found to be a florigen. However, the identity of systemic floral inhibitor or anti-florigen remains to be elucidated. Here we show that Arabidopsis thaliana CENTRORADIALIS homologue (ATC), an Arabidopsis FT homologue, may act in a non-cell autonomous manner to inhibit floral initiation. Analysis of the ATC null mutant revealed that ATC is a short-day-induced floral inhibitor. Cell type-specific expression showed that companion cells and apex that express ATC are sufficient to inhibit floral initiation. Histochemical analysis showed that the promoter activity of ATC was mainly found in vasculature but under the detection limit in apex, a finding that suggests that ATC may move from the vasculature to the apex to influence flowering. Consistent with this notion, Arabidopsis seedling grafting experiments demonstrated that ATC moved over a long distance and that floral inhibition by ATC is graft transmissible. ATC probably antagonizes FT activity, because both ATC and FT interact with FD and affect the same downstream meristem identity genes APETALA1, in an opposite manner. Thus, photoperiodic variations may trigger functionally opposite FT homologues to systemically influence floral initiation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Florigena/metabolismo , Flores/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Arabidopsis/ultraestructura , Proteínas de Arabidopsis/genética , Microscopía por Crioelectrón , Flores/crecimiento & desarrollo , Flores/metabolismo , Flores/ultraestructura , Regulación de la Expresión Génica de las Plantas , Meristema/genética , Meristema/metabolismo , Mutagénesis Insercional , Fenotipo , Fotoperiodo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas , ARN de Planta/genética , Plantones , Transducción de Señal/genética , Nicotiana/genética , Nicotiana/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
6.
Plant J ; 71(2): 288-302, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22409537

RESUMEN

Tiller initiation and panicle development are important agronomical traits for grain production in Oryza sativa L. (rice), but their regulatory mechanisms are not yet fully understood. In this study, T-DNA mutant and RNAi transgenic approaches were used to functionally characterize a unique rice gene, LAGGING GROWTH AND DEVELOPMENT 1 (LGD1). The lgd1 mutant showed slow growth, reduced tiller number and plant height, altered panicle architecture and reduced grain yield. The fewer unelongated internodes and cells in lgd1 led to respective reductions in tiller number and to semi-dwarfism. Several independent LGD1-RNAi lines exhibited defective phenotypes similar to those observed in lgd1. Interestingly, LGD1 encodes multiple transcripts with different transcription start sites (TSSs), which were validated by RNA ligase-mediated rapid amplification of 5' and 3' cDNA ends (RLM-RACE). Additionally, GUS assays and a luciferase promoter assay confirmed the promoter activities of LGD1.1 and LGD1.5. LGD1 encoding a von Willebrand factor type A (vWA) domain containing protein is a single gene in rice that is seemingly specific to grasses. GFP-tagged LGD1 isoforms were predominantly detected in the nucleus, and weakly in the cytoplasm. In vitro northwestern analysis showed the RNA-binding activity of the recombinant C-terminal LGD1 protein. Our results demonstrated that LGD1 pleiotropically regulated rice vegetative growth and development through both the distinct spatiotemporal expression patterns of its multiple transcripts and RNA binding activity. Hence, the study of LGD1 will strengthen our understanding of the molecular basis of the multiple transcripts, and their corresponding polypeptides with RNA binding activity, that regulate pleiotropic effects in rice.


Asunto(s)
Regulación de la Expresión Génica de las Plantas/fisiología , Oryza/genética , Proteínas de Plantas/genética , Regiones Promotoras Genéticas/genética , Isoformas de ARN/genética , Secuencia de Aminoácidos , Flores/citología , Flores/genética , Flores/crecimiento & desarrollo , Flores/metabolismo , Datos de Secuencia Molecular , Mutación , Cebollas/genética , Cebollas/metabolismo , Oryza/citología , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Raíces de Plantas/citología , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Estructura Terciaria de Proteína , Interferencia de ARN , Isoformas de ARN/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN de Planta/genética , ARN de Planta/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas Recombinantes de Fusión , Plantones/citología , Plantones/genética , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Semillas/citología , Semillas/genética , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Alineación de Secuencia
7.
Bioresour Technol ; 102(18): 8543-6, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21546247

RESUMEN

A mutant plant (Arabidopsis thaliana), sex1-1 (starch excess 1-1), accumulating high starch content in leaves was created to serve as better biomass feedstock for a H2-producing strain Clostridium butyricum CGS2, which efficiently utilizes starch for H2 production but cannot assimilate cellulosic materials. The starch content of the mutant plant increased to 10.67 mg/fresh weight, which is four times higher than that of wild type plant. Using sex1-1 mutant plant as feedstock, C. butyricum CGS2 could produce 490.4 ml/l of H2 with a H2 production rate of 32.9 ml/h/l. The H2 production performance appeared to increase with the increase in the concentration of mutant plant from 2.5 to 10 g/l. The highest H2 to plant biomass yield was nearly 49 ml/g for the mutant plant. This study successfully demonstrated the feasibility of using a starch-rich mutant plant for more effective bioH2 production with C. butyricum CGS2.


Asunto(s)
Arabidopsis/metabolismo , Biotecnología/métodos , Fermentación/fisiología , Hidrógeno/metabolismo , Mutación/genética , Almidón/metabolismo , Arabidopsis/efectos de los fármacos , Proteínas de Arabidopsis/genética , Biocombustibles/análisis , Biomasa , Carbono/farmacología , Celulosa/metabolismo , Corynebacterium/efectos de los fármacos , Corynebacterium/aislamiento & purificación , Fermentación/efectos de los fármacos , Proteínas de Transporte de Monosacáridos/genética , Solubilidad/efectos de los fármacos , Almidón/biosíntesis
8.
New Phytol ; 189(3): 869-882, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21083564

RESUMEN

• Sumoylation, a post-translational modification, has important functions in both animals and plants. However, the biological function of the SUMO E3 ligase, SIZ1, in rice (Oryza sativa) is still under investigation. • In this study, we employed two different genetic approaches, the use of siz1 T-DNA mutant and SIZ1-RNAi transgenic plants, to characterize the function of rice SIZ1. • Genetic results revealed the co-segregation of single T-DNA insertional recessive mutation with the observed phenotypes in siz1. In addition to showing reduced plant height, tiller number and seed set percentage, both the siz1 mutant and SIZ1-RNAi transgenic plants showed obvious defects in anther dehiscence, but not pollen viability. The anther indehiscence in siz1 was probably a result of defects in endothecium development before anthesis. Interestingly, rice orthologs of AtIRX and ZmMADS2, which are essential for endothecium development during anther dehiscence, were significantly down-regulated in siz1. Compared with the wild-type, the sumoylation profile of high-molecular-weight proteins in mature spikelets was reduced significantly in siz1 and the SIZ1-RNAi line with notably reduced SIZ1 expression. The nuclear localization signal located in the SIZ1 C-terminus was sufficient for its nuclear targeting in bombarded onion epidermis. • The results suggest the functional role of SIZ1, a SUMO E3 ligase, in regulating rice anther dehiscence.


Asunto(s)
Flores/fisiología , Genes de Plantas , Oryza/fisiología , Proteínas de Plantas/metabolismo , Polinización/fisiología , Sumoilación , Núcleo Celular , ADN Bacteriano , ADN de Plantas , Regulación hacia Abajo , Fertilidad , Inflorescencia/fisiología , Mutación , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Polinización/genética , Reproducción/genética , Reproducción/fisiología , Sumoilación/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
9.
Plant Physiol ; 152(2): 685-97, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20018601

RESUMEN

A putative phosphatase, LSF1 (for LIKE SEX4; previously PTPKIS2), is closely related in sequence and structure to STARCH-EXCESS4 (SEX4), an enzyme necessary for the removal of phosphate groups from starch polymers during starch degradation in Arabidopsis (Arabidopsis thaliana) leaves at night. We show that LSF1 is also required for starch degradation: lsf1 mutants, like sex4 mutants, have substantially more starch in their leaves than wild-type plants throughout the diurnal cycle. LSF1 is chloroplastic and is located on the surface of starch granules. lsf1 and sex4 mutants show similar, extensive changes relative to wild-type plants in the expression of sugar-sensitive genes. However, although LSF1 and SEX4 are probably both involved in the early stages of starch degradation, we show that LSF1 neither catalyzes the same reaction as SEX4 nor mediates a sequential step in the pathway. Evidence includes the contents and metabolism of phosphorylated glucans in the single mutants. The sex4 mutant accumulates soluble phospho-oligosaccharides undetectable in wild-type plants and is deficient in a starch granule-dephosphorylating activity present in wild-type plants. The lsf1 mutant displays neither of these phenotypes. The phenotype of the lsf1/sex4 double mutant also differs from that of both single mutants in several respects. We discuss the possible role of the LSF1 protein in starch degradation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Hojas de la Planta/metabolismo , Almidón/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cloroplastos/enzimología , ADN Bacteriano/genética , Glucanos/metabolismo , Mutagénesis Insercional , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Fosforilación , Hojas de la Planta/genética , ARN de Planta/genética
10.
Plant Physiol ; 151(3): 1582-95, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19759345

RESUMEN

Starch synthesis and degradation require the participation of many enzymes, occur in both photosynthetic and nonphotosynthetic tissues, and are subject to environmental and developmental regulation. We examine the distribution of starch in vegetative tissues of Arabidopsis (Arabidopsis thaliana) and the expression of genes encoding core enzymes for starch synthesis. Starch is accumulated in plastids of epidermal, mesophyll, vascular, and root cap cells but not in root proper cells. We also identify cells that can synthesize starch heterotrophically in albino mutants. Starch synthesis in leaves is regulated by developmental stage and light. Expression of gene promoter-beta-glucuronidase fusion constructs in transgenic seedlings shows that starch synthesis genes are transcriptionally active in cells with starch synthesis and are inactive in root proper cells except the plastidial phosphoglucose isomerase. In addition, ADG2 (for ADPG PYROPHOSPHORYLASE2) is not required for starch synthesis in root cap cells. Expression profile analysis reveals that starch metabolism genes can be clustered into two sets based on their tissue-specific expression patterns. Starch distribution and expression pattern of core starch synthesis genes are common in Arabidopsis and rice (Oryza sativa), suggesting that the regulatory mechanism for starch metabolism genes may be conserved evolutionarily. We conclude that starch synthesis in Arabidopsis is achieved by spatial coexpression of core starch metabolism genes regulated by their promoter activities and is fine-tuned by cell-specific endogenous and environmental controls.


Asunto(s)
Arabidopsis/genética , Almidón/biosíntesis , Activación Transcripcional , Arabidopsis/enzimología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Perfilación de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Raíces de Plantas/enzimología , Raíces de Plantas/genética , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , Regiones Promotoras Genéticas , ARN Mensajero/metabolismo , ARN de Planta/metabolismo
11.
Plant Cell ; 21(1): 334-46, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19141707

RESUMEN

Starch is the major storage carbohydrate in plants. It is comprised of glucans that form semicrystalline granules. Glucan phosphorylation is a prerequisite for normal starch breakdown, but phosphoglucan metabolism is not understood. A putative protein phosphatase encoded at the Starch Excess 4 (SEX4) locus of Arabidopsis thaliana was recently shown to be required for normal starch breakdown. Here, we show that SEX4 is a phosphoglucan phosphatase in vivo and define its role within the starch degradation pathway. SEX4 dephosphorylates both the starch granule surface and soluble phosphoglucans in vitro, and sex4 null mutants accumulate phosphorylated intermediates of starch breakdown. These compounds are linear alpha-1,4-glucans esterified with one or two phosphate groups. They are released from starch granules by the glucan hydrolases alpha-amylase and isoamylase. In vitro experiments show that the rate of starch granule degradation is increased upon simultaneous phosphorylation and dephosphorylation of starch. We propose that glucan phosphorylating enzymes and phosphoglucan phosphatases work in synergy with glucan hydrolases to mediate efficient starch catabolism.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Proteínas Tirosina Fosfatasas/metabolismo , Almidón/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Metabolismo de los Hidratos de Carbono , ADN Bacteriano/genética , Glucanos/metabolismo , Mutagénesis Insercional , Fosforilación , Proteínas Tirosina Fosfatasas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
12.
Plant Physiol ; 143(4): 1484-92, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17277092

RESUMEN

We evaluated the application of gas chromatography-mass spectrometry metabolic fingerprinting to classify forward genetic mutants with similar phenotypes. Mutations affecting distinct metabolic or signaling pathways can result in common phenotypic traits that are used to identify mutants in genetic screens. Measurement of a broad range of metabolites provides information about the underlying processes affected in such mutants. Metabolite profiles of Arabidopsis (Arabidopsis thaliana) mutants defective in starch metabolism and uncharacterized mutants displaying a starch-excess phenotype were compared. Each genotype displayed a unique fingerprint. Statistical methods grouped the mutants robustly into distinct classes. Determining the genes mutated in three uncharacterized mutants confirmed that those clustering with known mutants were genuinely defective in starch metabolism. A mutant that clustered away from the known mutants was defective in the circadian clock and had a pleiotropic starch-excess phenotype. These results indicate that metabolic fingerprinting is a powerful tool that can rapidly classify forward genetic mutants and streamline the process of gene discovery.


Asunto(s)
Arabidopsis/clasificación , Mutación , Arabidopsis/genética , Arabidopsis/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Fenotipo , Almidón/biosíntesis
13.
J Biol Chem ; 281(17): 11815-8, 2006 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-16513634

RESUMEN

We report that protein phosphorylation is involved in the control of starch metabolism in Arabidopsis leaves at night. sex4 (starch excess 4) mutants, which have strongly reduced rates of starch metabolism, lack a protein predicted to be a dual specificity protein phosphatase. We have shown that this protein is chloroplastic and can bind to glucans and have presented evidence that it acts to regulate the initial steps of starch degradation at the granule surface. Remarkably, the most closely related protein to SEX4 outside the plant kingdom is laforin, a glucan-binding protein phosphatase required for the metabolism of the mammalian storage carbohydrate glycogen and implicated in a severe form of epilepsy (Lafora disease) in humans.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Glucógeno/metabolismo , Mamíferos/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Almidón/metabolismo , Animales , Arabidopsis/crecimiento & desarrollo , Cloroplastos/química , Glucanos/metabolismo , Humanos , Fosforilación , Hojas de la Planta/química , Hojas de la Planta/citología
14.
J Biol Chem ; 280(11): 9773-9, 2005 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-15637061

RESUMEN

The Arabidopsis thaliana genome encodes three alpha-amylase-like proteins (AtAMY1, AtAMY2, and AtAMY3). Only AtAMY3 has a predicted N-terminal transit peptide for plastidial localization. AtAMY3 is an unusually large alpha-amylase (93.5 kDa) with the C-terminal half showing similarity to other known alpha-amylases. When expressed in Escherichia coli, both the whole AtAMY3 protein and the C-terminal half alone show alpha-amylase activity. We show that AtAMY3 is localized in chloroplasts. The starch-excess mutant of Arabidopsis sex4, previously shown to have reduced plastidial alpha-amylase activity, is deficient in AtAMY3 protein. Unexpectedly, T-DNA knock-out mutants of AtAMY3 have the same diurnal pattern of transitory starch metabolism as the wild type. These results show that AtAMY3 is not required for transitory starch breakdown and that the starch-excess phenotype of the sex4 mutant is not caused simply by deficiency of AtAMY3 protein. Knock-out mutants in the predicted non-plastidial alpha-amylases AtAMY1 and AtAMY2 were also isolated, and these displayed normal starch breakdown in the dark as expected for extraplastidial amylases. Furthermore, all three AtAMY double knock-out mutant combinations and the triple knock-out degraded their leaf starch normally. We conclude that alpha-amylase is not necessary for transitory starch breakdown in Arabidopsis leaves.


Asunto(s)
Arabidopsis/enzimología , Hojas de la Planta/enzimología , alfa-Amilasas/fisiología , Regiones no Traducidas 3' , Regiones no Traducidas 5' , Secuencia de Aminoácidos , Carbohidratos/química , Cloroplastos/metabolismo , ADN/metabolismo , ADN Bacteriano , ADN Complementario/metabolismo , Electroforesis en Gel de Poliacrilamida , Escherichia coli/metabolismo , Biblioteca de Genes , Técnicas Genéticas , Genoma de Planta , Immunoblotting , Modelos Genéticos , Datos de Secuencia Molecular , Mutación , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Almidón , Factores de Tiempo
15.
Plant J ; 37(6): 853-63, 2004 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-14996213

RESUMEN

Maltose is exported from the Arabidopsis chloroplast as the main product of starch degradation at night. To investigate its fate in the cytosol, we characterised plants with mutations in a gene encoding a putative glucanotransferase (disproportionating enzyme; DPE2), a protein similar to the maltase Q (MalQ) gene product involved in maltose metabolism in bacteria. Use of a DPE2 antiserum revealed that the DPE2 protein is cytosolic. Four independent mutant lines lacked this protein and displayed a decreased capacity for both starch synthesis and starch degradation in leaves. They contained exceptionally high levels of maltose, and elevated levels of glucose, fructose and other malto-oligosaccharides. Sucrose levels were lower than those in wild-type plants, especially at the start of the dark period. A glucosyltransferase activity, capable of transferring one of the glucosyl units of maltose to glycogen or amylopectin and releasing the other, was identified in leaves of wild-type plants. Its activity was sufficient to account for the rate of starch degradation. This activity was absent from dpe2 mutant plants. Based on these results, we suggest that DPE2 is an essential component of the pathway from starch to sucrose and cellular metabolism in leaves at night. Its role is probably to metabolise maltose exported from the chloroplast. We propose a pathway for the conversion of starch to sucrose in an Arabidopsis leaf.


Asunto(s)
Arabidopsis/metabolismo , Glucosiltransferasas/metabolismo , Almidón/metabolismo , Sacarosa/metabolismo , Arabidopsis/genética , Citosol/enzimología , Oscuridad , Genes de Plantas , Glucosiltransferasas/genética , Sistema de la Enzima Desramificadora del Glucógeno/genética , Sistema de la Enzima Desramificadora del Glucógeno/metabolismo , Hexosas/metabolismo , Maltosa/metabolismo , Modelos Biológicos , Mutación , Fenotipo , Hojas de la Planta/metabolismo
16.
Science ; 303(5654): 87-9, 2004 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-14704427

RESUMEN

A previously unknown maltose transporter is essential for the conversion of starch to sucrose in Arabidopsis leaves at night. The transporter was identified by isolating two allelic mutants with high starch levels and very high maltose, an intermediate of starch breakdown. The mutations affect a gene of previously unknown function, MEX1. We show that MEX1is a maltose transporter that is unrelated to other sugar transporters. The severe mex1 phenotype demonstrates that MEX1is the predominant route of carbohydrate export from chloroplasts at night. Homologous genes in plants including rice and potato indicate that maltose export is of widespread significance.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Maltosa/metabolismo , Proteínas de Transporte de Monosacáridos/metabolismo , Hojas de la Planta/metabolismo , Almidón/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Transporte Biológico , Cloroplastos/metabolismo , Clonación Molecular , Cruzamientos Genéticos , ADN Complementario , Genes de Plantas , Glucosa/metabolismo , Datos de Secuencia Molecular , Proteínas de Transporte de Monosacáridos/química , Proteínas de Transporte de Monosacáridos/genética , Mutación , Fenotipo , Proteínas Recombinantes de Fusión/metabolismo , Alineación de Secuencia
17.
Planta ; 217(2): 184-92, 2003 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12783326

RESUMEN

Transgenic plants of Arabidopsis thaliana Heynh., transformed with a bacterial beta-glucuronidase (GUS) gene under the control of the promoter of the small subunit (ApS) of ADP-glucose pyrophosphorylase (AGPase), exhibited GUS staining in leaves (including stomata), stems, roots and flowers. Cross-sections of stems revealed GUS staining in protoxylem parenchyma, primary phloem and cortex. In young roots, the staining was found in the root tips, including the root cap, and in vascular tissue, while the older root-hypocotyl axis showed prominent staining in the secondary phloem and paratracheary parenchyma of secondary xylem. The GUS staining co-localized with ApS protein, as found by tissue printing using antibodies against ApS. Starch was found only in cell and tissue types exhibiting GUS staining and ApS labelling, but not in all of them. For example, starch was lacking in the xylem parenchyma and secondary phloem of the root-hypocotyl axis. Sucrose potently activated ApS gene expression in leaves of wild-type (wt) plants, and in transgenic seedlings grown on sucrose medium where GUS activity was quantified with 4-methylumbelliferyl-beta-glucuronide as substrate. Okadaic acid, an inhibitor of protein phosphatases 1 and 2A, completely blocked expression of ApS in mature leaves of wt plants and prevented GUS staining in root tips and flowers of the transgenic plants, suggesting a similar signal transduction mechanism for ApS expression in various tissues. The data support the key role of AGPase in starch synthesis, but they also underlie the ubiquitous importance of the ApS gene for AGPase function in all organs/tissues of Arabidopsis.


Asunto(s)
Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Nucleotidiltransferasas/genética , Ácido Ocadaico/farmacología , Regiones Promotoras Genéticas/genética , Almidón/biosíntesis , Arabidopsis/citología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Genes de Plantas/genética , Glucosa-1-Fosfato Adenililtransferasa , Glucuronidasa/genética , Glucuronidasa/metabolismo , Hojas de la Planta , Plantas Modificadas Genéticamente , Sacarosa/metabolismo , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...