Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 5243, 2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37640725

RESUMEN

The scaling of transistors with thinner channel thicknesses has led to a surge in research on two-dimensional (2D) and quasi-2D semiconductors. However, modulating the threshold voltage (VT) in ultrathin transistors is challenging, as traditional doping methods are not readily applicable. In this work, we introduce a optical-thermal method, combining ultraviolet (UV) illumination and oxygen annealing, to achieve broad-range VT tunability in ultrathin In2O3. This method can achieve both positive and negative VT tuning and is reversible. The modulation of sheet carrier density, which corresponds to VT shift, is comparable to that obtained using other doping and capacitive charging techniques in other ultrathin transistors, including 2D semiconductors. With the controllability of VT, we successfully demonstrate the realization of depletion-load inverter and multi-state logic devices, as well as wafer-scale VT modulation via an automated laser system, showcasing its potential for low-power circuit design and non-von Neumann computing applications.

2.
Biomicrofluidics ; 6(1): 12809-1280913, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22662076

RESUMEN

We conduct a numerical investigation and analytical analysis of the effect of slippage on the thermocapillary migration of a small liquid droplet on a horizontal solid surface. The finite element method is employed to solve the Navier-Stokes equations coupled with the energy equation. The effect of the slip behavior on the droplet migration is determined by using the Navier slip condition at the solid-liquid boundary. The results indicate that the dynamic contact angles and the contact angle hysteresis of the droplet are strictly correlated to the slip coefficient. The enhancement of the slip length leads to an increase in the droplet migration velocity due to the enhancement of the net momentum of thermocapillary convection vortices inside the droplet. A larger contact angle leads to an increase in the migration velocity which in turn enlarges the rate of the droplet migration velocity to the slip length. There is good agreement between the analytical and the numerical results when the dynamic contact angle utilizes in the analytical approach obtained from the results of the numerical computation, and the static contact angle is smaller than 50°.

3.
Opt Express ; 19(10): 9770-82, 2011 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-21643234

RESUMEN

A method based on a specific quasi-common-optical-path (QCOP) configuration for two-dimensional displacement measurement is presented. The measurement system consists of a heterodyne light source, two-dimensional holographic grating, specially designed set of half wave plates, and lock-in amplifiers. Two measurement configurations, for single and differential detection, are designed. The sensitivity, resolution and nonlinear phase error of the differential detection type are better than those of the single detection type. The experimental results demonstrate that the QCOP interferometer has the ability to measure two-dimensional displacement while maintaining high system stability.

4.
Appl Opt ; 50(9): 1272-9, 2011 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-21460999

RESUMEN

We present a heterodyne grating interferometer based on a quasi-common-optical-path (QCOP) design for a two-degrees-of-freedom (DOF) straightness measurement. Two half-wave plates are utilized to rotate the polarizations of two orthogonally polarized beams. The grating movement can be calculated by measuring the phase difference variation in each axis. The experimental results demonstrate that our method has the ability to measure two-DOF straightness and still maintain high system stability. The proposed and demonstrated method, which relies on heterodyne interferometric phase measurement combined with the QCOP configuration, has the advantages of high measurement resolution, relatively straightforward operation, and high system stability.

5.
Appl Opt ; 46(16): 3196-204, 2007 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-17514275

RESUMEN

An interferometric lithographic technique and double exposure method are applied to theoretically and experimentally investigate several kinds of 2D periodic structures. The shape, lattice symmetries, and lattice constants of the 2D structures, for different substrate rotational angles, are obtained from the simulated predictions. The shape of the 2D structures can be varied by controlling the rotational angle of the substrate and the development process, and they are validated experimentally. The variation of the lattice symmetry of the 2D structure with the substrate rotational angle is discussed in detail in relation to the axial angle and lattice constant. It is found that square, circular, rectangular, and elliptical scatterers which are arranged in parallelogram, triangular, and square lattices (with different lattice constants) can be obtained. The photonic bandgaps for each condition are also investigated. When the substrate rotational angles are the same, the normalized frequency (omega a/2 pi c) of photonic bandgap structures with an equal filling factor are very similar regardless of the interference angle. The results are helpful in designing the forbidden frequency when the lattice constant and the scatterer shape can be controlled by the interferometric lithographic technique.

6.
Appl Opt ; 45(32): 8278-87, 2006 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-17068571

RESUMEN

We utilize a modified interferometric exposure model, enhanced with the Beer-Lambert law, to study how some process parameters influence the structural dimensions within the whole exposure area. An experimental apparatus is built to verify the accuracy of this model. The simulation results indicate that when the incident angle is larger than 15 degrees, the effect of the beam deformation cannot be neglected. One cannot readily obtain periodic structures with the same dimensions during static exposure because of the Gaussian distribution of the light intensity. The theoretical results match the experimental ones quite well. The variation of Dill's parameter A has a greater influence on the transmittance and the linewidth when A is decreasing. If a poor contrast fringe is exposed in the photoresist, it will not only cause a greater nonuniformity of the structural dimensions but also a decreased aspect ratio in the structure after the development process.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...