Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38739512

RESUMEN

Deep cooperative multi-agent reinforcement learning has demonstrated its remarkable success over a wide spectrum of complex control tasks. However, recent advances in multi-agent learning mainly focus on value decomposition while leaving entity interactions still intertwined, which easily leads to over-fitting on noisy interactions between entities. In this work, we introduce a novel interactiOn Pattern disenTangling (OPT) method, to disentangle the entity interactions into interaction prototypes, each of which represents an underlying interaction pattern within a subgroup of the entities. OPT facilitates filtering the noisy interactions between irrelevant entities and thus significantly improves generalizability as well as interpretability. Specifically, OPT introduces a sparse disagreement mechanism to encourage sparsity and diversity among discovered interaction prototypes. Then the model selectively restructures these prototypes into a compact interaction pattern by an aggregator with learnable weights. To alleviate the training instability issue caused by partial observability, we propose to maximize the mutual information between the aggregation weights and the history behaviors of each agent. Experiments on single-task, multi-task and zero-shot benchmarks demonstrate that the proposed method yields results superior to the state-of-the-art counterparts. Our code is available at https://github.com/liushunyu/OPT.

2.
ACS Omega ; 9(17): 19063-19070, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38708254

RESUMEN

With the development of new synthetic methods, 2-vinylfuran (V2F) has become a potential renewable biofuel. In this work, the potential energy surfaces for the V2F unimolecular dissociation reaction, the H-addition reaction, and the H-abstraction reaction were constructed at the G4 level. The temperature- and pressure-dependent rate constants for the relevant reactions on the potential energy surfaces were calculated by solving the master equation based on the transition state theory and Rice-Ramsperger-Kassel-Marcus theory. The results show that the rate constant for the intramolecular H-transfer reaction of V2F with H atoms from the C(5) site to the C(4) site to form 2-vinylfuran-3(2H)-carbene, followed by the decomposition to form h145te3o, is the highest. The rate constants for the H-abstraction reaction of V2F with H atoms were the largest at C(6) on the branched chain, followed by C(7), and the rate constants for the H-abstraction reaction at C(3), C(4), and C(5) on the furan ring were not competitive. Negative temperature coefficient effects are observed for the rate constants of the addition reactions of V2F with H atoms at low pressures, with the H-addition rate constant at the C(5) site being the largest. This work not only provides the necessary rate constants for the reaction mechanism of V2F combustion but also provides theoretical guidance for the practical application of furan-based fuels.

3.
Rice (N Y) ; 17(1): 35, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38748282

RESUMEN

BACKGROUND: Plant cell walls have evolved precise plasticity in response to environmental stimuli. The plant heterotrimeric G protein complexes could sense and transmit extracellular signals to intracellular signaling systems, and activate a series of downstream responses. dep1 (Dense and Erect Panicles 1), the gain-of-function mutation of DEP1 encoding a G protein γ subunit, confers rice multiple improved agronomic traits. However, the effects of DEP1 on cell wall biosynthesis and wall-related agronomic traits remain largely unknown. RESULTS: In this study, we showed that the DEP1 mutation affects cell wall biosynthesis, leading to improved lodging resistance and biomass saccharification. The DEP1 is ubiquitously expressed with a relatively higher expression level in tissues rich in cell walls. The CRISPR/Cas9 editing mutants of DEP1 (dep1-cs) displayed a significant enhancement in stem mechanical properties relative to the wild-type, leading to a substantial improvement in lodging resistance. Cell wall analyses showed that the DEP1 mutation increased the contents of cellulose, hemicelluloses, and pectin, and reduced lignin content and cellulose crystallinity (CrI). Additionally, the dep1-cs seedlings exhibited higher sensitivity to cellulose biosynthesis inhibitors, 2,6-Dichlorobenzonitrile (DCB) and isoxaben, compared with the wild-type, confirming the role of DEP1 in cellulose deposition. Moreover, the DEP1 mutation-mediated alterations of cell walls lead to increased enzymatic saccharification of biomass after the alkali pretreatment. Furthermore, the comparative transcriptome analysis revealed that the DEP1 mutation substantially altered expression of genes involved in carbohydrate metabolism, and cell wall biosynthesis. CONCLUSIONS: Our findings revealed the roles of DEP1 in cell wall biosynthesis, lodging resistance, and biomass saccharification in rice and suggested genetic modification of DEP1 as a potential strategy to develop energy rice varieties with high lodging resistance.

4.
Sci Bull (Beijing) ; 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38760248

RESUMEN

Mechanical loading is required for bone homeostasis, but the underlying mechanism is still unclear. Our previous studies revealed that the mechanical protein polycystin-1 (PC1, encoded by Pkd1) is critical for bone formation. However, the role of PC1 in bone resorption is unknown. Here, we found that PC1 directly regulates osteoclastogenesis and bone resorption. The conditional deletion of Pkd1 in the osteoclast lineage resulted in a reduced number of osteoclasts, decreased bone resorption, and increased bone mass. A cohort study of 32,500 patients further revealed that autosomal dominant polycystic kidney disease, which is mainly caused by loss-of-function mutation of the PKD1 gene, is associated with a lower risk of hip fracture than those with other chronic kidney diseases. Moreover, mice with osteoclast-specific knockout of Pkd1 showed complete resistance to unloading-induced bone loss. A mechanistic study revealed that PC1 facilitated TAZ nuclear translocation via the C-terminal tail-TAZ complex and that conditional deletion of Taz in the osteoclast lineage resulted in reduced osteoclastogenesis and increased bone mass. Pharmacological regulation of the PC1-TAZ axis alleviated unloading- and estrogen deficiency- induced bone loss. Thus, the PC1-TAZ axis may be a potential therapeutic target for osteoclast-related osteoporosis.

5.
Theranostics ; 14(6): 2544-2559, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38646641

RESUMEN

Background: Mechanical forces are indispensable for bone healing, disruption of which is recognized as a contributing cause to nonunion or delayed union. However, the underlying mechanism of mechanical regulation of fracture healing is elusive. Methods: We used the lineage-tracing mouse model, conditional knockout depletion mouse model, hindlimb unloading model and single-cell RNA sequencing to analyze the crucial roles of mechanosensitive protein polycystin-1 (PC1, Pkd1) promotes periosteal stem/progenitor cells (PSPCs) osteochondral differentiation in fracture healing. Results: Our results showed that cathepsin (Ctsk)-positive PSPCs are fracture-responsive and mechanosensitive and can differentiate into osteoblasts and chondrocytes during fracture repair. We found that polycystin-1 declines markedly in PSPCs with mechanical unloading while increasing in response to mechanical stimulus. Mice with conditional depletion of Pkd1 in Ctsk+ PSPCs show impaired osteochondrogenesis, reduced cortical bone formation, delayed fracture healing, and diminished responsiveness to mechanical unloading. Mechanistically, PC1 facilitates nuclear translocation of transcriptional coactivator TAZ via PC1 C-terminal tail cleavage, enhancing osteochondral differentiation potential of PSPCs. Pharmacological intervention of the PC1-TAZ axis and promotion of TAZ nuclear translocation using Zinc01442821 enhances fracture healing and alleviates delayed union or nonunion induced by mechanical unloading. Conclusion: Our study reveals that Ctsk+ PSPCs within the callus can sense mechanical forces through the PC1-TAZ axis, targeting which represents great therapeutic potential for delayed fracture union or nonunion.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Diferenciación Celular , Condrocitos , Curación de Fractura , Osteogénesis , Células Madre , Canales Catiónicos TRPP , Animales , Curación de Fractura/fisiología , Ratones , Canales Catiónicos TRPP/metabolismo , Canales Catiónicos TRPP/genética , Condrocitos/metabolismo , Células Madre/metabolismo , Osteogénesis/fisiología , Ratones Noqueados , Condrogénesis/fisiología , Periostio/metabolismo , Osteoblastos/metabolismo , Osteoblastos/fisiología , Modelos Animales de Enfermedad , Masculino
6.
Cell Death Dis ; 15(4): 271, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38632264

RESUMEN

Diabetes, a group of metabolic disorders, constitutes an important global health problem. Diabetes and its complications place a heavy financial strain on both patients and the global healthcare establishment. The lack of effective treatments contributes to this pessimistic situation and negative outlook. Exosomes released from mesenchymal stromal cells (MSCs) have emerged as the most likely new breakthrough and advancement in treating of diabetes and diabetes-associated complication due to its capacity of intercellular communication, modulating the local microenvironment, and regulating cellular processes. In the present review, we briefly outlined the properties of MSCs-derived exosomes, provided a thorough summary of their biological functions and potential uses in diabetes and its related complications.


Asunto(s)
Complicaciones de la Diabetes , Diabetes Mellitus , Exosomas , Células Madre Mesenquimatosas , Humanos , Exosomas/metabolismo , Complicaciones de la Diabetes/metabolismo , Comunicación Celular , Células Madre Mesenquimatosas/metabolismo , Resultado del Tratamiento , Diabetes Mellitus/metabolismo
7.
Opt Express ; 32(6): 9433-9441, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38571178

RESUMEN

Sharp bends are crucial for large-scale and high-density photonics integration on thin-film lithium niobate platform. In this study, we demonstrate low-loss (<0.05 dB) and sharp bends (Reff = 30 µm) using free-form curves with a 200-nm-thick slab and a rib height of 200 nm on x-cut lithium niobate. Employing the same design method, we successfully realize a compact fully-etched ring resonator with a remarkably large free spectral range of 10.36 nm experimentally. Notably, the equivalent radius of the ring resonator is a mere 15 µm, with a loaded Q factor reaching 2.2 × 104.

8.
Clin Breast Cancer ; 24(3): 204-214, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38102010

RESUMEN

BACKGROUND: Identifying molecular subtypes of breast cancer (BC) is of great significance in selecting optimal treatment strategy. Different molecular subtypes of BC have various vascular distribution characteristics. Contrast-enhanced ultrasound (CEUS) can dynamically display the microcirculation of tumor. This study intends to explore the conventional ultrasound and CEUS characteristics of different molecular subtypes of BC. METHODS: During this prospective study, 86 patients with BC who were divided into Luminal A (LA), Luminal B (LB), HER2 over-expression (H2), and triple-negative (TN). The CEUS qualitative and quantitative characteristics of BC with different molecular subtypes was explored, as well as the conventional ultrasound features. In addition, the diagnostic efficiency of CEUS quantitative parameters in differentiating molecular subtypes of BC was analyzed. RESULTS: Our study found that the Adler grade differed significantly among 4 molecular subtypes (P < .05). The enhancement speed, enhancement degree and size after enhancement of 4 molecular subtypes were statistically different (P < .05). The wash in slope (WIS), peak intensity (PI), and wash-in area under the curve (WiAUC) differed significantly among 4 subtypes (P < .05). The diagnostic efficiency of PI was better for detecting LA and H2 subtype with the areas under the receiver operating characteristic curve was 0.778 and 0.734, respectively. CONCLUSION: Different molecular subtypes of BC have different CEUS and conventional ultrasound characteristics. CEUS can provide valuable imaging basis for precise clinical diagnosis and individualized therapy of BC with different molecular subtypes.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/patología , Estudios Prospectivos , Medios de Contraste , Ultrasonografía/métodos , Curva ROC
9.
Chem Rev ; 123(22): 12431-12470, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37906708

RESUMEN

Fluorinated polymeric nanoparticles (FPNPs) combine unique properties of fluorocarbon and polymeric nanoparticles, which has stimulated massive interest for decades. However, fluoropolymers are not readily available from nature, resulting in synthetic developments to obtain FPNPs via free radical polymerizations. Recently, while increasing cutting-edge directions demand tailored FPNPs, such materials have been difficult to access via conventional approaches. Reversible-deactivation radical polymerizations (RDRPs) are powerful methods to afford well-defined polymers. Researchers have applied RDRPs to the fabrication of FPNPs, enabling the construction of particles with improved complexity in terms of structure, composition, morphology, and functionality. Related examples can be classified into three categories. First, well-defined fluoropolymers synthesized via RDRPs have been utilized as precursors to form FPNPs through self-folding and solution self-assembly. Second, thermally and photoinitiated RDRPs have been explored to realize in situ preparations of FPNPs with varied morphologies via polymerization-induced self-assembly and cross-linking copolymerization. Third, grafting from inorganic nanoparticles has been investigated based on RDRPs. Importantly, those advancements have promoted studies toward promising applications, including magnetic resonance imaging, biomedical delivery, energy storage, adsorption of perfluorinated alkyl substances, photosensitizers, and so on. This Review should present useful knowledge to researchers in polymer science and nanomaterials and inspire innovative ideas for the synthesis and applications of FPNPs.

10.
ACS Omega ; 8(39): 36008-36015, 2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37810654

RESUMEN

Oxymethylene ether-2 (CH3-O-CH2-O-CH2-O-CH3, OME2), a carbon-neutral fuel, was hydrogenated from CO2 captured in air or exhaust gases and reused for synthesis with renewable electricity. In the current work, two different potential energy surfaces (PESs) for the reaction of OME2 radicals with O2 were constructed at the CCSD(T)/CBS//M062X/6-311++G(d,p) level. Based on the Rice-Ramsperger-Kassel-Marcus (RRKM) theory and transition state theory, the temperature- and pressure-dependent rate constants for the relevant reactions on the PES were calculated by solving the master equation. The Arrhenius equation has been used to fit the temperature- and pressure-dependent reaction rate constants. The main reaction channels on the PES are discussed, showing that initial adduct generation and intramolecular H-transfer reactions are the key reaction channels for low-temperature combustion. Among them, the HO2 concerted elimination reaction channel needs to overcome higher energy barriers leading to uncompetitive HO2 concerted elimination reactions. The calculated rate constants were updated to the OME2 combustion model, and the updated model is in considerable agreement with experimentally measured data on the ignition delay time in the shock tube. The present work provides support for further studies on the oxidation reaction of long-chain OME..

11.
Chem Sci ; 14(39): 10934-10943, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37829021

RESUMEN

We present an investigation into the transferability of pseudopotentials (PPs) with a nonlinear core correction (NLCC) using the Goedecker, Teter, and Hutter (GTH) protocol across a range of pure GGA, meta-GGA and hybrid functionals, and their impact on thermochemical and non-thermochemical properties. The GTH-NLCC PP for the PBE density functional demonstrates remarkable transferability to the PBE0 and ωB97X-V exchange-correlation functionals, and relative to no NLCC, improves agreement significantly for thermochemical benchmarks compared to all-electron calculations. On the other hand, the B97M-rV meta-GGA functional performs poorly with the PBE-derived GTH-NLCC PP, which is mitigated by reoptimizing the NLCC parameters for this specific functional. The findings reveal that atomization energies exhibit the greatest improvements from use of the NLCC, which thus provides an important correction needed for covalent interactions relevant to applications involving chemical reactivity. Finally we test the NLCC-GTH PPs when combined with medium-size TZV2P molecularly optimized (MOLOPT) basis sets which are typically utilized in condensed phase simulations, and show that they lead to consistently good results when compared to all-electron calculations for atomization energies, ionization potentials, barrier heights, and non-covalent interactions, but lead to somewhat larger errors for electron affinities.

12.
Opt Lett ; 48(15): 4145-4148, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37527139

RESUMEN

Fiber-to-chip coupling is an essential issue for taking high-performance integrated photonic devices into practical applications. On a thin-film lithium niobate platform, such a high-performance coupler featuring low loss, large bandwidth, and polarization independence is highly desired. However, the mode hybridization induced by the birefringence of lithium niobate seriously restricts a polarization-independent coupling. Here, we propose and experimentally demonstrate a high-performance and polarization-diversity cantilever edge coupler (EC) with the assistance of a two-stage polarization splitter and rotator (PSR). The fabricated cantilever EC shows a minimal coupling loss of 1.06 dB/facet, and the fully etched PSR structure shows a low insertion loss (IL) of -0.62 dB. The whole polarization-diversity cantilever EC exhibits a low IL of -2.17 dB and -1.68 dB for TE0 and TM0 mode, respectively, as well as a small cross talk of <-15 dB covering the wavelength band from 1.5 µm to 1.6 µm. A polarization-dependent loss <0.5 dB over the same wavelength band is also obtained. The proposed fiber-to-waveguide coupler, compatible with the fabrication process of popular thin-film lithium niobate photonic devices, can work as a coupling scheme for on-chip polarization-diversity applications.

13.
Angew Chem Int Ed Engl ; 62(48): e202310636, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-37581580

RESUMEN

In the past 80 years, fluoropolymers have found broad applications in both industrial and academic settings, owing to their unique physicochemical properties. Copolymerizations of fluoroalkene feedstocks present an important avenue to obtain high-performance materials by merging intrinsic attributes of fluorocarbons and great versatility of comonomers. Recently, while massive investigations have disclosed the great potentials of precisely synthesized polymers, researchers have made considerable efforts to approach well-defined fluorinated copolymers. This minireview discusses challenges in controlled radical copolymerizations (CRCPs) of fluoroalkenes and provides a concise perspective on recent progress in CRCPs of fluoroalkenes (e.g., tetrafluoroethylene, chlorotrifluoroethylene, hexafluoropropene, perfluoroalkyl vinyl ethers) with non-fluorinated vinyl comonomers, which have enabled on-demand preparations of various main-chain fluoropolymers with predefined molar masses, low dispersities, as well as regulable chemical compositions and sequences. The synthetic advantages of CRCPs will promote controlled and facile access to customized fluoropolymers for high-tech applications such as batteries, coatings and so on.

14.
Molecules ; 28(15)2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37570671

RESUMEN

Phenanthrene (PHE), as a structurally simple, tricyclic, polycyclic aromatic hydrocarbon (PAHs), is widely present in marine environments and organisms, with serious ecological and health impacts. It is crucial to study fast and simple high-sensitivity detection methods for phenanthrene in seawater for the environment and the human body. In this paper, a immunosensor was prepared by using a multi-wall carbon nanotube (MWCNTs)-chitosan oligosaccharide (COS) nanocomposite membrane loaded with phenanthrene antibody. The principle was based on the antibody-antigen reaction in the immune reaction, using the strong electron transfer ability of multi-walled carbon nanotubes, coupled with chitosan oligosaccharides with an excellent film formation and biocompatibility, to amplify the detection signal. The content of the phenanthrene in seawater was studied via differential pulse voltammetry (DPV) using a potassium ferricyanide system as a redox probe. The antibody concentration, pH value, and probe concentration were optimized. Under the optimal experimental conditions, the response peak current of the phenanthrene was inversely proportional to the concentration of phenanthrene, in the range from 0.5 ng·mL-1 to 80 ng·mL-1, and the detection limit was 0.30 ng·mL-1. The immune sensor was successfully applied to the detection of phenanthrene in marine water, with a recovery rate of 96.1~101.5%, and provided a stable, sensitive, and accurate method for the real-time monitoring of marine environments.


Asunto(s)
Técnicas Biosensibles , Quitosano , Nanopartículas del Metal , Nanotubos de Carbono , Fenantrenos , Humanos , Nanotubos de Carbono/química , Quitosano/química , Técnicas Biosensibles/métodos , Inmunoensayo/métodos , Electrodos , Anticuerpos , Agua de Mar , Oligosacáridos , Técnicas Electroquímicas/métodos , Nanopartículas del Metal/química , Oro/química
15.
Food Chem X ; 18: 100707, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37397187

RESUMEN

The olive vegetable is popular food owing to its unique flavor. This study innovatively used headspace-gas chromatography-ion mobility spectrometry to evaluate olive vegetables' volatiles under different conditions. A total of 57 volatile compounds were determined from olive vegetables, including 30 aldehydes, 8 ketones, 5 alcohols, 2 esters, 8 hydrocarbons, 1 furans, 3 sulfur compounds. The PCA distinguished the olive vegetable stored at different conditions by volatiles. The gallery plot showed that olive vegetables stored at 4 °C for 21 d produced more limonene, which had a desirable fruity odor. The (E)-2-octenal, (E)-2-pentenal, (E,E)-2,4-heptadienal, 5-methylfurfural, and heptanal in fresh olive vegetables were lowest and increased with storage time. Furthermore, the change of volatiles was the least when the olive vegetable was stored at 0 °C. This study can provide theoretical bases for improving the flavor quality of olive vegetables and developing traditional food for standardized industrial production.

16.
ACS Omega ; 8(23): 21277-21284, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37332780

RESUMEN

With the development of synthetic methods, 2-acetylfuran (AF2) has become a potential biomass fuel. The potential energy surfaces of AF2 and OH including OH-addition reactions and H-abstraction reactions were constructed by theoretical calculations at the CCSDT/CBS/M06-2x/cc-pVTZ level. The temperature- and pressure-dependent rate constants of the relevant reaction pathways were solved based on transition state theory and Rice-Ramsperger-Kassel-Marcus theory, as well as Eckart tunneling effect correction. The results showed that the H-abstraction reaction on CH3 on the branched chain and the OH-addition reaction at the C (2) and C (5) sites on the furan ring were the main reaction channels in the reaction system. At low temperatures, the AF2 and OH-addition reactions dominate, and the percentage decreases gradually to zero with increasing temperature, and at high temperatures, the H-abstraction reactions on the branched chains become the most dominant reaction channel. The rate coefficients calculated in the current work improve the combustion mechanism of AF2 and provide theoretical guidance for the practical application of AF2.

17.
J Chem Theory Comput ; 19(10): 2827-2841, 2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37156013

RESUMEN

The pseudopotential (PP) approximation is one of the most common techniques in computational chemistry. Despite its long history, the development of custom PPs has not tracked with the explosion of different density functional approximations (DFAs). As a result, the use of PPs with exchange/correlation models for which they were not developed is widespread, although this practice is known to be theoretically unsound. The extent of PP inconsistency errors (PPIEs) associated with this practice has not been systematically explored across the types of energy differences commonly evaluated in chemical applications. We evaluate PPIEs for a number of PPs and DFAs across 196 chemically relevant systems of both transition-metal and main-group elements, as represented by the W4-11, TMC34, and S22 data sets. Near the complete basis set limit, these PPs are found to cleanly approach all-electron (AE) results for noncovalent interactions but introduce root-mean-squared errors (RMSEs) upwards of 15 kcal mol-1 into predictions of covalent bond energies for a number of popular DFAs. We achieve significant improvements through the use of empirical atom- and DFA-specific PP corrections, indicating considerable systematicity of the PPIEs. The results of this work have implications for chemical modeling in both molecular contexts and for DFA design, which we discuss.

18.
Opt Lett ; 48(5): 1264-1267, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36857264

RESUMEN

Directional couplers (DCs) are essential components in integrated photonics. A symmetric DC with a large fabrication tolerance on thin-film lithium niobate is demonstrated here. The principle is based on the beat length compensation of the opposite trend of width and gap fabrication errors in the DC. The tolerance is greater than ±100 nm for an optimized structure. The experimental results support the simulated ones. The principle can be applied to DC-based devices, such as 3-dB couplers and waveguide array couplers with a high yield.

19.
ACS Omega ; 8(10): 9385-9393, 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36936284

RESUMEN

Linear ethers are promising biomass fuels with high volume energy density and high cetane number that may be used directly as alternative fuels or fuel additives in internal combustion engines. In this work, the first O2 addition reaction of the di-n-propyl ether radical was investigated using high-level quantum chemical calculations combined with the Rice-Ramsperger-Kassel-Marcus theory to solve the master equation. The potential energy surfaces of di-n-propyl ether radicals (C6H13O) with O2 were constructed at the QCISD(T)/CBS//M062X/6-311++G(d, p) level, and the rate constants were calculated for the pressure range of 0.1-100 atm and the temperature range of 300-1500 K and fitted by a modified Arrhenius formula. The calculations show that the consumption of di-n-propyl ether peroxyl radicals (C6H13O3) via the five-membered ring or six-membered ring transition-state reaction channel is most favorable. In addition, the low-temperature oxidation experiments of di-n-propyl ether were validated based on the calculations of the current work, and the results showed that the calculations were a good predictor of the experimental results.

20.
Opt Lett ; 48(6): 1434-1437, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36946946

RESUMEN

A metal-based one-dimensional grating coupler on an x-cut lithium-niobate-on-insulator wafer structure for a polarization-independent fiber interface is designed and demonstrated. By using a metal-based plasmonic mode, the diffractive angle for the two polarized modes in the lithium niobate ridge waveguide can be tuned to be the same. The polarization dependence of the grating coupler therefore can be effectively reduced. The fabricated device exhibits -3.56-dB and -4.08-dB peak coupling losses per coupler at 1573 nm for the TE and TM modes, respectively. The polarization-dependent losses are less than 0.69 dB in a 44-nm wavelength range. The demonstrated grating coupler can serve as a polarization-independent optical fiber interface on lithium-niobate-on-insulator and facilitate on-chip polarization diversity applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...