Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
J Cancer Res Ther ; 20(4): 1109-1123, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39206972

RESUMEN

ABSTRACT: This expert consensus reviews current literature and provides clinical practice guidelines for the diagnosis and treatment of multiple ground glass nodule-like lung cancer. The main contents of this review include the following: ① follow-up strategies, ② differential diagnosis, ③ diagnosis and staging, ④ treatment methods, and ⑤ post-treatment follow-up.


Asunto(s)
Consenso , Neoplasias Pulmonares , Humanos , Diagnóstico Diferencial , Manejo de la Enfermedad , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/patología , Nódulos Pulmonares Múltiples/diagnóstico , Nódulos Pulmonares Múltiples/patología , Nódulos Pulmonares Múltiples/terapia , Estadificación de Neoplasias/normas , Guías de Práctica Clínica como Asunto
2.
EClinicalMedicine ; 75: 102769, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39165498

RESUMEN

Background: In order to address the low compliance and dissatisfied specificity of low-dose computed tomography (LDCT), efficient and non-invasive approaches are needed to complement its limitations for lung cancer screening and management. The ASCEND-LUNG study is a prospective two-stage case-control study designed to evaluate the performance of a liquid biopsy-based comprehensive lung cancer screening and post-screening pulmonary nodules management system. Methods: We aimed to develop a comprehensive lung cancer system called Peking University Lung Cancer Screening and Management System (PKU-LCSMS) which comprises a lung cancer screening model to identify specific populations requiring LDCT and an artificial intelligence-aided (AI-aided) pulmonary nodules diagnostic model to classify pulmonary nodules following LDCT. A dataset of 465 participants (216 cancer, 47 benign, 202 non-cancer control) were used for the two models' development phase. For the lung cancer screening model development, cancer participants were randomly split at a ratio of 1:1 into the train and validation cohorts, and then non-cancer controls were age-matched to the cancer cases in a 1:1 ratio. Similarly, for the AI-aided pulmonary nodules model, cancer and benign participants were also randomly divided at a ratio of 2:1 into the train and validation cohorts. Subsequently, during the model validation phase, sensitivity and specificity were validated using an independent validation cohort consisting of 291 participants (140 cancer, 25 benign, 126 non-cancer control). Prospectively collected blood samples were analyzed for multi-omics including cell-free DNA (cfDNA) methylation, mutation, and serum protein. Computerized tomography (CT) images data was also obtained. Paired tissue samples were additionally analyzed for DNA methylation, DNA mutation, and messenger RNA (mRNA) expression to further explore the potential biological mechanisms. This study is registered with ClinicalTrials.gov, NCT04817046. Findings: Baseline blood samples were evaluated for the whole screening and diagnostic process. The cfDNA methylation-based lung cancer screening model exhibited the highest area under the curve (AUC) of 0.910 (95% CI, 0.869-0.950), followed by the protein model (0.891 [95% CI, 0.845-0.938]) and lastly the mutation model (0.577 [95% CI, 0.482-0.672]). Further, the final screening model, which incorporated cfDNA methylation and protein features, achieved an AUC of 0.963 (95% CI, 0.942-0.984). In the independent validation cohort, the multi-omics screening model showed a sensitivity of 99.2% (95% CI, 0.957-1.000) at a specificity of 56.3% (95% CI, 0.472-0.652). For the AI-aided pulmonary nodules diagnostic model, which incorporated cfDNA methylation and CT images features, it yielded a sensitivity of 81.1% (95% CI, 0.732-0.875), a specificity of 76.0% (95% CI, 0.549-0.906) in the independent validation cohort. Furthermore, four differentially methylated regions (DMRs) were shared in the lung cancer screening model and the AI-aided pulmonary nodules diagnostic model. Interpretation: We developed and validated a liquid biopsy-based comprehensive lung cancer screening and management system called PKU-LCSMS which combined a blood multi-omics based lung cancer screening model incorporating cfDNA methylation and protein features and an AI-aided pulmonary nodules diagnostic model integrating CT images and cfDNA methylation features in sequence to streamline the entire process of lung cancer screening and post-screening pulmonary nodules management. It might provide a promising applicable solution for lung cancer screening and management. Funding: This work was supported by Science, Science, Technology & Innovation Project of Xiongan New Area, Beijing Natural Science Foundation, CAMS Innovation Fund for Medical Sciences (CIFMS), Clinical Medicine Plus X-Young Scholars Project of Peking University, the Fundamental Research Funds for the Central Universities, Research Unit of Intelligence Diagnosis and Treatment in Early Non-small Cell Lung Cancer, Chinese Academy of Medical Sciences, National Natural Science Foundation of China, Peking University People's Hospital Research and Development Funds, National Key Research and Development Program of China, and the fundamental research funds for the central universities.

4.
Int J Cancer ; 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39109825

RESUMEN

Currently, conventional immunotherapies for the treatment of non-small cell lung cancer (NSCLC) have low response rates and benefit only a minority of patients, particularly those with advanced disease, so novel therapeutic strategies are urgent deeded. Therapeutic cancer vaccines, a form of active immunotherapy, harness potential to activate the adaptive immune system against tumor cells via antigen cross-presentation. Cancer vaccines can establish enduring immune memory and guard against recurrences. Vaccine-induced tumor cell death prompts antigen epitope spreading, activating functional T cells and thereby sustaining a cancer-immunity cycle. The success of vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rendered cancer vaccines a promising avenue, especially when combined with immunotherapy or chemoradiotherapy for NSCLC. This review delves into the intricate antitumor immune mechanisms underlying therapeutic cancer vaccines, enumerates the tumor antigen spectrum of NSCLC, discusses different cancer vaccines progress and summarizes relevant clinical trials. Additionally, we analyze the combination strategies, current limitations, and future prospects of cancer vaccines in NSCLC treatment, aiming to offer fresh insights for their clinical application in managing NSCLC. Overall, cancer vaccines offer promising potential for NSCLC treatment, particularly combining with chemoradiotherapy or immunotherapy could further improve survival in advanced patients. Exploring inhaled vaccines or prophylactic vaccines represents a crucial research avenue.

5.
Transl Lung Cancer Res ; 13(4): 849-860, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38736498

RESUMEN

Background: Resectable non-small cell lung cancer (NSCLC) patients have a high risk of recurrence. Multiple randomized controlled trials (RCTs) have shown that neoadjuvant chemo-immunotherapy brings new hope for these patients. The study aims to evaluate the safety, surgery-related outcomes and oncological outcomes for neoadjuvant chemo-immunotherapy in real-world setting with a large sample size and long-term follow-up. Methods: Patients with clinical stage IB-IIIB NSCLC who received neoadjuvant chemo-immunotherapy at two Chinese institutions were included in this retrospective cohort study. Surgical and oncological outcomes of the enrolled NSCLC patients were collected and analyzed. Results: There were 158 patients identified, of which 124 (78.5%) were at stage IIIA-IIIB and the remaining 34 (21.5%) were at stage IB-IIB. Forty-one patients (25.9%) received two cycles of neoadjuvant treatment, 80 (50.6%) had three cycles, and 37 (23.4%) had four cycles. Twenty-four patients (15.2%) experienced grade 3 or worse immune-related adverse events. The median interval time between the last neoadjuvant therapy and surgery was 37 [interquartile range (IQR), 31-43] days. Fifty-eight out of 96 (60.4%) central NSCLC patients who were expected to undergo complex surgery had the scope or the difficulty of operation reduced. Ninety-five (60.1%) patients achieved major pathologic response (MPR), including 62 (39.2%) patients with pathologic complete response (pCR). Multivariate regression analysis showed that no clinical factor other than programmed death-ligand 1 (PD-L1) expression was predictive of the pathological response. The median follow-up time from diagnosis was 27.1 months. MPR and pCR were significantly associated with improved progression-free survival (PFS) and overall survival (OS). Neither stage nor PD-L1 expression was significantly associated with long-term survival. Conclusions: The neoadjuvant chemo-immunotherapy is a feasible strategy for NSCLC with a favorable rate of pCR/MPR, modified resection and 2-year survival. No clinical factor other than PD-L1 expression was predictive of the pathological response. pCR/MPR may be effective surrogate endpoint for survival in NSCLC patients who received neoadjuvant chemo-immunotherapy.

6.
Sci Bull (Beijing) ; 69(10): 1556-1568, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38641511

RESUMEN

Lung cancer is an exceedingly malignant tumor reported as having the highest morbidity and mortality of any cancer worldwide, thus posing a great threat to global health. Despite the growing demand for precision medicine, current methods for early clinical detection, treatment and prognosis monitoring in lung cancer are hampered by certain bottlenecks. Studies have found that during the formation and development of a tumor, molecular substances carrying tumor-related genetic information can be released into body fluids. Liquid biopsy (LB), a method for detecting these tumor-related markers in body fluids, maybe a way to make progress in these bottlenecks. In recent years, LB technology has undergone rapid advancements. Therefore, this review will provide information on technical updates to LB and its potential clinical applications, evaluate its effectiveness for specific applications, discuss the existing limitations of LB, and present a look forward to possible future clinical applications. Specifically, this paper will introduce technical updates from the prospectives of engineering breakthroughs in the detection of membrane-based LB biomarkers and other improvements in sequencing technology. Additionally, it will summarize the latest applications of liquid biopsy for the early detection, diagnosis, treatment, and prognosis of lung cancer. We will present the interconnectedness of clinical and laboratory issues and the interplay of technology and application in LB today.


Asunto(s)
Biomarcadores de Tumor , Neoplasias Pulmonares , Humanos , Biopsia Líquida/métodos , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/análisis , Pronóstico , Detección Precoz del Cáncer/métodos , Medicina de Precisión/métodos
7.
EClinicalMedicine ; 65: 102270, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38106558

RESUMEN

Background: Prognosis is crucial for personalized treatment and surveillance suggestion of the resected non-small-cell lung cancer (NSCLC) patients in stage I-III. Although the tumor-node-metastasis (TNM) staging system is a powerful predictor, it is not perfect enough to accurately distinguish all the patients, especially within the same TNM stage. In this study, we developed an intelligent prognosis evaluation system (IPES) using pre-therapy CT images to assist the traditional TNM staging system for more accurate prognosis prediction of resected NSCLC patients. Methods: 20,333 CT images of 6371 patients from June 12, 2009 to March 24, 2022 in West China Hospital of Sichuan University, Mianzhu People's Hospital, Peking University People's Hospital, Chengdu Shangjin Nanfu Hospital and Guangan Peoples' Hospital were included in this retrospective study. We developed the IPES based on self-supervised pre-training and multi-task learning, which aimed to predict an overall survival (OS) risk for each patient. We further evaluated the prognostic accuracy of the IPES and its ability to stratify NSCLC patients with the same TNM stage and with the same EGFR genotype. Findings: The IPES was able to predict OS risk for stage I-III resected NSCLC patients in the training set (C-index 0.806; 95% CI: 0.744-0.846), internal validation set (0.783; 95% CI: 0.744-0.825) and external validation set (0.817; 95% CI: 0.786-0.849). In addition, IPES performed well in early-stage (stage I) and EGFR genotype prediction. Furthermore, by adopting IPES-based survival score (IPES-score), resected NSCLC patients in the same stage or with the same EGFR genotype could be divided into low- and high-risk subgroups with good and poor prognosis, respectively (p < 0.05 for all). Interpretation: The IPES provided a non-invasive way to obtain prognosis-related information from patients. The identification of IPES for resected NSCLC patients with low and high prognostic risk in the same TNM stage or with the same EGFR genotype suggests that IPES have potential to offer more personalized treatment and surveillance suggestion for NSCLC patients. Funding: This study was funded by the National Natural Science Foundation of China (grant 62272055, 92259303, 92059203), New Cornerstone Science Foundation through the XPLORER PRIZE, Young Elite Scientists Sponsorship Program by CAST (2021QNRC001), Clinical Medicine Plus X - Young Scholars Project, Peking University, the Fundamental Research Funds for the Central Universities (K.C.), Research Unit of Intelligence Diagnosis and Treatment in Early Non-small Cell Lung Cancer, Chinese Academy of Medical Sciences (2021RU002), BUPT Excellent Ph.D. Students Foundation (CX2022104).

8.
Cancer Cell ; 41(10): 1749-1762.e6, 2023 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-37683638

RESUMEN

We report a personalized tumor-informed technology, Patient-specific pROgnostic and Potential tHErapeutic marker Tracking (PROPHET) using deep sequencing of 50 patient-specific variants to detect molecular residual disease (MRD) with a limit of detection of 0.004%. PROPHET and state-of-the-art fixed-panel assays were applied to 760 plasma samples from 181 prospectively enrolled early stage non-small cell lung cancer patients. PROPHET shows higher sensitivity of 45% at baseline with circulating tumor DNA (ctDNA). It outperforms fixed-panel assays in prognostic analysis and demonstrates a median lead-time of 299 days to radiologically confirmed recurrence. Personalized non-canonical variants account for 98.2% with prognostic effects similar to canonical variants. The proposed tumor-node-metastasis-blood (TNMB) classification surpasses TNM staging for prognostic prediction at the decision point of adjuvant treatment. PROPHET shows potential to evaluate the effect of adjuvant therapy and serve as an arbiter of the equivocal radiological diagnosis. These findings highlight the potential advantages of personalized cancer techniques in MRD detection.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Ácidos Nucleicos Libres de Células , ADN Tumoral Circulante , Neoplasias Pulmonares , Carcinoma Pulmonar de Células Pequeñas , Humanos , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/cirugía , Carcinoma de Pulmón de Células no Pequeñas/patología , ADN Tumoral Circulante/análisis , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/cirugía , ADN de Neoplasias , Neoplasia Residual/genética , Biomarcadores de Tumor/genética , Recurrencia Local de Neoplasia/genética
9.
BMC Med ; 21(1): 255, 2023 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-37452374

RESUMEN

BACKGROUND: The feasibility of DNA methylation-based assays in detecting minimal residual disease (MRD) and postoperative monitoring remains unestablished. We aim to investigate the dynamic characteristics of cancer-related methylation signals and the feasibility of methylation-based MRD detection in surgical lung cancer patients. METHODS: Matched tumor, tumor-adjacent tissues, and longitudinal blood samples from a cohort (MEDAL) were analyzed by ultra-deep targeted sequencing and bisulfite sequencing. A tumor-informed methylation-based MRD (timMRD) was employed to evaluate the methylation status of each blood sample. Survival analysis was performed in the MEDAL cohort (n = 195) and validated in an independent cohort (DYNAMIC, n = 36). RESULTS: Tumor-informed methylation status enabled an accurate recurrence risk assessment better than the tumor-naïve methylation approach. Baseline timMRD-scores were positively correlated with tumor burden, invasiveness, and the existence and abundance of somatic mutations. Patients with higher timMRD-scores at postoperative time-points demonstrated significantly shorter disease-free survival in the MEDAL cohort (HR: 3.08, 95% CI: 1.48-6.42; P = 0.002) and the independent DYNAMIC cohort (HR: 2.80, 95% CI: 0.96-8.20; P = 0.041). Multivariable regression analysis identified postoperative timMRD-score as an independent prognostic factor for lung cancer. Compared to tumor-informed somatic mutation status, timMRD-scores yielded better performance in identifying the relapsed patients during postoperative follow-up, including subgroups with lower tumor burden like stage I, and was more accurate among relapsed patients with baseline ctDNA-negative status. Comparing to the average lead time of ctDNA mutation, timMRD-score yielded a negative predictive value of 97.2% at 120 days prior to relapse. CONCLUSIONS: The dynamic methylation-based analysis of peripheral blood provides a promising strategy for postoperative cancer surveillance. TRIAL REGISTRATION: This study (MEDAL, MEthylation based Dynamic Analysis for Lung cancer) was registered on ClinicalTrials.gov on 08/05/2018 (NCT03634826). https://clinicaltrials.gov/ct2/show/NCT03634826 .


Asunto(s)
Ácidos Nucleicos Libres de Células , ADN Tumoral Circulante , Neoplasias Pulmonares , Humanos , Ácidos Nucleicos Libres de Células/genética , ADN Tumoral Circulante/genética , Recurrencia Local de Neoplasia/diagnóstico , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/patología , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/cirugía , Metilación de ADN/genética , Biomarcadores de Tumor/genética
10.
Transl Oncol ; 34: 101720, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37315508

RESUMEN

Cancer morbidity and mortality are growing rapidly worldwide and it is urgent to develop a convenient and effective method that can identify cancer patients at an early stage and predict treatment outcomes. As a minimally invasive and reproducible tool, liquid biopsy (LB) offers the opportunity to detect, analyze and monitor cancer in any body fluids including blood, complementing the limitations of tissue biopsy. In liquid biopsy, circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA) are the two most common biomarkers, displaying great potential in the clinical application of pan-cancer. In this review, we expound the samples, targets, and newest techniques in liquid biopsy and summarize current clinical applications in several specific cancers. Besides, we put forward a bright prospect for further exploring the emerging application of liquid biopsy in the field of pan-cancer precision medicine.

11.
Appl Immunohistochem Mol Morphol ; 31(6): 414-420, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37338116

RESUMEN

BACKGROUND: TTF-1/NKX2-1 is a lineage-specific transcription factor that is expressed in the thyroid gland, lung, and forehead. It functions as a key component in regulating lung morphogenesis and differentiation. It is mainly expressed in lung adenocarcinoma, while its prognostic value in non-small-cell lung cancer remains controversial. This study evaluates the prognostic value of TTF-1 in different cellular locations in lung squamous cell carcinoma (SCC) and adenocarcinoma (ADC). MATERIALS AND METHODS: The expression of TTF-1 was analyzed by immunohistochemistry in 492 patients (ADC 340 and SCC 152) who had undergone surgery between June 2004 and June 2012. Disease-free survival (DFS) and overall survival (OS) were estimated using the Kaplan-Meier method. RESULTS: Positive TTF-1 expression was 68.2% in ADC (located in the nucleus) and 29.6% in SCC (cytoplasm staining). The presence of TTF-1 was associated with better OS in SCC and ADC ( P =0.000 and P =0.003, respectively). In SCC, an increased level of TTF-1 was associated with a longer disease-free survival (DFS). Positive TTF-1 expression was an independent favorable prognostic factor in SCC ( P =0.020, HR: 2.789, 95%CI: 1.172-6.637) and ADC ( P =0.025, HR: 1.680, 95%CI: 1.069-2.641). CONCLUSIONS: TTF-1 was largely located in the nucleus of ADC, while it always accumulated in the cytoplasm of SCC. The higher level of TTF-1 in the different subcellular locations of ADC and SCC was an independent, favorable prognostic factor, respectively. Increased TTF-1 in the cytoplasm of SCC was associated with a longer OS and DFS.


Asunto(s)
Adenocarcinoma , Carcinoma de Pulmón de Células no Pequeñas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Neoplasias Pulmonares/metabolismo , Pronóstico , Factores de Transcripción/metabolismo , Carcinoma de Células Escamosas/metabolismo , Adenocarcinoma/patología , Pulmón/metabolismo
12.
Int J Cancer ; 153(4): 826-842, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37186387

RESUMEN

The impact of host condition on prognosis of non-small cell lung cancer (NSCLC) and the interaction between host and NSCLC remain unclear. This study investigated the association between systemic inflammation and prognosis and characteristics of radically resected NSCLC. This study consisted of a cohort study and an exploratory study of institutional prospective databases. All participants underwent video-assisted thoracoscopic lobectomy as the primary treatment. Systemic inflammation was assessed before surgery using the advanced lung cancer inflammation index and the systemic inflammation response index. Next-generation sequencing and multiplex immunofluorescence analysis were conducted to delineate tumor characteristics. In the cohort study including 1507 participants, high inflammation was associated with poor disease-free survival and overall survival before and after propensity score matching and in multivariable analysis. Systemic inflammation showed good prognostic value for stage IA-IB NSCLC, and the prognostic value diminished with upstaging of NSCLC. In the exploratory study including 217 adenocarcinomas, tumor microenvironment of high inflammation group showed a greater abundance of PDL1+ tumor cells and immune cells, which were independent from driver gene mutations and clinicopathological characteristics. Spatial analysis demonstrated a higher frequency of immune-suppressed cellular neighborhood, increased avoidance between immune cells and PDL1- tumor cells and compromised immune killing and presentation in tumor microenvironment of high inflammation group. Systemic inflammation showed limited association with genomic mutations. Systemic inflammation may influence the prognosis of NSCLC at both the systematic level and the local immune response. The correlation between high inflammation and immunosuppressive microenvironment indicates a novel thread for anticancer treatment.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/patología , Estudios de Cohortes , Pronóstico , Inflamación , Estudios Retrospectivos , Microambiente Tumoral
13.
Int J Surg ; 109(8): 2286-2292, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37161431

RESUMEN

BACKGROUND: Neoadjuvant chemoimmunotherapy has shown a good therapeutic effect on non-small cell lung cancer (NSCLC), which also opens up the possibility of applying organ preservation strategies. This study investigated the feasibility of modified surgery after potent neoadjuvant chemoimmunotherapy in central type NSCLC. METHODS: In this multicenter retrospective cohort study, patients with central type NSCLC who received 2-4 cycles of neoadjuvant chemoimmunotherapy between January 2019 and June 2022 at Air Force Medical University Tangdu Hospital and Peking University People's Hospital were eligible. Patients were divided into modified and nonmodified groups according to the extent of surgery, after which, the safety and long-term prognosis of surgery were investigated. RESULTS: A total of 84 patients were enrolled. Of 36 (42.9%) patients who underwent modified surgery, 21 patients underwent lobectomy, 12 patients underwent lobectomy with bronchoplasty, 2 patients underwent sleeve lobectomy, and 1 patient underwent bilobectomy. The modification rate for the initially estimated pneumonectomy, sleeve lobectomy, and bilobectomy was 48.6, 44.8, and 30%, respectively. Grades II-V postoperative complications were found in 5 (13.9%) patients in the modified group and 17 (35.4%) patients in the nonmodified group (relative risk, 0.393; 95% CI, 0.016-0.963; P =0.026). No significant difference was observed regarding the surgical approach, operative duration, blood loss, or R0 resection rate. The 2-year local recurrence rate was 3.7% (95% CI, 0.004-0.175) and 5.2% (95% CI, 0.012-0.168) in the modified group and nonmodified group, respectively. The 1-year PFS rate of modified and nonmodified groups was 97.1% (95% CI, 83.7-99.8) and 86.9% (95% CI, 73.4-94.4), respectively, while 2-year PFS were 89.8% (95% CI, 74.1-96.9) and 71.8% (95% CI, 56.7-83.4), respectively. CONCLUSION: Applying organ preservation strategies, that is, undergoing modified surgery after neoadjuvant chemoimmunotherapy, is feasible for selected central type NSCLC patients with favorable safety and long-term survival.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/cirugía , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/cirugía , Terapia Neoadyuvante , Estudios Retrospectivos , Preservación de Órganos , Neumonectomía
14.
Nature ; 616(7955): 159-167, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37020004

RESUMEN

A complete understanding of how exposure to environmental substances promotes cancer formation is lacking. More than 70 years ago, tumorigenesis was proposed to occur in a two-step process: an initiating step that induces mutations in healthy cells, followed by a promoter step that triggers cancer development1. Here we propose that environmental particulate matter measuring ≤2.5 µm (PM2.5), known to be associated with lung cancer risk, promotes lung cancer by acting on cells that harbour pre-existing oncogenic mutations in healthy lung tissue. Focusing on EGFR-driven lung cancer, which is more common in never-smokers or light smokers, we found a significant association between PM2.5 levels and the incidence of lung cancer for 32,957 EGFR-driven lung cancer cases in four within-country cohorts. Functional mouse models revealed that air pollutants cause an influx of macrophages into the lung and release of interleukin-1ß. This process results in a progenitor-like cell state within EGFR mutant lung alveolar type II epithelial cells that fuels tumorigenesis. Ultradeep mutational profiling of histologically normal lung tissue from 295 individuals across 3 clinical cohorts revealed oncogenic EGFR and KRAS driver mutations in 18% and 53% of healthy tissue samples, respectively. These findings collectively support a tumour-promoting role for  PM2.5 air pollutants  and provide impetus for public health policy initiatives to address air pollution to reduce disease burden.


Asunto(s)
Adenocarcinoma del Pulmón , Contaminantes Atmosféricos , Contaminación del Aire , Transformación Celular Neoplásica , Neoplasias Pulmonares , Animales , Ratones , Adenocarcinoma del Pulmón/inducido químicamente , Adenocarcinoma del Pulmón/genética , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Transformación Celular Neoplásica/inducido químicamente , Transformación Celular Neoplásica/efectos de los fármacos , Transformación Celular Neoplásica/genética , Exposición a Riesgos Ambientales , Receptores ErbB/genética , Neoplasias Pulmonares/inducido químicamente , Neoplasias Pulmonares/genética , Material Particulado/efectos adversos , Material Particulado/análisis , Tamaño de la Partícula , Estudios de Cohortes , Macrófagos Alveolares/efectos de los fármacos , Células Epiteliales Alveolares/efectos de los fármacos , Células Epiteliales Alveolares/patología
15.
EBioMedicine ; 91: 104553, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37027928

RESUMEN

BACKGROUND: Liquid biopsy is a promising non-invasive alternative for cancer screening and minimal residual disease (MRD) detection, although there are some concerns regarding its clinical applications. We aimed to develop an accurate detection platform based on liquid biopsy for both cancer screening and MRD detection in patients with lung cancer (LC), which is also applicable to clinical use. METHODS: We applied a modified whole-genome sequencing (WGS) -based High-performance Infrastructure For MultIomics (HIFI) method for LC screening and postoperative MRD detection by combining the hyper-co-methylated read approach and the circulating single-molecule amplification and resequencing technology (cSMART2.0). FINDINGS: For early screening of LC, the LC score model was constructed using the support vector machine, which showed sensitivity (51.8%) at high specificity (96.3%) and achieved an AUC of 0.912 in the validation set prospectively enrolled from multiple centers. The screening model achieved detection efficiency with an AUC of 0.906 in patients with lung adenocarcinoma and outperformed other clinical models in solid nodule cohort. When applied the HIFI model to real social population, a negative predictive value (NPV) of 99.92% was achieved in Chinese population. Additionally, the MRD detection rate improved significantly by combining results from WGS and cSMART2.0, with sensitivity of 73.7% at specificity of 97.3%. INTERPRETATION: In conclusion, the HIFI method is promising for diagnosis and postoperative monitoring of LC. FUNDING: This study was supported by CAMS Innovation Fund for Medical Sciences, Chinese Academy of Medical Sciences, National Natural Science Foundation of China, Beijing Natural Science Foundation and Peking University People's Hospital.


Asunto(s)
Ácidos Nucleicos Libres de Células , Neoplasias Pulmonares , Humanos , Multiómica , Neoplasia Residual/diagnóstico , Neoplasia Residual/genética , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/cirugía , Genómica/métodos , Biomarcadores de Tumor
16.
EBioMedicine ; 90: 104508, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36958271

RESUMEN

In the era of histopathology-based diagnosis, the discrimination between multiple lung cancers (MLCs) poses significant uncertainties and has thus become a clinical dilemma. However, recent significant advances and increased application of molecular technologies in clonal relatedness assessment have led to more precision in distinguishing between multiple primary lung cancers (MPLCs) and intrapulmonary metastasis (IPMs). This review summarizes recent advances in the molecular identification of MLCs and compares various methods based on somatic mutations, chromosome alterations, microRNAs, and tumor microenvironment markers. The paper also discusses current challenges at the forefront of genomics-based discrimination, including the selection of detection technology, application of next-generation sequencing, and intratumoral heterogeneity (ITH). In summary, this paper highlights an entrance into the primary stage of molecule-based diagnostics.


Asunto(s)
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Pulmón/patología , Biomarcadores de Tumor/genética , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Microambiente Tumoral
17.
Dis Esophagus ; 36(2)2023 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35849094

RESUMEN

Chylothorax is a serious complication after esophagectomy and there are unmet needs for new intraoperative navigation tools to reduce its incidence. The aim of this study is to explore the feasibility and effectiveness of near-infrared fluorescence imaging (NIR-FI) with indocyanine green (ICG) to identify thoracic ducts (TDs) and chyle leakage during video-assisted thoracoscopic esophagectomy. We recruited 41 patients who underwent thoraco-laparoscopic minimally invasive esophagectomy (MIE) for esophageal cancer in this prospective, open-label, single-arm clinical trial. ICG was injected into the right inguinal region before operations, after which TD anatomy and potential chyle leakage were checked under the near-infrared fluorescence intraoperatively. In 38 of 41 patients (92.7%) using NIR-FI, TDs were visible in high contrast. The mean signal-to-background ratio (SBR) value of all fluorescent TDs was 3.05 ± 1.56. Fluorescence imaging of TDs could be detected 0.5 hours after ICG injection and last up to 3 hours with an acceptable SBR value. The optimal observation time window is from about 1 to 2 hours after ICG injection. Under the guidance of real-time NIR-FI, three patients were found to have chylous leakage and the selective TD ligations were performed intraoperatively. No patient had postoperative chylothorax. NIR-FI with ICG can provide highly sensitive and real-time assessment of TDs as well as determine the source of chyle leakage, which might help reduce TD injury and direct selective TD ligation. It could be a promising navigation tool to reduce the incidence of chylothorax after minimally invasive esophagectomy.


Asunto(s)
Quilotórax , Neoplasias Esofágicas , Humanos , Quilotórax/diagnóstico por imagen , Quilotórax/etiología , Quilotórax/cirugía , Neoplasias Esofágicas/diagnóstico por imagen , Neoplasias Esofágicas/cirugía , Neoplasias Esofágicas/complicaciones , Esofagectomía/efectos adversos , Esofagectomía/métodos , Verde de Indocianina , Imagen Óptica/efectos adversos , Complicaciones Posoperatorias/diagnóstico por imagen , Complicaciones Posoperatorias/etiología , Complicaciones Posoperatorias/prevención & control , Estudios Prospectivos , Conducto Torácico/diagnóstico por imagen , Conducto Torácico/cirugía
18.
BMC Med ; 20(1): 480, 2022 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-36514063

RESUMEN

BACKGROUND: Liquid biopsy has been widely researched for early diagnosis, prognostication and disease monitoring in lung cancer, but there is a need to investigate its clinical utility for early-stage non-small cell lung cancer (NSCLC). METHODS: We performed a meta-analysis and systematic review to evaluate diagnostic and prognostic values of liquid biopsy for early-stage NSCLC, regarding the common biomarkers, circulating tumor cells, circulating tumor DNA (ctDNA), methylation signatures, and microRNAs. Cochrane Library, PubMed, EMBASE databases, ClinicalTrials.gov, and reference lists were searched for eligible studies since inception to 17 May 2022. Sensitivity, specificity and area under the curve (AUC) were assessed for diagnostic values. Hazard ratio (HR) with a 95% confidence interval (CI) was extracted from the recurrence-free survival (RFS) and overall survival (OS) plots for prognostic analysis. Also, potential predictive values and treatment response evaluation were further investigated. RESULTS: In this meta-analysis, there were 34 studies eligible for diagnostic assessment and 21 for prognostic analysis. The estimated diagnostic values of biomarkers for early-stage NSCLC with AUCs ranged from 0.84 to 0.87. The factors TNM stage I, T1 stage, N0 stage, adenocarcinoma, young age, and nonsmoking contributed to a lower tumor burden, with a median cell-free DNA concentration of 8.64 ng/ml. For prognostic analysis, the presence of molecular residual disease (MRD) detection was a strong predictor of disease relapse (RFS, HR, 4.95; 95% CI, 3.06-8.02; p < 0.001) and inferior OS (HR, 3.93; 95% CI, 1.97-7.83; p < 0.001), with average lead time of 179 ± 74 days between molecular recurrence and radiographic progression. Predictive values analysis showed adjuvant therapy significantly benefited the RFS of MRD + patients (HR, 0.27; p < 0.001), while an opposite tendency was detected for MRD - patients (HR, 1.51; p = 0.19). For treatment response evaluation, a strong correlation between pathological response and ctDNA clearance was detected, and both were associated with longer survival after neoadjuvant therapy. CONCLUSIONS: In conclusion, our study indicated liquid biopsy could reliably facilitate more precision and effective management of early-stage NSCLC. Improvement of liquid biopsy techniques and detection approaches and platforms is still needed, and higher-quality trials are required to provide more rigorous evidence prior to their routine clinical application.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/análisis , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico , Carcinoma de Pulmón de Células no Pequeñas/genética , Biopsia Líquida , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Recurrencia Local de Neoplasia
19.
Eur J Cardiothorac Surg ; 62(6)2022 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-36321964
20.
Cell Rep ; 40(2): 111047, 2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35830809

RESUMEN

Stage I non-small cell lung cancer (NSCLC) presents diverse outcomes. To identify molecular features leading to tumor recurrence in early-stage NSCLC, we perform multiregional whole-exome sequencing (WES), RNA sequencing, and plasma-targeted circulating tumor DNA (ctDNA) detection analysis between recurrent and recurrent-free stage I NSCLC patients (CHN-P cohort) who had undergone R0 resection with a median 5-year follow-up time. Integrated analysis indicates that the multidimensional clinical and genomic model can stratify the prognosis of stage I NSCLC in both CHN-P and EUR-T cohorts and correlates with positive pre-surgical deep next generation sequencing (NGS) ctDNA detection. Increased genomic instability related to DNA interstrand crosslinks and double-strand break repair processes is significantly associated with early tumor relapse. This study reveals important molecular insights into stage I NSCLC and may inform clinical postoperative treatment and follow-up strategies.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , ADN Tumoral Circulante , Neoplasias Pulmonares , Biomarcadores de Tumor/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , ADN Tumoral Circulante/genética , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Neoplasias Pulmonares/patología , Mutación , Recurrencia Local de Neoplasia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA