Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Endocr Connect ; 13(5)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38466634

RESUMEN

Chronic inflammation induced by obesity plays a crucial role in the pathogenesis of insulin resistance. The infiltration of macrophages into adipose tissues contributes to adipose tissue inflammation and insulin resistance. Kaempferol, a flavonoid present in various vegetables and fruits, has been shown to possess remarkable anti-inflammatory properties. In this study, we used leptin receptor-deficient obese mice (db/db) as an insulin-resistant model and investigated the effects of kaempferol treatment on obesity-induced insulin resistance. Our findings revealed that the administration of kaempferol (50 mg/kg/day, for 6 weeks) significantly reduced body weight, fat mass, and adipocyte size. Moreover, it effectively ameliorated abnormal glucose tolerance and insulin resistance in db/db mice. In the adipose tissue of obese mice treated with kaempferol, we observed a reduction in macrophage infiltration and a downregulation of mRNA expression of M1 marker genes TNF-α and IL-1ß, accompanied by an upregulation of Arg1 and IL-10 mRNA expression. Additionally, kaempferol treatment significantly inhibited the STING/NLRP3 signaling pathway in adipose tissue. In vitro experiments, we further discovered that kaempferol treatment suppressed LPS-induced inflammation through the activation of NLRP3/caspase 1 signaling in RAW 264.7 macrophages. Our results suggest that kaempferol may effectively alleviate inflammation and insulin resistance in the adipose tissue of db/db mice by modulating the STING/NLRP3 signaling pathway.

2.
Biomed Pharmacother ; 151: 113098, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35594714

RESUMEN

Urinary tract infections (UTI) are recognized as one of the most common infectious diseases worldwide, and uropathogenic Escherichia coli (UPEC) is the main causative agent of UTI. Dendrobium officinale polysaccharides (DOPs), the main effective ingredient in Dendrobium officinale, have been reported to possess an anti-inflammatory role. Whether DOPs can attenuate the inflammatory injury (pyroptosis) induced by UPEC remains unknown. The present study aimed to assess the protective effect and potential mechanism of DOPs in UPEC-induced pyroptosis. Cell viability of THP-1 differentiated macrophage cells with DOPs was determined using MTT assay. Pyroptosis by UPEC in macrophage cells with or not DOPs pre-treatment was evaluated with flow cytometry analysis, lactate dehydrogenase (LDH) assay, and proinflammatory cytokines secretion. Expression level of key proteins in the NLRP3/Caspase-1/GSDMD pyroptotic pathway was analyzed with western blot. Furthermore the effect of DOPs on ROS activation was investigated. Results indicated that DOPs attenuated UPEC-induced cell damage in macrophage cells, inhibited the activation of NLRP3 mediated inflammasome, subsequently decreased induction and activation of caspase-1/GSDMD, and reduced the secretion of pro-inflammatory cytokine (IL-1ß et al.). Moreover, pretreatment with DOPs significantly reduces ROS production, an important/putative pyroptosis stimulus signal. These results suggested that DOPs successfully mitigate UPEC-promoted pyroptosis in macrophage cells. The protective effects of DOPs are associated with the inhibition of the NLRP3/Caspase-1/GSDMD pathway and ROS signal activation.


Asunto(s)
Dendrobium , Macrófagos , Polisacáridos , Piroptosis , Escherichia coli Uropatógena , Caspasa 1/metabolismo , Dendrobium/química , Humanos , Inflamasomas/metabolismo , Macrófagos/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Polisacáridos/metabolismo , Polisacáridos/farmacología , Piroptosis/fisiología , Especies Reactivas de Oxígeno/metabolismo , Escherichia coli Uropatógena/metabolismo , Escherichia coli Uropatógena/patogenicidad
3.
Medicine (Baltimore) ; 99(48): e22972, 2020 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-33235064

RESUMEN

Trigeminal neuralgia (TN) is a chronic neuropathic pain that seriously affects the daily life of patients. There is increasing evidence that microRNAs (miRNAs) play an important role in the development of neuropathic pain.In this study, the TaqMan Low Density Array (TLDA) was used to analyze the serum miRNA levels of 28 TN patients, and 31 healthy people without any neuropathic pain were used as controls.The results showed that the expression profile of serum miRNA in TN patients was different from that in healthy controls. Compared with the control group, 13 miRNAs in the serum of TN patients were up-regulated and 115 miRNAs were down-regulated by >2 times. Quantitative reverse transcription PCR (RT-qPCR) analysis and receiver operating characteristic (ROC) curve were performed. The analysis further confirmed that the expression levels of 4 miRNAs, including miR-132-3p, miR-146b-5p, miR-155-5p, and miR-384, were significantly higher than those of healthy controls, and the difference was statistically significant.This study preliminarily confirmed the changes of serum miRNA expression profile in TN patients. Among them, 4 kinds of serum miRNA are likely to be related to the occurrence and development of TN.


Asunto(s)
MicroARN Circulante/sangre , Neuralgia del Trigémino/genética , Estudios de Casos y Controles , Femenino , Perfilación de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Curva ROC , Sensibilidad y Especificidad , Regulación hacia Arriba
4.
Antiviral Res ; 152: 117-123, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29458129

RESUMEN

Enterovirus 71 (EV71) is the primary pathogen of hand-foot-and-mouth disease (HFMD) in children and virus infections are associated with severe neurological dysfunctions and even death. MIR2911 is a honeysuckle-encoded atypical microRNA with extreme stability. Here, we report that MIR2911 directly inhibits EV71 replication by targeting the VP1 gene. Bioinformatics prediction and luciferase reporter assay showed that MIR2911 could target the VP1 gene of EV71. Transfection experiments using synthetic MIR2911 and extracted RNA from HS decoction shown that each of these preparations was capable of inhibiting EV71 VP1 protein expression; however, these preparations did not impact EV71 mutants in which the MIR2911-binding sites were mutated. Furthermore, EV71 replication was increased by antagomirs against MIR2911 in the HS decoction, implying that MIR2911 was physiologically functional in controlling EV71 replication in vitro. These results indicated that, by targeting VP1 gene, MIR2911 may effectively inhibit EV71 replication. Our results also provide a potential novel strategy on the therapy and/or prevention of HFMD originating from EV71 virus infection.


Asunto(s)
Antivirales/farmacología , Proteínas de la Cápside/metabolismo , Enterovirus Humano A/efectos de los fármacos , Enfermedad de Boca, Mano y Pie/virología , Lonicera/genética , MicroARNs/farmacología , ARN de Planta/farmacología , Replicación Viral/efectos de los fármacos , Antivirales/metabolismo , Proteínas de la Cápside/antagonistas & inhibidores , Proteínas de la Cápside/genética , Enterovirus Humano A/genética , Enterovirus Humano A/fisiología , Humanos , Lonicera/química , Lonicera/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , ARN de Planta/genética , ARN de Planta/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...