Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Med Chem ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38722184

RESUMEN

Interleukin-1 receptor-associated kinase 4 (IRAK4) is a promising therapeutic target in inflammation-related diseases. However, the inhibition of IRAK4 kinase activity may lead to moderate anti-inflammatory efficacy owing to the dual role of IRAK4 as an active kinase and a scaffolding protein. Herein, we report the design, synthesis, and biological evaluation of an efficient and selective IRAK4 proteolysis-targeting chimeric molecule that eliminates IRAK4 scaffolding functions. The most potent compound, LC-MI-3, effectively degraded cellular IRAK4, with a half-maximal degradation concentration of 47.3 nM. LC-MI-3 effectively inhibited the activation of downstream nuclear factor-κB signaling and exerted more potent pharmacological effects than traditional kinase inhibitors. Furthermore, LC-MI-3 exerted significant therapeutic effects in lipopolysaccharide- and Escherichia coli-induced acute and chronic inflammatory skin models compared with kinase inhibitors in vivo. Therefore, LC-MI-3 is a candidate IRAK4 degrader in alternative targeting strategies and advanced drug development.

2.
J Org Chem ; 89(10): 6793-6797, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38691096

RESUMEN

A convenient method for preparing 3-aryl isoquinolines via a base-promoted tandem reaction is presented. Simply combining commercially available 2-methyl-arylaldehydes, benzonitriles, NaN(SiMe3)2, and Cs2CO3 enabled the synthesis of a variety of isoquinolines (23 examples, ≤90% yield). Among the syntheses of isoquinolines, the transition metal-free method described here is straightforward, practical, and operationally simple.

3.
Front Oncol ; 14: 1295575, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38690170

RESUMEN

Objective: To construct and validate radiomics models for hepatocellular carcinoma (HCC) grade predictions based on contrast-enhanced CT (CECT). Methods: Patients with pathologically confirmed HCC after surgery and underwent CECT at our institution between January 2016 and December 2020 were enrolled and randomly divided into training and validation datasets. With tumor segmentation and feature extraction, radiomic models were constructed using univariate analysis, followed by least absolute shrinkage and selection operator (LASSO) regression. In addition, combined models with clinical factors and radiomics scores (Radscore) were constructed using logistic regression. Finally, all models were evaluated using the receiver operating characteristic (ROC) curve with the area under the curve (AUC), calibration curve, and decision curve analysis (DCA). Results: In total 242 patients were enrolled in this study, of whom 170 and 72 formed the training and validation datasets, respectively. The arterial phase and portal venous phase (AP+VP) radiomics model were evaluated as the best for predicting HCC pathological grade among all the models built in our study (AUC = 0.981 in the training dataset; AUC = 0.842 in the validation dataset) and was used to build a nomogram. Furthermore, the calibration curve and DCA indicated that the AP+VP radiomics model had a satisfactory prediction efficiency. Conclusions: Low- and high-grade HCC can be distinguished with good diagnostic performance using a CECT-based radiomics model.

4.
Immunol Res ; 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38581614

RESUMEN

Systemic lupus erythematosus (SLE) is an autoimmune and inflammatory disease with a risk associated with hormonal and reproductive factors. However, the potential causal effects between these factors and SLE remain unclear. A two-sample Mendelian randomization study was conducted using the published summary data from the genome-wide association study database. Five independent genetic variants associated with hormonal and reproductive factors were selected as instrumental variables: age at menarche, age at natural menopause, estradiol, testosterone, and follistatin. To estimate the causal relationship between these exposure factors and disease outcome, we employed the inverse-variance weighted, weighted median, and MR-Egger methods. In addition, we carried out multiple sensitivity analyses to validate model assumptions. Inverse variance weighted showed that there was a causal association between circulating follistatin and SLE risk (OR = 1.38, 95% CI 1.03 to 1.86, P = 0.033). However, no evidence was found that correlation between AAM (OR = 1.04, 95% CI 0.77 to 1.40, P = 0.798), ANM (OR = 0.99, 95% CI 0.92 to 1.06, P = 0.721), E2 (OR = 1.40, 95% CI 0.14 to 13.56, P = 0.772), T (OR = 1.25, 95% CI 0.70 to 2.28, P = 0.459), and SLE risk. Our study revealed that elevated circulating follistatin associates with an increased risk of SLE. This finding suggests that the regulatory signals mediated by circulating follistatin may provide a potential mechanism relevant to the treatment of SLE.

5.
Diabetes ; 73(5): 780-796, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38394639

RESUMEN

Increasing evidence implicates chronic inflammation as the main pathological cause of diabetic nephropathy (DN). Exploration of key targets in the inflammatory pathway may provide new treatment options for DN. We aimed to investigate the role of Src homology 2-containing protein tyrosine phosphatase 2 (SHP2) in macrophages and its association with DN. The upregulated phosphorylation of SHP2 was detected in macrophages in both patients with diabetes and in a mouse model. Using macrophage-specific SHP2-knockout (SHP2-MKO) mice and SHP2fl/fl mice injected with streptozotocin (STZ), we showed that SHP2-MKO significantly attenuated renal dysfunction, collagen deposition, fibrosis, and inflammatory response in mice with STZ-induced diabetes. RNA-sequencing analysis using primary mouse peritoneal macrophages (MPMs) showed that SHP2 deletion mainly affected mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) signaling pathways as well as MAPK/NF-κB-dependent inflammatory cytokine release in MPMs. Further study indicated that SHP2-deficient macrophages failed to release cytokines that induce phenotypic transition and fibrosis in renal cells. Administration with a pharmacological SHP2 inhibitor, SHP099, remarkably protected kidneys in both type 1 and type 2 diabetic mice. In conclusion, these results identify macrophage SHP2 as a new accelerator of DN and suggest that SHP2 inhibition may be a therapeutic option for patients with DN.


Asunto(s)
Diabetes Mellitus Experimental , Nefropatías Diabéticas , Proteína Tirosina Fosfatasa no Receptora Tipo 11 , Animales , Humanos , Ratones , Citocinas/metabolismo , Diabetes Mellitus Experimental/metabolismo , Nefropatías Diabéticas/metabolismo , Fibrosis , Inflamación/patología , Macrófagos/metabolismo , Ratones Noqueados , Proteínas Quinasas Activadas por Mitógenos/metabolismo , FN-kappa B/metabolismo
6.
Bioorg Chem ; 145: 107215, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38394920

RESUMEN

Doublecortin-like kinase 1 (DCLK1) is a microtubule-associated protein kinase involved in neurogenesis and human cancer. Recent studies have revealed a novel functional role for DCLK1 in inflammatory signaling, thus positioning it as a novel target kinase for respiratory inflammatory disease treatment. In this study, we designed and synthesized a series of NVP-TAE684-based derivatives as novel anti-inflammatory agents targeting DCLK1. Bio-layer interferometry binding screening and kinase assays of the NVP-TAE684 derivatives led to the discovery of an effective DCLK1 inhibitor (a24), with an IC50 of 179.7 nM. Compound a24 effectively inhibited lipopolysaccharide (LPS)-induced inflammation in macrophages with higher potency than the lead compound. Mechanistically, compound a24 inhibited LPS-induced inflammation by inhibiting DCLK1-mediated IKKß phosphorylation. Furthermore, compound a24 showed in vivo anti-inflammatory activity in an LPS-challenged acute lung injury model. These findings suggest that compound a24 may serve as a novel candidate for the development of DCLK1 inhibitors and a potential therapeutic agent for the treatment of inflammatory diseases.


Asunto(s)
Lesión Pulmonar Aguda , Quinasas Similares a Doblecortina , Humanos , Péptidos y Proteínas de Señalización Intracelular , Lipopolisacáridos/farmacología , Proteínas Serina-Treonina Quinasas , Inflamación/tratamiento farmacológico , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/tratamiento farmacológico
7.
Appl Biochem Biotechnol ; 196(1): 573-587, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37160564

RESUMEN

Molecular-targeted therapies for lung squamous cell carcinoma (LSCC) are limited mainly because targetable oncogenic aberrations are absent in LSCC. Recent genomic analyses have revealed that the fibroblast growth factor (FGF) signaling pathway plays a fundamental role in LSCC progression via cancer cell proliferation and angiogenesis. In the present study, we designed, expressed, and purified a fibroblast growth factor receptor fragment (FGFR1-Fc) fusion protein using NS/0 cells. In FGF2-FGFR1 overexpressed NCI-H1703 cells, the FGFR1-Fc fusion protein effectively inhibited proliferation and invasion and arrested the cell cycle at the G0-G1 phase. In NCI-H1703 cells treated with the FGFR1-Fc fusion protein, the phosphorylation levels of FGFR1, FRS2, ERK, and AKT were significantly reduced. Using an siRNA assay, we demonstrated that FGF2-FGFR1 is the major anti-tumor target of FGFR1-Fc fusion the FGFR1-Fc fusion protein, which also significantly inhibited proliferation and invasion by NCI-H1703 cells via the FGF2-FGFR1 signaling pathway. In addition, the FGFR1-Fc fusion protein significantly inhibited angiogenesis in an embryonic chorioallantoic membrane model. The FGFR1-Fc fusion protein may be an effective therapeutic candidate for LSCC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Carcinoma de Células Escamosas , Inmunoglobulina G , Neoplasias Pulmonares , Proteínas Recombinantes de Fusión , Humanos , Factor 2 de Crecimiento de Fibroblastos , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Proliferación Celular , Carcinoma de Células Escamosas/genética , Neoplasias Pulmonares/tratamiento farmacológico , Pulmón/metabolismo , Línea Celular Tumoral
8.
Med Mol Morphol ; 57(1): 1-10, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37583001

RESUMEN

The relationship between the expression of the SATB2 and CDX2 proteins and common molecular changes and clinical prognosis in colorectal cancer (CRC) still needs further clarification. We collected 1180 cases of CRC and explored the association between the expression of SATB2 and CDX2 and clinicopathological characteristics, molecular alterations, and overall survival of CRC using whole-slide immunohistochemistry. Our results showed that negative expression of SATB2 and CDX2 was more common in MMR-protein-deficient CRC than in MMR-protein-proficient CRC (15.8% vs. 6.0%, P = 0.001; 14.5% vs. 4.0%, P = 0.000, respectively). Negative expression of SATB2 and CDX2 was more common in BRAF-mutant CRC than in BRAF wild-type CRC (17.2% vs. 6.1%, P = 0.003; 13.8% vs. 4. 2%; P = 0.004, respectively). There was no relationship between SATB2 and/or CDX2 negative expression and KRAS, NRAS, and PIK3CA mutations. The lack of expression of SATB2 and CDX2 was associated with poor histopathological features of CRC. In multivariate analysis, negative expression of SATB2 (P = 0.030), negative expression of CDX2 (P = 0.043) and late clinical stage (P = 0.000) were associated with decreased overall survival of CRC. In conclusion, the lack of SATB2 and CDX2 expression in CRC was associated with MMR protein deficiency and BRAF mutation, but not with KRAS, NRAS and PIK3CA mutation. SATB2 and CDX2 are prognostic biomarkers in patients with CRC.


Asunto(s)
Adenocarcinoma , Neoplasias Encefálicas , Neoplasias Colorrectales , Proteínas de Unión a la Región de Fijación a la Matriz , Síndromes Neoplásicos Hereditarios , Deficiencia de Proteína , Humanos , Proteínas Proto-Oncogénicas B-raf/genética , Reparación de la Incompatibilidad de ADN/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Adenocarcinoma/genética , Neoplasias Colorrectales/patología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Mutación , Factor de Transcripción CDX2/genética , Factor de Transcripción CDX2/metabolismo , Proteínas de Unión a la Región de Fijación a la Matriz/genética , Proteínas de Unión a la Región de Fijación a la Matriz/metabolismo
9.
J Nanobiotechnology ; 21(1): 502, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38129906

RESUMEN

BACKGROUND: Acute lung injury (ALI) is a critical inflammatory response syndrome that rapidly develops into acute respiratory distress syndrome (ARDS). Currently, no effective therapeutic modalities are available for patients with ALI/ARDS. According to recent studies, inhibiting both the release of pro-inflammatory cytokines and the formation of reactive oxygen species (ROS) as early as possible may be a promising therapy for ALI. RESULTS: In this study, a ROS-responsive nano-delivery system based on oxidation-sensitive chitosan (Ox-CS) was fabricated for the simultaneous delivery of Ce NPs and RT. The in vitro experiments have shown that the Ox-CS/Ceria-Resatorvid nanoparticles (Ox-CS/CeRT NPs) were rapidly and efficiently internalised by inflammatory endothelial cells. Biological evaluations validated the significant attenuation of ROS-induced oxidative stress and cell apoptosis by Ox-CS/CeRT NPs, while maintaining mitochondrial function. Additionally, Ox-CS/CeRT NPs effectively inhibited the release of pro-inflammatory factors. After intraperitoneal (i.p.) administration, Ox-CS/CeRT NPs passively targeted the lungs of LPS-induced inflamed mice and released the drug activated by the high ROS levels in inflammatory tissues. Finally, Ox-CS/CeRT NPs significantly alleviated LPS-induced lung injury through inhibiting both oxidative stress and pro-inflammatory cytokine expression. CONCLUSIONS: The created Ox-CS/CeRT NPs could act as a prospective nano-delivery system for a combination of anti-inflammatory and anti-oxidant therapy of ALI.


Asunto(s)
Lesión Pulmonar Aguda , Nanopartículas , Síndrome de Dificultad Respiratoria , Humanos , Ratones , Animales , Antioxidantes/uso terapéutico , Especies Reactivas de Oxígeno/farmacología , Células Endoteliales , Lipopolisacáridos/farmacología , Estudios Prospectivos , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/inducido químicamente , Pulmón , Nanopartículas/uso terapéutico , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Síndrome de Dificultad Respiratoria/tratamiento farmacológico
10.
Artículo en Inglés | MEDLINE | ID: mdl-37985614

RESUMEN

PURPOSE: The cross-limb (CL) technique is a commonly used endovascular treatment for addressing unfavorable anatomical features in patients with abdominal aortic aneurysm (AAA). The configuration of CL stent-graft plays a critical role in determining the postoperative hemodynamic properties and physiological behaviors, which ultimately impact the efficacy and safety of endovascular AAA treatment. This study aims to investigate the relationship between hemodynamics and CL stent-graft configuration from a hemodynamic perspective. METHODS: Five distinct geometric models of cross-limb (CL) stent-graft configurations were constructed by optimizing the real clinical computed tomography angiography (CTA) data. These models varied in main body lengths and cross angles and were used to perform numerical simulations to analyze various hemodynamic parameters. Flow pattern, distribution of wall shear stress (WSS)-related parameters, localized normalized helicity (LNH), pressure drop, and the displacement force of all models were examined in this paper. RESULTS: In patient-specific cases, helical flow and WSS increase with the main body. However, it also generated secondary flow in localized areas, leading to increased oscillation in the WSS direction. Notably, increasing the stent graft's main body length or decreasing the cross angle reduced the displacement force exerted on the stent-graft. Reducing the cross angle did not significantly alter the hemodynamic characteristics. CONCLUSION: In the clinical practice of CL deployment, it is crucial to carefully consider the stent-graft configuration and the patient specific to achieve optimal postoperative outcomes. This study provides valuable insights for guiding stent selection and treatment planning in patients with abdominal aortic aneurysm undergoing CL techniques, from a hemodynamic perspective.

11.
J Biomol Struct Dyn ; : 1-17, 2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37827992

RESUMEN

The identification of potential epigenetic targets for a known bioactive compound is essential and promising as more and more epigenetic drugs are used in cancer clinical treatment and the availability of chemogenomic data related to epigenetics increases. In this study, we introduce a novel epigenetic target identification strategy (ETI-Strategy) that integrates a multi-task graph convolutional neural network prior model and a protein-ligand interaction classification discriminating model using large-scale bioactivity data for a panel of 55 epigenetic targets. Our approach utilizes machine learning techniques to achieve an AUC value of 0.934 for the prior model and 0.830 for the discriminating model, outperforming inverse docking in predicting protein-ligand interactions. When comparing with other open-source target identification tools, it was found that only our tool was able to accurately predict all the targets corresponding to each compound. This further demonstrates the ability of our strategy to take full advantage of molecular-level information as well as protein-level information in molecular activity prediction. Our work highlights the contribution of machine learning in the identification of potential epigenetic targets and offers a novel approach for epigenetic drug discovery and development.Communicated by Ramaswamy H. Sarma.

12.
Biomimetics (Basel) ; 8(5)2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37754149

RESUMEN

Soft fingertips have distinct intrinsic features that allow robotic hands to offer adjustable and manageable stiffness for grasping. The stability of the grasp is determined by the contact stiffness between the soft fingertip and the object. Within this work, we proposed a line vector representation method based on the Winkler Model and investigated the contact stiffness between soft fingertips and objects to achieve control over the gripping force and fingertip displacement of the gripper without the need for sensors integrated in the fingertip. First, we derived the stiffness matrix of the soft fingertip, analyzed the contact stiffness, and constructed the global stiffness matrix; then, we established the grasp stiffness matrix based on the contact stiffness model, allowing for the analysis and evaluation of the soft fingertip's manipulating process. Finally, our experiment demonstrated that the variation in object orientation caused by external forces can indicate the contact force status between the fingertip and the object. This contact force status is determined by the contact stiffness. The position error between the theoretical work and tested data was less than 9%, and the angle error was less than 5.58%. The comparison between the theoretical contact stiffness and the experimental results at the interface indicate that the present model for the contact stiffness is appropriate and the theoretical contact stiffness is consistent with the experiment data.

13.
Bioengineering (Basel) ; 10(9)2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37760104

RESUMEN

Background: Moderate renal artery stenosis (50-70%) may lead to uncontrolled hypertension and eventually cause irreversible damage to renal function. However, the clinical criteria for interventional treatment are still ambiguous in this condition. This study investigated the impact of the position and degree of renal artery stenosis on hemodynamics near the renal artery to assess the short-term and long-term risks associated with this disease. Methods: Calculation models with different degrees of stenosis (50%, 60%, and 70%) located at different positions in the right renal artery were established based on the computed tomography angiography (CTA) of a personalized case. And computational fluid dynamics (CFD) was used to analyze hemodynamic surroundings near the renal artery. Results: As the degree of stenosis increases and the stenosis position is far away from the aorta, there is a decrease in renal perfusion. An analysis of the wall shear stress (WSS)-related parameters indicated areas near the renal artery (downstream of the stenosis and the entrance of the right renal artery) with potential long-term risks of thrombosis and inflammation. Conclusion: The position and degree of stenosis play a significant role in judging short-term risks associated with renal perfusion. Moreover, clinicians should consider not only short-term risks but also independent long-term risk factors, such as certain regions of 50% stenosis with adequate renal perfusion may necessitate prompt intervention.

14.
Adv Healthc Mater ; 12(31): e2301518, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37660262

RESUMEN

Conventional oral therapy for ulcerative colitis (UC) is associated with premature release or degradation of drugs in the harsh gastrointestinal environment, resulting in reduced therapeutic effectiveness. Consequently, the present study aims to develop a dual-targeted delivery system with a nanoparticle-in-microparticle (nano-in-micro) structure. The prepared Asiatic Acid-loaded delivery system (AA/CDM-BT-ALG) has pH-sensitive properties. Cellular uptake evaluation confirms that nanoparticles exhibit targeted absorption by macrophages and Caco-2 cells through mannose (Man) receptor and biotin-mediated endocytosis, respectively. Therefore, this mechanism effectively enhances intracellular drug concentration. Additionally, the biodistribution study conducted on the gastrointestinal tract of mice indicates that the colon of the microspheres group shows higher fluorescence intensity with longer duration than the other groups. This finding indicates that the microspheres exhibit selective accumulation in areas of colon inflammation. In vivo experiments in colitis mice showed that AA/CDM-BT-ALG significantly alleviates the histopathological characteristics of the colon, reduced neutrophil, and macrophage infiltration, and decreases pro-inflammatory cytokine expression. Furthermore, the effect of AA/CDM-BT-ALG on colitis is validated to be closely related to the TLR4/MyD88/NF-κB signaling pathway. The present findings suggest that the development of a dual-targeted delivery system is accomplished effectively, with the potential to serve as a drug-controlled release system for treating UC.


Asunto(s)
Colitis Ulcerosa , Colitis , Nanopartículas , Ratones , Humanos , Animales , Colitis Ulcerosa/metabolismo , Sistemas de Liberación de Medicamentos/métodos , Células CACO-2 , Distribución Tisular , Colitis/tratamiento farmacológico , Colon/metabolismo , Colon/patología , Nanopartículas/química , Modelos Animales de Enfermedad
15.
J Chem Inf Model ; 63(19): 5956-5970, 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37724339

RESUMEN

Retrosynthesis prediction is crucial in organic synthesis and drug discovery, aiding chemists in designing efficient synthetic routes for target molecules. Data-driven deep retrosynthesis prediction has gained importance due to new algorithms and enhanced computing power. Although existing models show certain predictive power on the USPTO-50K benchmark data set, no one considers the effects of byproducts during the prediction process, which may be due to the lack of byproduct information in the benchmark data set. Here, we propose a novel two-stage retrosynthesis reaction prediction framework based on byproducts called RPBP. First, RPBP predicts the byproduct involved in the reaction based on the product molecule. Then, it handles an end-to-end prediction problem based on the prediction of reactants by product and byproduct. Unlike other methods that first identify the potential reaction center and then predict reactant molecules, RPBP considers additional information from byproducts, such as reaction reagents, conditions, and sites. Interestingly, adding byproducts reduces model learning complexity in natural language processing (NLP). Our RPBP model achieves 54.7% and 66.6% top-1 retrosynthesis prediction accuracy when the reaction class is unknown and known, respectively. It outperforms existing methods for known-class reactions, thanks to the rich chemical information in byproducts. The prediction of four kinase drugs from the literature demonstrates the model's practicality and potential to accelerate drug discovery.

16.
Invest Ophthalmol Vis Sci ; 64(10): 27, 2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-37477932

RESUMEN

Purpose: The purpose of this study was to investigate the ex vivo and in vivo biomechanical characteristic of cornea in myopic eyes. Methods: Fifty-one corneal stromal lenticules were obtained from myopic eyes during the SMILE procedure and were tested by a biaxial tensile system within 24 hours postoperatively. The material properties of the lenticules were described using stress-strain curves and were compared among axial length (AL) <26 mm and AL ≥ 26 mm group. Pre-operative stress-strain index (SSI) parameters were used to evaluate the biomechanical properties of the cornea in vivo. Results: Compared with AL < 26 mm, the tangent modulus significantly decreased in horizontal and vertical directions when AL ≥ 26 mm (P < 0.05); SSI also significantly decreased when AL ≥ 26 mm (P < 0.05). Anisotropic parameter is positively correlated with AL (r = 0.307, P < 0.05). Compared with AL < 26 mm, anisotropic parameter significantly increased when AL ≥ 26 mm (P < 0.05). SSI was negatively correlated with AL (r = -0.380, P < 0.05) in the AL < 26 mm group but not in the AL ≥ 26 mm group (P > 0.05). Compared with 26 mm ≤ AL < 27 mm group, the tangent modulus significantly decreased in the horizontal direction (P < 0.05) but not in the vertical direction when 27 mm ≤ AL < 28 mm (P > 0.05). Conclusions: The biomechanical properties of cornea decreased with the increase of AL. Tangent modulus significantly decreased in the horizontal direction compared with vertical direction. AL should be taken into account during calculation of corneal biomechanical parameters in order to improve validity.


Asunto(s)
Córnea , Miopía , Humanos , Anisotropía , Sustancia Propia/cirugía , Miopía/cirugía , Fenómenos Biomecánicos
17.
Nature ; 618(7966): 862-870, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37286607

RESUMEN

α/ßKlotho coreceptors simultaneously engage fibroblast growth factor (FGF) hormones (FGF19, FGF21 and FGF23)1,2 and their cognate cell-surface FGF receptors (FGFR1-4) thereby stabilizing the endocrine FGF-FGFR complex3-6. However, these hormones still require heparan sulfate (HS) proteoglycan as an additional coreceptor to induce FGFR dimerization/activation and hence elicit their essential metabolic activities6. To reveal the molecular mechanism underpinning the coreceptor role of HS, we solved cryo-electron microscopy structures of three distinct 1:2:1:1 FGF23-FGFR-αKlotho-HS quaternary complexes featuring the 'c' splice isoforms of FGFR1 (FGFR1c), FGFR3 (FGFR3c) or FGFR4 as the receptor component. These structures, supported by cell-based receptor complementation and heterodimerization experiments, reveal that a single HS chain enables FGF23 and its primary FGFR within a 1:1:1 FGF23-FGFR-αKlotho ternary complex to jointly recruit a lone secondary FGFR molecule leading to asymmetric receptor dimerization and activation. However, αKlotho does not directly participate in recruiting the secondary receptor/dimerization. We also show that the asymmetric mode of receptor dimerization is applicable to paracrine FGFs that signal solely in an HS-dependent fashion. Our structural and biochemical data overturn the current symmetric FGFR dimerization paradigm and provide blueprints for rational discovery of modulators of FGF signalling2 as therapeutics for human metabolic diseases and cancer.


Asunto(s)
Factor-23 de Crecimiento de Fibroblastos , Proteoglicanos de Heparán Sulfato , Hormonas , Receptores de Factores de Crecimiento de Fibroblastos , Transducción de Señal , Humanos , Microscopía por Crioelectrón , Factor-23 de Crecimiento de Fibroblastos/química , Factor-23 de Crecimiento de Fibroblastos/metabolismo , Factor-23 de Crecimiento de Fibroblastos/ultraestructura , Proteoglicanos de Heparán Sulfato/química , Proteoglicanos de Heparán Sulfato/metabolismo , Hormonas/química , Hormonas/metabolismo , Proteínas Klotho/química , Proteínas Klotho/metabolismo , Proteínas Klotho/ultraestructura , Multimerización de Proteína , Receptores de Factores de Crecimiento de Fibroblastos/química , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Receptores de Factores de Crecimiento de Fibroblastos/ultraestructura , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Complejos Multiproteicos/ultraestructura
18.
J Med Chem ; 66(11): 7438-7453, 2023 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-37220310

RESUMEN

Abnormal activation of fibroblast growth factor receptors (FGFRs) results in the development and progression of human cancers. FGFR2 is frequently amplified or mutated in cancers; therefore, it is an attractive target for tumor therapy. Despite the development of several pan-FGFR inhibitors, their long-term therapeutic efficacy is hindered by acquired mutations and low isoform selectivity. Herein, we report the discovery of an efficient and selective FGFR2 proteolysis-targeting chimeric molecule, LC-MB12, that incorporates an essential rigid linker. LC-MB12 preferentially internalizes and degrades membrane-bound FGFR2 among the four FGFR isoforms; this may promote greater clinical benefits. LC-MB12 exhibits superior potency in FGFR signaling suppression and anti-proliferative activity compared to the parental inhibitor. Furthermore, LC-MB12 is orally bioavailable and shows significant antitumor effects in FGFR2-dependent gastric cancer in vivo. Taken together, LC-MB12 is a candidate FGFR2 degrader for alternative FGFR2-targeting strategies and offers a promising starting point for drug development.


Asunto(s)
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/patología , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos , Mutación , Transducción de Señal , Inhibidores de Proteínas Quinasas/farmacología , Fosforilación , Línea Celular Tumoral
19.
Front Pharmacol ; 14: 1135366, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37007035

RESUMEN

Liver fibrosis, a compensatory repair response to chronic liver injury, is caused by various pathogenic factors, and hepatic stellate cell (HSC) activation and phenotypic transformation are regarded as key events in its progression. Ferroptosis, a novel form of programmed cell death, is also closely related to different pathological processes, including those associated with liver diseases. Here, we investigated the effect of doxofylline (DOX), a xanthine derivative with potent anti-inflammatory activity, on liver fibrosis as well as the associated mechanism. Our results indicated that in mice with CCl4-induced liver fibrosis, DOX attenuated hepatocellular injury and the levels of liver fibrosis indicators, inhibited the TGF-ß/Smad signaling pathway, and significantly downregulated the expression of HSC activation markers, both in vitro and in vivo. Furthermore, inducing ferroptosis in activated HSCs was found to be critical for its anti-liver fibrosis effect. More importantly, ferroptosis inhibition using the specific inhibitor, deferoxamine (DFO) not only abolished DOX-induced ferroptosis, but also led to resistance to the anti-liver fibrosis effect of DOX in HSCs. In summary, our results showed an association between the protective effect of DOX against liver fibrosis and HSC ferroptosis. Thus, DOX may be a promising anti-hepatic fibrosis agent.

20.
Eur J Med Chem ; 253: 115305, 2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37023678

RESUMEN

Src homology 2 domain-containing phosphatase 2 (SHP2) is a cytoplasmic protein tyrosine phosphatase (PTP) that regulates signal transduction of receptor tyrosine kinases (RTKs). Abnormal SHP2 activity is associated with tumorigenesis and metastasis. Because SHP2 contains multiple allosteric sites, identifying inhibitors at specific allosteric binding sites remains challenging. Here, we used structure-based virtual screening to directly search for the SHP2 "tunnel site" allosteric inhibitor. A novel hit (70) was identified as the SHP2 allosteric inhibitor with an IC50 of 10.2 µM against full-length SHP2. Derivatization of hit compound 70 using molecular modeling-guided structure-based modification allowed the discovery of an effective and selective SHP2 inhibitor, compound 129, with 122-fold improved potency compared to the hit. Further studies revealed that 129 effectively inhibited signaling in multiple RTK-driven cancers and RTK inhibitor-resistant cancer cells. Remarkably, 129 was orally bioavailable (F = 55%) and significantly inhibited tumor growth in haematological malignancy. Taken together, compound 129 developed in this study may serve as a promising lead or candidate for cancers bearing RTK oncogenic drivers and SHP2-related diseases.


Asunto(s)
Neoplasias , Transducción de Señal , Humanos , Proteínas Tirosina Quinasas Receptoras/metabolismo , Sitio Alostérico , Carcinogénesis , Proteína Tirosina Fosfatasa no Receptora Tipo 11 , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...