Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Food Funct ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38984868

RESUMEN

Probiotics have been considered a promising option for mitigating the progression of type 2 diabetes mellitus (T2DM). Here, Latilactobacillus sakei QC9 (L. sakei QC9) with a hypoglycemic effect was screened out from 30 food-derived strains through α-glucosidase and α-amylase activity inhibition tests in vitro and a 4-week in vivo preliminary animal experiment. To further understand its alleviating effect on long-term hyperglycaemia occurring in T2DM, we conducted an experiment that lasted for 8 weeks. The results showed that taking L. sakei QC9 can regulate glucose and lipid metabolism while improving the antioxidant capacity and alleviating chronic inflammation. In addition, our results demonstrated that L. sakei QC9 may mediate the microbiota-gut-liver axis by regulating the composition of intestinal flora (increasing the abundance of butyrate-producing bacteria) and increasing the content of short-chain fatty acids (especially butyrate), affecting the PI3K/Akt signalling pathway in the liver, thereby achieving the purpose of alleviating the development of T2DM. In summary, our work is the first to prove the long-term hypoglycemic effect of L. sakei in high-fat diet (HFD) and streptozotocin (STZ)-induced T2DM mice and supports the possibility of L. sakei QC9 being used as a new treatment for alleviating T2DM.

2.
Eur J Oncol Nurs ; 71: 102625, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38897104

RESUMEN

OBJECTIVE: Explore the preliminary effects of a breathing exercise (BE) intervention on chronic pain among breast cancer survivors. METHODS: This two-parallel-arm, open-label pilot randomized controlled trial recruited 72 breast cancer survivors who were randomly allocated to either the control or intervention group (n = 36 each). Both groups received usual care and a pain information booklet, while the intervention group received 4 weeks of additional BE. The primary clinical outcome was measured using the Brief Pain Inventory (BPI), with secondary clinical outcomes measured by the Hospital Anxiety and Depression Scale (HADS), Quality of Life Patient/Cancer Survivor Version in Chinese (QOLCSV-C), and Functional Assessment of Cancer Therapy- Breast (FACT-B) immediately post-intervention and at 4-week follow-up. Both adjusted and unadjusted Generalized Estimating Equation models were utilized to assess the BE's potential effects, with safety assessed through participant self-report. RESULTS: Sixty-eight participants completed the study. Statistical significance was observed in BPI in both adjusted and unadjusted models at post-intervention and follow-up (p < 0.05). BE demonstrated positive effects on anxiety, depression and quality of life improvement across all measures and timepoints in both adjusted and unadjusted models (p < 0.05). The effect sizes were smaller in the adjusted model. Three mild transient discomforts were reported associated with BE practice including dizziness, tiredness and yawning, without requirement of medical treatment. No severe adverse events occurred. CONCLUSION: This BE intervention appears effective in alleviating chronic pain, anxiety and depression, and improving quality of life for breast cancer survivors. Fully powered large-scale studies are required to confirm its effects.

3.
Sci Rep ; 14(1): 2225, 2024 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-38278831

RESUMEN

Polymorphisms in the PSAP gene, which encodes prosaposin and is involved in the lysosomal function, yielded conflicting results regarding the association with Parkinson's disease (PD). Therefore, this study aims to investigate the role of PSAP in familial PD (FPD), early onset PD (EOPD) with age at onset before 50 years old, and sporadic PD (SPD) among Taiwanese population, and summarize relevant studies via meta-analysis. By sequencing exon 1 to 14 in 183 FPD and 219 EOPD, two novel exonic variants were found in EOPD, including p.A146E (c.437C > A) on exon 5 and p.Y248C (c.743A > G) on exon 7. Furthermore, four previously reported intronic variants (rs142614739/rs74733861), rs749823, rs4747203 and rs885828) in intron 11 and 12 were analyzed in 485 SPD and 712 in-hospital controls, in addition to the aforementioned FPD and EOPD groups. The adjusted odd ratios (ORs) by age and sex, only rs142614739 was significantly associated with higher risk of EOPD (OR = 1.85, 95% CI = 1.33-2.58). The risk effect was further confirmed by the meta-analysis of the association between rs142614739 and the risk of PD in both common effect (OR = 1.29, 95% CI = 1.11-1.50) and random effect (OR = 1.29, 95% CI = 1.11-1.50). Our findings suggest that the PSAP rs142614739 variant is associated with the risk of EOPD. Further functional studies are warranted to elucidate the biochemical mechanisms.


Asunto(s)
Enfermedad de Parkinson , Humanos , Persona de Mediana Edad , Edad de Inicio , Estudios de Casos y Controles , Mutación , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/epidemiología , Saposinas/genética , Pueblos del Este de Asia
4.
Artículo en Inglés | MEDLINE | ID: mdl-38222321

RESUMEN

Background: Gastroesophageal reflux disease (GERD) and Chronic Obstructive Pulmonary Disease (COPD) often coexist and have been associated in observational studies. However, the real potential causal relationship between GERD and COPD is unknown and not well established. Methods: In this study, we conducted a bidirectional two-sample Mendelian randomization(MR) to estimate whether GERD and COPD are causal. The GERD genetic data is from summary level data of a genome-wide association (GWAS) meta-analysis (Ncases = 71,522, Ncontrol=26,079). The COPD GWAS are available from the FinnGen (Ncases=16,410, Ncontrol=283,589). MR-Egger regression, Weighted Median, and Inverse-variance weighted (IVW) were used for MR analysis from the R package "TwoSampleMR", and IVW was the dominant estimation method. Additionally, the MR pleiotropy residual sum and outlier (MR-PRESSO), Cochran Q statistic, and leave-one-out analysis were used to detect and correct for the effect of heterogeneity and horizontal pleiotropy. Results: MR analysis indicated that GERD was causally associated with an increased risk of COPD (IVW odds ratio (OR): 1.3760, 95% confidence interval (CI): 1.1565-1.6371, P=0.0003), and vice versa (IVW OR: 1.1728, 95% CI:1.0613-1.2961, P=0.0018). The analyses did not reveal any pleiotropy or heterogeneity. Conclusion: Our study revealed possible evidence for a bidirectional causal relationship between GERD and COPD. Implementing screening and preventive strategies for GERD in individuals with COPD, and vice versa, will be crucial in future healthcare management. Further studies are needed to elucidate the mechanisms underlying the causal relationship between GERD and COPD.


Asunto(s)
Reflujo Gastroesofágico , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Reflujo Gastroesofágico/diagnóstico , Reflujo Gastroesofágico/epidemiología , Reflujo Gastroesofágico/genética , Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Oportunidad Relativa , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico , Enfermedad Pulmonar Obstructiva Crónica/epidemiología , Enfermedad Pulmonar Obstructiva Crónica/genética , Metaanálisis como Asunto
5.
BMC Biol ; 21(1): 187, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37667263

RESUMEN

BACKGROUND: The continuously developing pesticide resistance is a great threat to agriculture and human health. Understanding the mechanisms of insecticide resistance is a key step in dealing with the phenomenon. Insect cuticle is recently documented to delay xenobiotic penetration which breaks the previous stereotype that cuticle is useless in insecticide resistance, while the underlying mechanism remains scarce. RESULTS: Here, we find the integument contributes over 40.0% to insecticide resistance via different insecticide delivery strategies in oriental fruit fly. A negative relationship exists between cuticle thickening and insecticide penetration in resistant/susceptible, also in field strains of oriental fruit fly which is a reason for integument-mediated resistance. Our investigations uncover a regulator of insecticide penetration that miR-994 mimic treatment causes cuticle thinning and increases susceptibility to malathion, whereas miR-994 inhibitor results in opposite phenotypes. The target of miR-994 is a most abundant cuticle protein (CPCFC) in resistant/susceptible integument expression profile, which possesses capability of chitin-binding and influences the cuticle thickness-mediated insecticide penetration. Our analyses find an upstream transcriptional regulatory signal of miR-994 cascade, long noncoding RNA (lnc19419), that indirectly upregulates CPCFC in cuticle of the resistant strain by sponging miR-994. Thus, we elucidate the mechanism of cuticular competing endogenous RNAs for regulating insecticide penetration and demonstrate it also exists in field strain of oriental fruit fly. CONCLUSIONS: We unveil a regulatory axis of lnc19419 ~ miR-994 ~ CPCFC on the cuticle thickness that leads to insecticide penetration resistance. These findings indicate that competing endogenous RNAs regulate insecticide resistance by modulating the cuticle thickness and provide insight into the resistance mechanism in insects.


Asunto(s)
Insecticidas , MicroARNs , Humanos , Animales , Insecticidas/farmacología , Malatión/farmacología , Piel , Agricultura , Drosophila , MicroARNs/genética
6.
Pestic Biochem Physiol ; 194: 105498, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37532320

RESUMEN

Glutathione S-transferases (GSTs) are one of the three detoxification enzyme families. The constitutive and inducible overexpression of GSTs genes plays an important role in insecticide resistance. Previous study showed that malathion resistance was polygenic, and elevated GSTs activity was one of the important factor participating in malathion resistance of Bactrocera dorsalis (Hendel), a serious economic pest worldwide. BdGSTd5 overexpression was inducible upon exposure to malathion. However, the involvement of BdGSTd5 in malathion resistance has not been clarified. In this study, we found that BdGSTd5 sequence harbored the conserved region of delta class GSTs, which were overexpressed in malathion resistant strain of B. dorsalis compared to malathion susceptible strain. The highest mRNA expression level of BdGSTd5 was found in 1-day-old adult, and the levels decreased with aging. The dsBdGSTd5 injection effectively silenced (73.4% reduction) the expression of BdGSTd5 and caused significant increase in susceptibility to malathion with a cumulative mortality increasing of 13.5% at 72 h post malathion treatment (p < 0.05). Cytotoxicity assay demonstrated that BdGSTd5 was capable of malathion detoxification. Molecular docking analysis further indicated the interactive potential of BdGSTd5 with malathion and its toxic oxide malaoxon. The recombinant BdGSTd5 exhibited glutathione-conjugating activity toward 1-chloro-2, 4-dinitrobenzene and malathion and malaoxon metabolic capacity with significant reduction (p < 0.05) of the peak areas by 90.0% and 73.1%, respectively. Taken together, the overexpressed BdGSTd5 contributes to malathion metabolism and resistance, which detoxify the malathion in B. dorsalis via directly depleting malathion and malaoxon.


Asunto(s)
Insecticidas , Tephritidae , Animales , Malatión/toxicidad , Insecticidas/farmacología , Glutatión Transferasa/genética , Glutatión Transferasa/metabolismo , Simulación del Acoplamiento Molecular , Tephritidae/genética , Resistencia a los Insecticidas/genética
7.
Int Immunopharmacol ; 122: 110545, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37390644

RESUMEN

Pulmonary fibrosis is an interstitial lung disease caused by various factors such as exposure to workplace environmental contaminants, drugs, or X-rays. Epithelial cells are among the driving factors of pulmonary fibrosis. Immunoglobulin A (IgA), traditionally thought to be secreted by B cells, is an important immune factor involved in respiratory mucosal immunity. In the current study, we found that lung epithelial cells are involved in IgA secretion, which, in turn, promotes pulmonary fibrosis. Spatial transcriptomics and single-cell sequencing suggest that Igha transcripts were highly expressed in the fibrotic lesion areas of lungs from silica-treated mice. Reconstruction of B-cell receptor (BCR) sequences revealed a new cluster of AT2-like epithelial cells with a shared BCR and high expression of genes related to IgA production. Furthermore, the secretion of IgA by AT2-like cells was trapped by the extracellular matrix and aggravated pulmonary fibrosis by activating fibroblasts. Targeted blockade of IgA secretion by pulmonary epithelial cells may be a potential strategy for treating pulmonary fibrosis.


Asunto(s)
Fibrosis Pulmonar , Ratones , Animales , Fibrosis Pulmonar/metabolismo , Dióxido de Silicio/toxicidad , Inmunoglobulina A/metabolismo , Pulmón/patología , Matriz Extracelular/metabolismo , Inmunoglobulina A Secretora/metabolismo , Fibrosis
8.
Acta Neuropathol ; 146(2): 301-318, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37335342

RESUMEN

Essential Tremor (ET) is a prevalent neurological disease characterized by an 8-10 Hz action tremor. Molecular mechanisms of ET remain poorly understood. Clinical data suggest the importance of the cerebellum in disease pathophysiology, and pathological studies indicate Purkinje Cells (PCs) incur damage. Our recent cerebellar cortex and PC-specific transcriptome studies identified alterations in calcium (Ca2+) signaling pathways that included ryanodine receptor type 1 (RyR1) in ET. RyR1 is an intracellular Ca2+ release channel located on the Endoplasmic Reticulum (ER), and in cerebellum is predominantly expressed in PCs. Under stress conditions, RyR1 undergoes several post-translational modifications (protein kinase A [PKA] phosphorylation, oxidation, nitrosylation), coupled with depletion of the channel-stabilizing binding partner calstabin1, which collectively characterize a "leaky channel" biochemical signature. In this study, we found markedly increased PKA phosphorylation at the RyR1-S2844 site, increased RyR1 oxidation and nitrosylation, and calstabin1 depletion from the RyR1 complex in postmortem ET cerebellum. Decreased calstabin1-RyR1-binding affinity correlated with loss of PCs and climbing fiber-PC synapses in ET. This 'leaky' RyR1 signature was not seen in control or Parkinson's disease cerebellum. Microsomes from postmortem cerebellum demonstrated excessive ER Ca2+ leak in ET vs. controls, attenuated by channel stabilization. We further studied the role of RyR1 in tremor using a mouse model harboring a RyR1 point mutation that mimics constitutive site-specific PKA phosphorylation (RyR1-S2844D). RyR1-S2844D homozygous mice develop a 10 Hz action tremor and robust abnormal oscillatory activity in cerebellar physiological recordings. Intra-cerebellar microinfusion of RyR1 agonist or antagonist, respectively, increased or decreased tremor amplitude in RyR1-S2844D mice, supporting a direct role of cerebellar RyR1 leakiness for tremor generation. Treating RyR1-S2844D mice with a novel RyR1 channel-stabilizing compound, Rycal, effectively dampened cerebellar oscillatory activity, suppressed tremor, and normalized cerebellar RyR1-calstabin1 binding. These data collectively support that stress-associated ER Ca2+ leak via RyR1 may contribute to tremor pathophysiology.


Asunto(s)
Calcio , Canal Liberador de Calcio Receptor de Rianodina , Humanos , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Calcio/metabolismo , Temblor/metabolismo , Cerebelo/metabolismo , Retículo Endoplásmico/metabolismo , Músculo Esquelético/metabolismo
9.
J Agric Food Chem ; 71(22): 8400-8412, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37246803

RESUMEN

The oriental fruit fly, Bactrocera dorsalis, is a damaging insect pest for many vegetable and fruit crops that has evolved severe chemical insecticide resistance, including organophosphorus, neonicotinoid, pyrethroid, and macrolides. Hence, it is important to elucidate its detoxification mechanism to improve its management and mitigate resource destruction. Glutathione S-transferase (GST) is a critical secondary phase enzyme that plays multiple detoxification functions against xenobiotics. In this study, we identified several BdGSTs by characterizing their potential relationships with five insecticides using inducible and tissue-specific expression pattern analyses. We found that an antenna-abundant BdGSTd8 responded to four different classes of insecticides. Subsequently, our immunohistochemical and immunogold staining analysis further confirmed that BdGSTd8 was primarily located in the antenna. Our investigations also confirmed that BdGSTd8 possesses the capability to enhance cell viability by directly interacting with malathion and chlorpyrifos, which clarified the function of antenna-abundant GST in B. dorsalis. Altogether, these findings enrich our understanding of GST molecular characteristics in B. dorsalis and provide new insights into the detoxification of superfluous xenobiotics in the insect antenna.


Asunto(s)
Insecticidas , Tephritidae , Animales , Insecticidas/farmacología , Glutatión Transferasa/genética , Glutatión Transferasa/metabolismo , Xenobióticos , Compuestos Organofosforados , Tephritidae/genética , Tephritidae/metabolismo
10.
Pestic Biochem Physiol ; 193: 105443, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37248012

RESUMEN

Carboxylesterases (CarEs) are a multifunctional superfamily of enzymes and play an important role in detoxification of various insecticides in insects. The oriental fruit fly, Bactrocera dorsalis, is one of the most destructive agricultural pests and has developed different degrees of resistance to organophosphates in field. However, the involvement of BdCarEs in tolerance or resistance to other alternative insecticides are still unclear. In the present study, 33 BdCarEs genes were identified based on the genome database of B. dorsalis. Phylogenetic analysis demonstrated that they were classified into nine clades, with abundance of α-esterases. Meanwhile, the sequence characterization and the chromosome distribution were also analyzed. The spatiotemporal expression analysis of BdCarEs genes suggested that the diversity of potential function in different physiological processes. With the exception of BdCarE21, all BdCarEs genes responded to at least one insecticide exposure, and BdCarE20 was found to be up-regulated after exposure to all five tested insecticides individually. Eight BdCarEs genes were overexpressed in MR strain when compared to that in SS strain. Subsequently, knockdown the expression of representative BdCarEs genes significantly increased the susceptibility of the oriental fruit fly to corresponding insecticides, which indicated that the tested BdCarEs genes contributed to one or multiple insecticide detoxification. These findings provide valuable insights into the potential role in respond to tolerance or resistance to insecticides with different mode of action, and will facilitate development of efficiency management strategy for B. dorsalis.


Asunto(s)
Insecticidas , Tephritidae , Animales , Insecticidas/toxicidad , Carboxilesterasa/genética , Malatión/farmacología , Filogenia , Resistencia a los Insecticidas/genética , Tephritidae/genética
11.
Infect Drug Resist ; 16: 2625-2646, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37159828

RESUMEN

Purpose: To perform a bibliometric analysis of the 100 most-cited articles (T100 articles) on COVID-19 vaccine hesitancy to characterize current trends. Methods: The data of the bibliometric analysis were retrieved from the Web of Science Core Collection (WoSCC) database on January 29, 2023, and the results were sorted in descending order by citations. Two researchers independently extracted the characteristics of the top 100 cited articles, including title, author, citations, publication year, institution, country, author keywords, Journal Cited Rank, and impact factor. Excel and VOSviewer were used to analyze the data. Results: The T100 articles ranged from 79 to 1125 citations, with a mean of 208.75. The T100 articles were contributed by 29 countries worldwide, of which the USA ranked first with 28 articles and 5417 citations. The T100 articles were published in 61 journals; the top three citations were VACCINES, NATURE MEDICINE, and EUROPEAN JOURNAL OF EPIDEMIOLOGY, and the number of citations was 2690, 1712, and 1644, respectively. Professor Sallam, M(n=4) from Jordan, is the author who participated in the most published articles. Catholic University of the Sacred Heart (n=8) had the most T100 articles. Conclusion: It is the first bibliometric analysis of the T100 articles in the field of COVID-19 vaccine hesitancy. We carefully analyzed and described the characteristics of these T100 articles, which provide ideas for further strengthening COVID-19 vaccination and fighting against the epidemic in the future.

12.
Molecules ; 28(7)2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-37049877

RESUMEN

Unconventional polysaccharides as representative active substances from stems of Trollius chinensis Bunge (TC) were studied. Crude polysaccharides from the stems of TC (TCSP) and the petals of TC (TCPP) were extracted, and the moisture retention and antioxidation activities of both TCSP and TCPP in vitro were studied. The weight-average molar masses (Mw) of TCSP (6.07 × 105 Da) were lower than those of TCPP (9.72 × 105 Da). Glucuronic acid and xylose only existed in TCSP, and the molar ratio of galacturonic acid and mannose in TCSP was significantly higher than that in TCPP. No significant differences in moisture retention ability were found between TCSP and TCPP. The reducing capacity and dphenyl picryl hydrazinyl (DPPH) radical scavenging capacity of TCSP were slightly weaker than those of TCPP. The 2,2-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging capacity of TCSP can be equivalent to that of TCPP. The moisture retention ability was not different between TCSP and TCPP, which are both highly homologous with traditional humectants. The antioxidation assays in vitro demonstrated that the antioxidant activity of TCSP is stronger compared to that of some plant-derived polysaccharides. The stems of TC can be a promising source of unconventional polysaccharides, which possess moisture retention and antioxidation capacities for the cosmetics industry.


Asunto(s)
Antioxidantes , Manosa , Antioxidantes/farmacología , Antioxidantes/química , Peso Molecular , Xilosa , Polisacáridos/farmacología , Polisacáridos/química
13.
Pest Manag Sci ; 79(2): 666-677, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36223172

RESUMEN

BACKGROUND: The oriental fruit fly, Bactrocera dorsalis (Hendel) is a worldwide pest damaging a wide range of hosts. Due to the long-term indiscriminate use of insecticides, B. dorsalis has developed serious resistance to several insecticides. UDP-glycosyltransferases (UGTs) are secondary metabolic enzymes involved in biotransformation and play an important role in the metabolism of plant secondary metabolites and synthetic insecticides in insects. Thus, we suspect that UGTs in B. dorsalis play an important role in insecticide tolerance. RESULTS: In this study, 31 UGT genes were identified in the genome of B. dorsalis, belonging to 13 subfamilies. Real-time quantitative polymerase chain reaction (RT-qPCR) results revealed that 12 UGT genes were highly expressed in the antennae, midgut, Malpighian tubule and fat body. The mRNA expressions of 17 UGT genes were up-regulated upon exposure to λ-cyhalothrin, imidacloprid, abamectin and chlorpyrifos. Knockdown of the selected five UGT genes (BdUGT301D2, BdUGT35F2, BdUGT36K2, BdUGT49D2, BdUGT50B5) by RNA interference increased the mortality of B. dorsalis from 9.29% to 27.22% upon exposure to four insecticides. CONCLUSION: The abundance of UGTs in B. dorsalis is similar to other insect species, and 12 out of 31 UGTs were specifically expressed in metabolic tissues, suggesting a key role in detoxification. Down-regulation of five selected UGT genes increased the susceptibility of B. dorsalis to various insecticides, indicating that UGTs may play an important role in tolerance of B. dorsalis to multiple insecticides. © 2022 Society of Chemical Industry.


Asunto(s)
Insecticidas , Tephritidae , Animales , Insecticidas/farmacología , Uridina Difosfato , Insectos/metabolismo , Drosophila , Glicosiltransferasas/genética
14.
NPJ Sci Food ; 6(1): 50, 2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-36316361

RESUMEN

Evidence suggests that probiotic interventions reduce non-communicable diseases (NCDs) risk. However, its therapeutic effect and mechanism are still unclear. To evaluate the hypocholesterolemic effect of Lactobacillus plantarum H6 (L.p H6), a new commercial patent strain capable of preventing hypercholesterolemia, and its mechanism in depth, three states of the strain were prepared, namely, viable (vH6), heat-inactivated (iH6), and ultrasonically-lysed (uH6) bacteria cells. The results showed that v/i/uH6 cells could lower serum and liver blood lipid levels, alleviate liver damage and improve glucose tolerance test (GTT) and insulin tolerance test (ITT) indexes. v/i/uH6 cells improved the gut microbial composition and significantly reduced the Firmicutes to Bacteroidetes ratio (F/B ratio) in feces. In particular, Muribaculaceae may be a potential biomarker for effective cholesterol reduction. Also, the recovery of these biochemical indices and gut microbiome was found following fecal microbiota transplantation (FMT) using stool from vH6 treated mice. The v/i/uH6 cells increased the intestinal flora metabolism of vitamins-cofactors, as well as amino acids, while decreasing the relative content of primary bile acids. The Pearson correlation analysis showed that norank_f__Muribaculaceae and Lactobacillus had a negative correlation with blood lipid levels. Overall, v/i/uH6 cells were effective in improving hypercholesterolemia in mice, and this effect was attributed partly to the regulation of intestinal microbiota and metabolites related to lipid metabolism. Our findings provided a theoretical basis for the industrial development of probiotics and postbiotics and the treatment of cholesterol diseases.

15.
Insect Biochem Mol Biol ; 150: 103846, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36202385

RESUMEN

Aphids feed on plant phloem sap that contains massive amounts of sucrose; this not only provides vital nutrition for the aphids but also produces high osmotic pressure. To utilize this carbon source and overcome the osmotic pressure, sucrose is hydrolyzed into the monosaccharides, glucose and fructose. In the green peach aphid (Myzus persicae), we show that this process is facilitated by a key α-glucosidase (MpAgC2-2), which is abundant in the aphid salivary gland and is secreted into leaves during feeding. MpAgC2-2 has a pH optimum of 8.0 in vitro, suggesting it has adapted to the environment of plant cells. Silencing MpAgC2-2 (but not the gut-specific MpAgC3-4) significantly increased the amount of sucrose ingested and hindered aphid feeding on the phloem of tobacco seedlings, resulting in a smaller body size, as well as lower α-glucosidase activity and glucose levels. These effects could be rescued by feeding aphids on tobacco plants transiently expressing MpAgC2-2. The transient expression of MpAgC2-2 also led to the hydrolysis of sucrose in tobacco leaves. Taken together, these results demonstrate that MpAgC2-2 is a salivary protein that facilitates extra-intestinal feeding via sucrose hydrolysis. Our findings provide insight into the ability of aphids to digest the high concentration of sucrose in phloem, and the underlying mechanism of extra-intestinal digestion.


Asunto(s)
Áfidos , Animales , Áfidos/genética , alfa-Glucosidasas/genética , Saliva , Nicotiana , Sacarosa , Glucosa , Digestión
16.
J Agric Food Chem ; 70(42): 13554-13562, 2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36224100

RESUMEN

Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels that mediate the fast action of acetylcholine in synaptic cholinergic transmissions. Insect nAChRs are the target of several classes of insecticides. Here, the full-length cDNA encoding a nAChR beta1 subunit (Bdorß1) was identified and characterized from a destructive pest, Bactrocera dorsalis. The amino acid sequence of Bdorß1 shows high identities to other insect nAChRs ß1 subunits. Double injection of dsBdorß1 reduced the expression of Bdorß1 and in turn significantly decreased susceptibility to oxa-bridged trans- instead of cis-nitromethylene neonicotinoids. Our results support the involvement of Bdorß1 in the susceptibility of B. dorsalis to oxa-bridged trans- instead of cis-nitromethylene neonicotinoids and imply that these two classes of neonicotinoids might be acting at different nAChR subtypes.


Asunto(s)
Insecticidas , Receptores Nicotínicos , Tephritidae , Animales , Insecticidas/química , Receptores Nicotínicos/metabolismo , Nitrocompuestos/metabolismo , Acetilcolina , ADN Complementario , Neonicotinoides/farmacología , Neonicotinoides/química , Colinérgicos , Tephritidae/genética , Tephritidae/metabolismo
17.
J Biomed Sci ; 29(1): 60, 2022 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-35965315

RESUMEN

BACKGROUND: Parkinson's disease (PD) is one of the most important neurodegenerative disorders in elderly people. Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are found in a large proportion of the patients with sporadic and familial PD. Mutations can occur at different locations in the LRRK2. Patients with LRRK2 ROC-COR mutations face an increased risk of typical motor symptoms of PD, along with cognitive decline. An animal model with a monogenic LRRK2 gene mutation is a suitable model for exploring the pathophysiology of PD and identifying potential drug therapies. However, the effect of homozygous (HOM) LRRK2 in PD pathophysiology is unclear. METHODS: We established human LRRK2 (hLRRK2) R1441G HOM transgenic (Tg) mice to explore the phenotype and pathological features that are associated with hLRRK2 R1441G Tg mouse models and discuss the potential clinical relevance. The open field test (OFT) was performed to examine motor and nonmotor behaviors. A CatWalk analysis system was used to study gait function. [18F]FDOPA PET was used to investigate functional changes in the nigrostriatal pathway in vivo. Transmission electron microscopy was used to examine the morphological changes in mitochondria and lysosomes in the substantia nigra. RESULTS: The R1441G HOM Tg mice demonstrated gait disturbance and exhibited less anxiety-related behavior and exploratory behavior than mice with hLRRK2 at 12 months old. Additionally, [18F]FDOPA PET showed a reduction in FDOPA uptake in the striatum of the HOM Tg mice. Notably, there was significant lysosome and autophagosome accumulation in the cytoplasm of dopaminergic neurons in R1441G hemizygous (HEM) and HOM mice. Moreover, it was observed using transmission electron microscopy (TEM) that the mitochondria of R1441G Tg mice were smaller than those of hLRRK2 mice. CONCLUSION: This animal provides a novel HOM hLRRK2 R1441G Tg mouse model that reproduces some phenotype of Parkinsonism in terms of both motor and behavioral dysfunction. There is an increased level of mitochondrial fission and no change in the fusion process in the group of HOM hLRRK2 R1441G Tg mouse. This mutant animal model of PD might be used to study the mechanisms of mitochondrial dysfunction and explore potential new drug targets.


Asunto(s)
Enfermedad de Parkinson , Trastornos Parkinsonianos , Anciano , Animales , Modelos Animales de Enfermedad , Humanos , Lactante , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Ratones , Ratones Transgénicos , Modelos Genéticos , Mutación , Trastornos Parkinsonianos/genética , Proteínas Serina-Treonina Quinasas/genética
18.
Cell Biosci ; 12(1): 123, 2022 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-35933397

RESUMEN

BACKGROUND: Fibroblasts have important roles in the synthesis and remodeling of extracellular matrix (ECM) proteins during pulmonary fibrosis. However, the spatiotemporal distribution of heterogeneous fibroblasts during disease progression remains unknown. RESULTS: In the current study, silica was used to generate a mouse model of pathological changes in the lung, and single-cell sequencing, spatial transcriptome sequencing and an analysis of markers of cell subtypes were performed to identify fibroblast subtypes. A group of heterogeneous fibroblasts that play an important role at the early pathological stage were identified, characterized based on the expression of inflammatory and proliferation genes (termed inflammatory-proliferative fibroblasts) and found to be concentrated in the lesion area. The expression of GREM1/protein phosphatase 2 regulatory subunit B''alpha (PPP2R3A) in inflammatory-proliferative fibroblasts was found to initiate early pulmonary pathological changes by increasing the viability, proliferation and migration of cells. CONCLUSIONS: Inflammatory-proliferative fibroblasts play a key role in the early pathological changes that occur in silicosis, and during this process, GREM1 is the driving factor that targets PPP2R3A and initiates the inflammatory response, which is followed by irreversible fibrosis induced by SiO2. The GREM1/PPP2R3A pathway may be a potential target in the early treatment of silicosis.

19.
Respir Res ; 23(1): 204, 2022 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-35962397

RESUMEN

Silicosis is a pulmonary fibrosis-associated disease caused by the inhalation of large amounts of free silicon dioxide (SiO2) that mainly manifests as early inflammation and late pulmonary fibrosis. As macrophage precursors, monocytes accumulate in the lung during early inflammation, but their role in the development of silicosis is unclear. Single-cell sequencing (cell numbers = 25,002), Western blotting, quantitative real-time PCR, ELISA and cell functional experiments were used to explore the specific effects of monocytes on fibroblasts. The CRISPR/Cas9 system was used to specifically knock down ZC3H4, a novel member of the CCCH zinc finger protein family, and was combined with pharmacological methods to explore the mechanism by which ZC3H4 affects chemokine and cytokine secretion. The results indicated that (1) SiO2 induced an infiltrating phenotype in monocytes; (2) infiltrating monocytes inhibited the activation, viability and migration of fibroblasts by regulating IL-10 but not IL-8; and (3) SiO2 downregulated IL-10 via ZC3H4-induced autophagy. This study revealed that ZC3H4 regulated the secretion function of monocytes, which, in turn, inhibited fibroblast function in early inflammation through autophagy signaling, thereby reducing pulmonary fibrosis. These findings provide a new idea for the clinical treatment of silicosis.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Fibrosis Pulmonar , Silicosis , Fibroblastos/metabolismo , Fibrosis , Humanos , Inflamación/metabolismo , Interleucina-10 , Pulmón/metabolismo , Monocitos/metabolismo , Fibrosis Pulmonar/metabolismo , Dióxido de Silicio/efectos adversos , Silicosis/patología
20.
Eur J Neurol ; 29(10): 2956-2966, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35748722

RESUMEN

BACKGROUND AND PURPOSE: Multiple system atrophy (MSA) has no definitive genetic or environmental (G-E) risk factors, and the integrated effect of these factors on MSA etiology remains unknown. This study was undertaken to investigate the integrated effect of G-E factors associated with MSA and its subtypes, MSA-P and MSA-C. METHODS: A consecutive case-control study was conducted at two medical centers, and the interactions between genotypes of five previously reported susceptible single nucleotide polymorphisms (SNPs; SNCA_rs3857059, SNCA_rs11931074, COQ2_rs148156462, EDN1_rs16872704, MAPT_rs9303521) and graded exposure (never, ever, current) of four environmental factors (smoking, alcohol, drinking well water, pesticide exposure) were analyzed by a stepwise logistic regression model. RESULTS: A total of 207 MSA patients and 136 healthy controls were enrolled. In addition to SNP COQ2_rs148156462 (TT), MSA risk was correlated with G-E interactions, including COQ2_rs148156462 (Tc) × pesticide nonexposure, COQ2_rs148156462 (TT) × current smokers, SNCA_rs11931074 (tt) × alcohol nonusers, and SNCA_rs11931074 (GG) × well water nondrinkers (all p < 0.01), with an area under the receiver operating characteristic curve (AUC) of 0.804 (95% confidence interval [CI] = 0.671-0.847). Modulated risk of MSA-C, with MSA-P as a control, correlated with COQ2_rs148156462 (TT) × alcohol nondrinkers, SNCA_rs11931074 (GG) × well water ever drinkers, SNCA_rs11931074 (Gt) × well water never drinkers, and SNCA_rs3857059 (gg) × pesticide nonexposure (all p < 0.05), with an AUC of 0.749 (95% CI = 0.683-0.815). CONCLUSIONS: Certain COQ2 and SNCA SNPs interact with common environmental factors to modulate MSA etiology and subtype disposition. The mechanisms underlying the observed correlation between G-E interactions and MSA etiopathogenesis warrant further investigation.


Asunto(s)
Transferasas Alquil y Aril/genética , Atrofia de Múltiples Sistemas , Plaguicidas , Estudios de Casos y Controles , Predisposición Genética a la Enfermedad , Humanos , Atrofia de Múltiples Sistemas/genética , Atrofia de Múltiples Sistemas/patología , Agua , alfa-Sinucleína/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...