Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
Environ Int ; 187: 108724, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38735076

RESUMEN

The mass concentration of atmospheric particulate matter (PM) has been continuously decreasing in the Beijing-Tianjin-Hebei region. However, health endpoints do not exhibit a linear correlation with PM mass concentrations. Thus, it is urgent to clarify the prior toxicological components of PM to further improve air quality. In this study, we analyzed the long-term oxidative potential (OP) of water-soluble PM2.5, which is generally considered more effective in assessing hazardous exposure to PM in Beijing from 2018 to 2022 based on the dithiothreitol assay and identified the crucial drivers of the OP of PM2.5 based on online monitoring of air pollutants, receptor model, and random forest (RF) model. Our results indicate that dust, traffic, and biomass combustion are the main sources of the OP of PM2.5 in Beijing. The complex interactions of dust particles, black carbon, and gaseous pollutants (nitrogen dioxide and sulfur dioxide) are the main factors driving the OP evolution, in particular, leading to the abnormal rise of OP in Beijing in 2022. Our data shows that a higher OP is observed in winter and spring compared to summer and autumn. The diurnal variation of the OP is characterized by a declining trend from 0:00 to 14:00 and an increasing trend from 14:00 to 23:00. The spatial variation in OP of PM2.5 was observed as the OP in Beijing is lower than that in Shijiazhuang, while it is higher than that in Zhenjiang and Haikou, which is primarily influenced by the distribution of black carbon. Our results are of significance in identifying the key drivers influencing the OP of PM2.5 and provide new insights for advancing air quality improvement efforts with a focus on safeguarding human health in Beijing.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Monitoreo del Ambiente , Material Particulado , Material Particulado/análisis , Beijing , Contaminantes Atmosféricos/análisis , Contaminación del Aire/estadística & datos numéricos , Oxidación-Reducción , Mejoramiento de la Calidad , Estaciones del Año
2.
Neural Netw ; 173: 106173, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38387200

RESUMEN

The excellent generalization, contextual learning, and emergence abilities in the pre-trained large models (PLMs) handle specific tasks without direct training data, making them the better foundation models in the adversarial domain adaptation (ADA) methods to transfer knowledge learned from the source domain to target domains. However, existing ADA methods fail to account for the confounder properly, which is the root cause of the source data distribution that differs from the target domains. This study proposes a confounder balancing method in adversarial domain adaptation for PLMs fine-tuning (CadaFT), which includes a PLM as the foundation model for a feature extractor, a domain classifier and a confounder classifier, and they are jointly trained with an adversarial loss. This loss is designed to improve the domain-invariant representation learning by diluting the discrimination in the domain classifier. At the same time, the adversarial loss also balances the confounder distribution among source and unmeasured domains in training. Compared to newest ADA methods, CadaFT can correctly identify confounders in domain-invariant features, thereby eliminating the confounder biases in the extracted features from PLMs. The confounder classifier in CadaFT is designed as a plug-and-play and can be applied in the confounder measurable, unmeasurable, or partially measurable environments. Empirical results on natural language processing and computer vision downstream tasks show that CadaFT outperforms the newest GPT-4, LLaMA2, ViT and ADA methods.


Asunto(s)
Generalización Psicológica , Aprendizaje , Conocimiento , Lenguaje , Procesamiento de Lenguaje Natural
3.
J Neurochem ; 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38317263

RESUMEN

Sevoflurane, the predominant pediatric anesthetic, has been linked to neurotoxicity in young mice, although the underlying mechanisms remain unclear. This study focuses on investigating the impact of neonatal sevoflurane exposure on cell-type-specific alterations in the prefrontal cortex (PFC) of young mice. Neonatal mice were subjected to either control treatment (60% oxygen balanced with nitrogen) or sevoflurane anesthesia (3% sevoflurane in 60% oxygen balanced with nitrogen) for 2 hours on postnatal days (PNDs) 6, 8, and 10. Behavioral tests and single-nucleus RNA sequencing (snRNA-seq) of the PFC were conducted from PNDs 31 to 37. Mechanistic exploration included clustering analysis, identification of differentially expressed genes (DEGs), enrichment analyses, single-cell trajectory analysis, and genome-wide association studies (GWAS). Sevoflurane anesthesia resulted in sociability and cognition impairments in mice. Novel specific marker genes identified 8 distinct cell types in the PFC. Most DEGs between the control and sevoflurane groups were unique to specific cell types. Re-defining 15 glutamatergic neuron subclusters based on layer identity revealed their altered expression profiles. Notably, sevoflurane disrupted the trajectory from oligodendrocyte precursor cells (OPCs) to oligodendrocytes (OLs). Validation of disease-relevant candidate genes across the main cell types demonstrated their association with social dysfunction and working memory impairment. Behavioral results and snRNA-seq collectively elucidated the cellular atlas in the PFC of young male mice, providing a foundation for further mechanistic studies on developmental neurotoxicity induced by anesthesia.

4.
Proteins ; 92(3): 395-410, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37915276

RESUMEN

Interaction between proteins and nucleic acids is crucial to many cellular activities. Accurately detecting nucleic acid-binding residues (NABRs) in proteins can help researchers better understand the interaction mechanism between proteins and nucleic acids. Structure-based methods can generally make more accurate predictions than sequence-based methods. However, the existing structure-based methods are sensitive to protein conformational changes, causing limited generalizability. More effective and robust approaches should be further explored. In this study, we propose iNucRes-ASSH to identify nucleic acid-binding residues with a self-attention-based structure-sequence hybrid neural network. It improves the generalizability and robustness of NABR prediction from two levels: residue representation and prediction model. Experimental results show that iNucRes-ASSH can predict the nucleic acid-binding residues even when the experimentally validated structures are unavailable and outperforms five competing methods on a recent benchmark dataset and a widely used test dataset.


Asunto(s)
Algoritmos , Ácidos Nucleicos , Proteínas/química , Redes Neurales de la Computación
5.
Huan Jing Ke Xue ; 44(7): 3797-3808, 2023 Jul 08.
Artículo en Chino | MEDLINE | ID: mdl-37438279

RESUMEN

Roads are the main places where urban people are exposed to atmospheric particulate matter from outdoor activities, and certain oxidatively active substances contained in road particulate matter are important components that induce the generation of reactive oxygen species (ROS), which in turn endanger human health. Here, we explored the characteristics of organic matter composition in water-soluble (WSM) and methanol-soluble fractions (MSM) of road dust in Xi'an and its oxidation potential (OP). Additionally, we investigated the organic fractions and their distribution based on parallel factor analysis (PARAFAC) and analyzed the correlation between organic matter types and OP. The results showed that the water-insoluble fraction of road dust in Xi'an contained more chromophoric organic matter with an average total concentration of (4.71±1.27)×104 R.U., which was 12 times higher than that of WSM[(3.96±1.10)×103 R.U.], of which low-oxidizing humic-like substances (HULIS) were the main organic matter (34.8%-43.7% of the total organic matter). The results of cluster analysis showed that the important sources of organic matter in road dust in Xi'an were fuel combustion and industrial production. The mean value of dust oxidative toxicity was (0.34±0.08) pmol·(min·µg)-1, with the water-insoluble fraction providing 70% of the total oxidative toxicity of dust particles, which was 2.4 times higher than the water-soluble fraction. The main precursors of oxidative toxicity of dust particles were metal elements, and special types of organic substances were also one of the important oxidative toxicity precursors, among which chromophore organic matter was the main cause of OP production in the WSM fraction (r=0.35, P<0.01), and protein-like organic matter and highly oxidized HULIS in WSM may have been the main two types of organic substances for OP production. However, there was no significant correlation between organic matter concentration in MSM and water-insoluble OP (OPTotal-OPWSM) (r=-0.04, P>0.1), so the oxidative toxicity of the water-insoluble particulate matter fraction was mainly generated from non-organic matter.

6.
Sci Total Environ ; 891: 164704, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37295530

RESUMEN

Road dust pollution is still an important environmental problem in the cities of northwest China. To better understand the risk exposure and sources of unhealthy metals in road dust and foliar dust, the dust samples were collected in Xi'an city, Northwest China. The sampling period was during December 2019 and 53 metals in the dust were analyzed using Inductive Coupled Plasma Emission Spectrometer (ICPA-RQ). Compared to road dust, most metals are found in relatively higher concentrations in foliar dust, especially water-soluble metals, with Mn being 3710 times more abundant in foliar dust. However, the regional characteristics of road dust are more pronounced, i.e., the concentrations of Co and Ni are six times higher in industrial manufacturing areas than in residential areas. The results of the non-negative matrix factorization and principal component analysis source analyses demonstrate this difference, the dust in Xi'an is mainly from transportation (63 %) and natural sources (35 %). From the emission characteristics of the traffic source dust, brake wear is the main cause of traffic source, accounting for 43 %. However, the metal sources in each principal component of foliar dust show a more mixed state, which is consistent with the results of regional characterization. The health risk evaluation shows that traffic sources are the main risk source and contribute 67 % to the total risk. Among them, Pb from tire wear is the main contribution to the total non-carcinogenic risk for children, which is close to the risk threshold. In addition, Cr and Mn are also worthy of attention. The above results all emphasize the contribution of traffic emissions, especially the non-tailpipe emission component, to dust emissions and health risks. Therefore, controlling vehicle wear and tear and exhaust emissions should be the main way to improve air quality, such as traffic control and improvement of vehicle component materials.


Asunto(s)
Polvo , Metales Pesados , Niño , Humanos , Polvo/análisis , Metales Pesados/análisis , Monitoreo del Ambiente , China , Medición de Riesgo , Ciudades
7.
Environ Sci Technol ; 57(25): 9252-9265, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37311058

RESUMEN

The deterioration of air quality via anthropogenic activities during the night period has been deemed a serious concern among the scientific community. Thereby, we explored the outdoor particulate matter (PM) concentration and the contributions from various sources during the day and night in winter and spring 2021 in a megacity, northwestern China. The results revealed that the changes in chemical compositions of PM and sources (motor vehicles, industrial emissions, coal combustion) at night lead to substantial PM toxicity, oxidative potential (OP), and OP/PM per unit mass, indicating high oxidative toxicity and exposure risk at nighttime. Furthermore, higher environmentally persistent free radical (EPFR) concentration and its significant correlation with OP were observed, suggesting that EPFRs cause reactive oxygen species (ROS) formation. Moreover, the noncarcinogenic and carcinogenic risks were systematically explained and spatialized to children and adults, highlighting intensified hotspots to epidemiological researchers. This better understanding of day-night-based PM formation pathways and their hazardous impact will assist to guide measures to diminish the toxicity of PM and reduce the disease led by air pollution.


Asunto(s)
Contaminantes Atmosféricos , Material Particulado , Niño , Humanos , Material Particulado/análisis , Contaminantes Atmosféricos/análisis , Radicales Libres/análisis , Especies Reactivas de Oxígeno , China , Monitoreo del Ambiente
8.
Bioinform Adv ; 3(1): vbad043, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37113248

RESUMEN

Motivation: Enhancers are important cis-regulatory elements that regulate a wide range of biological functions and enhance the transcription of target genes. Although many feature extraction methods have been proposed to improve the performance of enhancer identification, they cannot learn position-related multiscale contextual information from raw DNA sequences. Results: In this article, we propose a novel enhancer identification method (iEnhancer-ELM) based on BERT-like enhancer language models. iEnhancer-ELM tokenizes DNA sequences with multi-scale k-mers and extracts contextual information of different scale k-mers related with their positions via an multi-head attention mechanism. We first evaluate the performance of different scale k-mers, then ensemble them to improve the performance of enhancer identification. The experimental results on two popular benchmark datasets show that our model outperforms state-of-the-art methods. We further illustrate the interpretability of iEnhancer-ELM. For a case study, we discover 30 enhancer motifs via a 3-mer-based model, where 12 of motifs are verified by STREME and JASPAR, demonstrating our model has a potential ability to unveil the biological mechanism of enhancer. Availability and implementation: The models and associated code are available at https://github.com/chen-bioinfo/iEnhancer-ELM. Supplementary information: Supplementary data are available at Bioinformatics Advances online.

9.
Anesthesiology ; 138(5): 477-495, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36752736

RESUMEN

BACKGROUND: Multiple neonatal exposures to sevoflurane induce neurocognitive dysfunctions in rodents. The lack of cell type-specific information after sevoflurane exposure limits the mechanistic understanding of these effects. In this study, the authors tested the hypothesis that sevoflurane exposures alter the atlas of hippocampal cell clusters and have neuronal and nonneuronal cell type-specific effects in mice of both sexes. METHODS: Neonatal mice were exposed to 3% sevoflurane for 2 h at postnatal days 6, 8, and 10 and analyzed for the exposure effects at postnatal day 37. Single-nucleus RNA sequencing was performed in the hippocampus followed by in situ hybridization to validate the results of RNA sequencing. The Morris Water Maze test was performed to test neurocognitive function. RESULTS: The authors found sex-specific distribution of hippocampal cell types in control mice alongside cell type- and sex-specific effects of sevoflurane exposure on distinct hippocampal cell populations. There were important changes in male but not in female mice after sevoflurane exposure regarding the proportions of cornu ammonis 1 neurons (control vs. sevoflurane, males: 79.9% vs. 32.3%; females: 27.3% vs. 24.3%), dentate gyrus (males: 4.2% vs. 23.4%; females: 36.2% vs. 35.8%), and oligodendrocytes (males: 0.6% vs. 6.9%; females: 5.9% vs. 7.8%). In male but not in female mice, sevoflurane altered the number of significantly enriched ligand-receptor pairs in the cornu ammonis 1, cornu ammonis 3, and dente gyrus trisynaptic circuit (control vs. sevoflurane, cornu ammonis 1-cornu ammonis 3: 18 vs. 42 in males and 15 vs. 21 in females; cornu ammonis 1-dentate gyrus: 21 vs. 35 in males and 12 vs. 20 in females; cornu ammonis 3-dentate gyrus: 25 vs. 45 in males and 17 vs. 20 in females), interfered with dentate gyrus granule cell neurogenesis, hampered microglia differentiation, and decreased cornu ammonis 1 pyramidal cell diversity. Oligodendrocyte differentiation was specifically altered in females with increased expressions of Mbp and Mag. In situ hybridization validated the increased expression of common differentially expressed genes. CONCLUSIONS: This single-nucleus RNA sequencing study reveals the hippocampal atlas of mice, providing a comprehensive resource for the neuronal and nonneuronal cell type- and sex-specific effects of sevoflurane during development.


Asunto(s)
Giro Dentado , Hipocampo , Masculino , Femenino , Animales , Ratones , Sevoflurano/farmacología , Giro Dentado/metabolismo , Neuronas , Células Piramidales
10.
J Hazard Mater ; 442: 130087, 2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36206715

RESUMEN

Environmental persistent free radicals (EPFRs) are new environmental health risk substances in the atmosphere, and their oxidative toxicity (OT) has not been strongly confirmed. In this study, the fugitive characteristics of EPFRs in road dust in a metropolitan city located in northwest China, and their potential oxidative toxicity were investigated. The results showed that the road dust contains Carbon-centered EPFRs with the mean mass concentration of (6.6 ± 5.0) × 1017 spins/g. EPFRs in road dust are degradable and have a half-life of 4.5 years. The water insoluble (WIS) components contribute 71% to the oxidative toxicity of road dust and show a rapid toxicity generation process, while the oxidative toxicity generation rate of water-soluble dust is more stable. Based on the positive matrix factorization (PMF) model, the contribution of EPFRs-dominated factors to Total-OT and WIS-OT is 17.3% and 33.3%, respectively. The PMF model results indicated that different types of EPFRs contributed differently to the oxidative toxicity of road dust and Carbon-centered EPFRs are more likely to participate in reactive oxygen species generation. Our results highlight that the EPFRs are an important contributor to the oxidative toxicity of atmospheric particulate matter, and their oxidative toxicity is dependent on the types of free radicals. It also provides an important insight into the influence of other potentially toxic substances on the oxidative toxicity of atmospheric PM.


Asunto(s)
Contaminantes Atmosféricos , Polvo , Polvo/análisis , Contaminantes Atmosféricos/toxicidad , Contaminantes Atmosféricos/análisis , Especies Reactivas de Oxígeno , Material Particulado/toxicidad , Material Particulado/análisis , Radicales Libres , Monitoreo del Ambiente , China , Carbono , Agua
11.
Environ Sci Technol ; 56(23): 16652-16664, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36342346

RESUMEN

Metal ions are key components in atmosphere that potentially affect the optical properties and photochemical reactivity of atmospheric humic-like substances (HULIS), while this mechanism is still unclear. In this study, we demonstrated that atmospheric HULIS coupled with Fe3+, Cu2+, Zn2+, and Al3+ exhibited distinct optical properties and reactive intermediates from that of HULIS utilizing three-dimensional fluorescence spectroscopy and electron paramagnetic resonance spectroscopy. The HULIS components showed light absorption that increased by 56% for the HULIS-Fe3+ system, fluorescence blue shift, and fluorescence quenching, showing a certain dose-effect relationship. These are mainly attributed to the fact that the highly oxidative HULIS chromophores have a stronger complexing ability with Fe3+ ions than the other metal ions. In addition, triplet organics (promoting ratio: 53%) and reactive oxygen species (promoting ratio: 82.6%) in the HULIS-Fe3+ system showed obvious generation promotion. Therefore, the main assumption of the photochemical mechanisms of atmospheric HULIS in the HULIS-Fe3+ system is that Fe3+ ions can form 3HULIS*-Fe3+ complexation with photoexcited 3HULIS* and then transition to the ground state through energy transfer, electron transfer, or nonradiative transition, accompanied by the formation of singlet oxygen and hydroxyl radicals. Our results provide references for evaluating the radiative forcing and aging effect of metal ions on atmospheric aerosols.


Asunto(s)
Contaminantes Atmosféricos , Sustancias Húmicas , Sustancias Húmicas/análisis , Especies Reactivas de Oxígeno/química , Compuestos Férricos , Aerosoles/química , Radical Hidroxilo , Material Particulado/análisis , Monitoreo del Ambiente/métodos , Contaminantes Atmosféricos/análisis
12.
Environ Sci Technol ; 56(18): 12873-12885, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36083258

RESUMEN

The light-absorbing organic aerosol (OA) constitutes an important fraction of absorbing components, counteracting major cooling effect of aerosols to climate. The mechanisms in linking the complex and changeable chemistry of OA with its absorbing properties remain to be elucidated. Here, by using solvent extraction, ambient OA from an urban environment was fractionated according to polarity, which was further nebulized and online characterized with compositions and absorbing properties. Water extracted high-polar compounds with a significantly higher oxygen to carbon ratio (O/C) than methanol extracts. A transition O/C of about 0.6 was found, below and above which the enhancement and reduction of OA absorptivity were observed with increasing O/C, occurring on the less polar and high polar compounds, respectively. In particular, the co-increase of nitrogen and oxygen elements suggests the important role of nitrogen-containing functional groups in enhancing the absorptivity of the less polar compounds (e.g., forming nitrogen-containing aromatics), while further oxidation (O/C > 0.6) on high-polar compounds likely led to fragmentation and bleaching chromophores. The results here may reconcile the previous observations about darkening or whitening chromophores of brown carbon, and the parametrization of O/C has the potential to link the changing chemistry of OA with its polarity and absorbing properties.


Asunto(s)
Contaminantes Atmosféricos , Metanol , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Carbono/análisis , Nitrógeno , Oxígeno , Material Particulado/análisis , Solventes , Agua/química
13.
Environ Res ; 213: 113652, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35700767

RESUMEN

Fine particulate matter (PM2.5) can induce the generation of reactive oxygen species (ROS) and damage human tissues. Fully understanding the generation mechanism of oxidative toxicity of PM is challenging due to the extremely complex composition. Classification methods may be helpful in understanding the ROS production mechanisms of complex PM. This study used a solvent extraction and solid phase extraction methods to separate five different components from PM2.5 includes non-extractable components that have rarely been studied before, and discussed the coupling effect and heterogeneous characteristics of oxidation activity they produced. It is found that the water-soluble component contribute about half of the PM oxidation activity, and metal ions probably contribute most of the oxidation activity. Experimental results show that oxygen molecules is the main precursor of ROS production, which depends on whether the aerosol component has catalytic conversion ability. After mixing humic-like substance (HULIS) and hydrophilic water-soluble (HP-WSM) PM, the oxidation activity increased, it is most likely to be a synergistic effect between HULIS and metal ions is dominant, but limited contribution to oxidation activity. It turns out that the non-extractable and water-insoluble components have higher oxidation activity than the water-soluble components, and the two components exhibited a more durable ability to produce 1O2. The reaction of soluble components to produce ROS is homogeneous, but it is obviously heterogeneous for these insoluble components. This study suggests that future attention should be paid to the oxidative toxicity of the non-extractable component, and that single PM component or compound cannot simply be studied independently.


Asunto(s)
Contaminantes Atmosféricos , Material Particulado , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/toxicidad , Humanos , Sustancias Húmicas/análisis , Oxidación-Reducción , Material Particulado/análisis , Material Particulado/toxicidad , Especies Reactivas de Oxígeno/análisis , Agua
15.
Environ Int ; 164: 107276, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35537366

RESUMEN

Brown carbon (BrC)/water-soluble organic carbon (WSOC) plays a crucial role in glacier melting. A quantitative evaluation of the light absorption characteristics of WSOC on glacier melting is urgently needed, as the WSOC release from glaciers potentially affects the hydrological cycle, downstream ecological balance, and the global carbon cycle. In this work, the optical properties and composition of WSOC in surface snow/ice on four Tibetan Plateau (TP) glaciers were investigated using a three-dimensional fluorescence spectrometer and electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. The total light-absorption of WSOC in snow/ice at 250-400 nm (ultraviolet region) and 400-600 nm (visible region) accounted for about 60.42% and 27.17% of the light absorption by the total organics, respectively. Two protein-like substances (PRLIS), one humic-like substance (HULIS), and one undefined species of chromophores in snow/ice on the TP glacier surfaces were identified. The lignins and lipids were the main compounds in the TP glaciers and were presented as CHO and CHNO molecules, while CHNOS molecules were only observed in the southeast TP glacier. The light absorption capacity of WSOC in snow/ice was mainly affected by their oxidizing properties. PRLIS and undefined species were closely linked to microbial sources and the local environment of the glaciers (lignins and lipids), while HULIS was significantly affected by anthropogenic emissions (protein/amino sugars). Radiative forcing (RF)-induced by WSOC relative to black carbon were accounted for about 11.62 ± 12.07% and 8.40 ± 10.37% in surface snow and granular ice, respectively. The RF was estimated to be 1.14 and 6.36 W m-2 in surface snow and granular ice, respectively, during the melt season in the central TP glacier. These findings contribute to our understanding of WSOC's impact on glaciers and could serve as a baseline for WSOC research in cryospheric science.


Asunto(s)
Cubierta de Hielo , Nieve , Carbono/análisis , Monitoreo del Ambiente/métodos , Sustancias Húmicas/análisis , Cubierta de Hielo/química , Lignina , Lípidos , Tibet , Agua/análisis
16.
J Environ Sci (China) ; 114: 21-36, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35459486

RESUMEN

Although marine and terrestrial emissions simultaneously affect the formation of atmospheric fine particles in coastal areas, knowledge on the optical properties and sources of water-soluble matter in these areas is still scarce. In this work, taking Qingdao, China as a typical coastal location, the chemical composition of PM2.5 during winter 2019 was analyzed. Excitation-emission matrix fluorescence spectroscopy was combined with parallel factor analysis model to explain the components of water-soluble atmospheric chromophores of PM2.5. Our analysis indicated that NO3-, NH4+ and SO42- ions accounted for 86.80% of the total ion mass, dominated by NO3-. The ratio of [NO3-]/[SO42-] was up to 2.42 ± 0.84, suggesting that mobile sources play an important role in local pollutants emission. The result of positive correlation between Abs365 with K+ suggests that biomass burning is an important source of water-soluble organic compounds (WSOC). Six types of fluorophores (C1-C6), all humic-like substances, were identified in WSOC. Humification index, biological index and fluorescence index in winter were 1.66 ± 0.34, 0.51 ± 0.44 and 1.09 ± 0.78, respectively, indicating that WSOC in Qingdao were mainly terrestrial organic matters. Overall, although the study area is close to the ocean, the contribution of terrestrial sources to PM2.5, especially vehicle exhaust and coal combustion, is still much higher than that of marine sources. Our study provides a more comprehensive understanding of chemical and optical properties of WSOC based on PM2.5 in coastal areas, and may provide ground for improving local air quality.


Asunto(s)
Contaminantes Atmosféricos , Dispositivos Ópticos , Contaminantes Atmosféricos/análisis , China , Monitoreo del Ambiente/métodos , Sustancias Húmicas/análisis , Iones/análisis , Material Particulado/análisis , Estaciones del Año , Agua/química
17.
Biomed Pharmacother ; 149: 112897, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35378503

RESUMEN

A great number of pediatric patients undergoing varied procedures make neonatal surgery plus anesthesia become a matter of great concern owing to underlying neurotoxicity in developing brain. The authors set out to assess long-term effects of surgery plus anesthesia in mouse model. Six-day-old C57BL/6 mice were randomized to receive either anesthesia with 3% sevoflurane, abdominal surgery under the same anesthesia, or the control condition. These mice were examined of learning and memory at juvenile age in Morris water maze test. The brain tissues of mice were harvested for Western blot analysis, including purinergic receptors P2X family, CaMKII and NF-κB. Another battery of mice were administered with inhibitors of P2RX2/3 (e.g., A317491) into hippocampal dentate gyrus before behavioral testing. We found that neonatal surgery plus anesthesia, but not sevoflurane anesthesia alone, impaired the learning and memory of juvenile mice, as evidenced by delayed escape latency and reduced platform-crossing times. Immunoblotting analysis showed that behavioral abnormalities were associated with increased levels of P2RX2, phosphorylated-CaMKIIß and activated NF-κB in mouse hippocampus. Injection of A317491 ameliorated the impaired learning and memory of juvenile mice undergoing neonatal surgery plus anesthesia, and it also mitigated the neonatal surgery-induced signaling enhancement of P2RX2/CaMKII/NF-κB. Together, these results indicate that neonatal surgery plus anesthesia may cause long-term cognitive dysfunction, with potential mechanism of increasing P2RX2 and downstream signaling of phosphorylated-CaMKII and NF-κB. Our findings will promote more studies to assess detrimental effects of surgery and accompanying inflammation, diverse anesthetics and even sleeping deprivation on mouse neurodevelopment and neurobehavioral performance.


Asunto(s)
Anestesia , Hipocampo , Aprendizaje por Laberinto , Trastornos de la Memoria , Anestesia/efectos adversos , Animales , Animales Recién Nacidos , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Hipocampo/efectos de los fármacos , Hipocampo/fisiopatología , Aprendizaje por Laberinto/efectos de los fármacos , Aprendizaje por Laberinto/fisiología , Trastornos de la Memoria/epidemiología , Ratones , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Receptores Purinérgicos P2X2 , Sevoflurano/farmacología
18.
Sci Total Environ ; 828: 154290, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35248631

RESUMEN

It is urgent to control the emission of volatile organic compounds (VOCs) due to their harmful effects on the environment and human health. A hybrid system integrating non-thermal-plasma and catalysis is regarded as one of the most promising technologies for VOCs removal due to their high VOCs removal efficiency, product selectivity and energy efficiency. This review systematically documents the main findings and improvements of VOCs removal using plasma-catalysis technology in recent 10 years. To better understand the fundamental relation between different aspects of this research field, this review mainly addresses the catalyst development, key influential factors, generation of by-products and reaction mechanism of VOCs decomposition in the plasma-catalysis process. Also, a comparison of the performance in various VOCs removal processes is provided. Particular emphasis is given to the importance of the selected catalyst and the synergy of plasma and catalyst in the VOCs removal in the hybrid system, which can be used as a reference point for future studies in this field.


Asunto(s)
Compuestos Orgánicos Volátiles , Catálisis , Humanos
19.
Bioinformatics ; 38(8): 2135-2143, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35176130

RESUMEN

MOTIVATION: RNA-binding proteins (RBPs) play crucial roles in post-transcriptional regulation. Accurate identification of RBPs helps to understand gene expression, regulation, etc. In recent years, some computational methods were proposed to identify RBPs. However, these methods fail to accurately identify RBPs from some specific species with limited data, such as bacteria. RESULTS: In this study, we introduce a computational method called PreRBP-TL for identifying species-specific RBPs based on transfer learning. The weights of the prediction model were initialized by pretraining with the large general RBP dataset and then fine-tuned with the small species-specific RPB dataset by using transfer learning. The experimental results show that the PreRBP-TL achieves better performance for identifying the species-specific RBPs from Human, Arabidopsis, Escherichia coli and Salmonella, outperforming eight state-of-the-art computational methods. It is anticipated PreRBP-TL will become a useful method for identifying RBPs. AVAILABILITY AND IMPLEMENTATION: For the convenience of researchers to identify RBPs, the web server of PreRBP-TL was established, freely available at http://bliulab.net/PreRBP-TL. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Regulación de la Expresión Génica , Proteínas de Unión al ARN , Humanos , Sitios de Unión , Proteínas de Unión al ARN/metabolismo , Aprendizaje Automático
20.
Environ Res ; 210: 112899, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35176313

RESUMEN

The impact of COVID-19 control on air quality have been prevalent for the past two years, however few studies have explored the toxicity of atmospheric particulate matter during the epidemic control. Therefore, this research highlights the characteristics and sources of oxidative potential (OP) and the new health risk substances environmentally persistent free radicals (EPFRs) in comparison to city lockdown (CLD) with early days of 2019-2020. Daily particulate matter (PM2.5) samples were collected from January 14 to February 3, 2020, with the same period during 2019 in Xi'an city. The results indicated that the average concentration of PM2.5 decreased by 48% during CLD. Concentrations of other air pollutants and components, such as PM10, NO2, SO2, WSIs, OC and EC were also decreased by 22%, 19%, 2%, 17%, 6%, and 4% respectively during the CLD, compared to the same period in 2019. Whereas only O3 increased by 30% during CLD. The concentrations of EPFRs in PM2.5 was considerably lower than in 2019, which decreased by 12% during CLD. However, the OP level was increased slightly during CLD. Moreover, both EPFRs/PM and DTTv/PM did not decrease or even increase significantly, manifesting that the toxicity of particulate matter has not been reduced by more gains during the CLD. Based on PMF analysis, during the epidemic period, the contribution of traffic emission is significantly reduced, while EPFRs and DTTv increased, which consist of significant O3 and secondary aerosols. This research leads to able future research on human health effect of EPFRs and oxidative potential and can be also used to formulate the majors to control EPFRs and OP emissions, suggest the need for further studies on the secondary processing of EPFRs and OP during the lockdown period in Xi'an. .The COVID-19 lockdown had a significant impact on both social and economic aspects. The city lockdown, however, had a positive impact on the environment and improved air quality, however, no significant health benefits were observed in Xi'an, China.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , COVID-19 , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , COVID-19/epidemiología , China , Control de Enfermedades Transmisibles , Monitoreo del Ambiente/métodos , Radicales Libres/análisis , Humanos , Material Particulado/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...