Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Food Chem ; 448: 139142, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38554585

RESUMEN

Herein, ultraviolet B (UVB) persistent luminescence phosphors containing SrAl12O19: Ce3+, Sc3+ nanoparticles were reported. Thermoluminescence (TL) spectrum analysis reveals that the shallow trap induced by Sc3+ co-doping plays an important role in photoluminescence persistent luminescence (PersL) development, while the deep trap dominates the generation of optical stimulated luminescence (OSL). Owing the appearance of deep trap, the OSL is observed under light (700 nm - 900 nm) excitation. UVB luminescence exerts good bactericidal effects on pathogenic bacteria involved in the process of food spoilage. Thus, the smart window with SrAl12O19: Ce3+, Sc3+/PDMS produces UVB PersL to efficiently inactivate Escherichia coli and Staphylococcus aureus. In addition, the presence of the smart window delays the critical point of pork decay, and greatly reduces the time of pork spoilage. It maximizes the convenience of eradicating bacteria and preserving food, thus offering a fresh perspective on the use of UV light for food sterilization and preservation.

2.
Plants (Basel) ; 13(4)2024 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-38498526

RESUMEN

Prefoldins (PFDs) are ubiquitous co-chaperone proteins that originated in archaea during evolution and are present in all eukaryotes, including yeast, mammals, and plants. Typically, prefoldin subunits form hexameric PFD complex (PFDc) that, together with class II chaperonins, mediate the folding of nascent proteins, such as actin and tubulin. In addition to functioning as a co-chaperone in cytoplasm, prefoldin subunits are also localized in the nucleus, which is essential for transcription and post-transcription regulation. However, the specific and critical roles of prefoldins in plants have not been well summarized. In this review, we present an overview of plant prefoldin and its related proteins, summarize the structure of prefoldin/prefoldin-like complex (PFD/PFDLc), and analyze the versatile landscape by prefoldin subunits, from cytoplasm to nucleus regulation. We also focus the specific role of prefoldin-mediated phytohormone response and global plant development. Finally, we overview the emerging prefoldin-like (PFDL) subunits in plants and the novel roles in related processes, and discuss the next direction in further studies.

3.
Nucleic Acids Res ; 52(D1): D98-D106, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37953349

RESUMEN

Long noncoding RNAs (lncRNAs) have emerged as crucial regulators across diverse biological processes and diseases. While high-throughput sequencing has enabled lncRNA discovery, functional characterization remains limited. The EVLncRNAs database is the first and exclusive repository for all experimentally validated functional lncRNAs from various species. After previous releases in 2018 and 2021, this update marks a major expansion through exhaustive manual curation of nearly 25 000 publications from 15 May 2020, to 15 May 2023. It incorporates substantial growth across all categories: a 154% increase in functional lncRNAs, 160% in associated diseases, 186% in lncRNA-disease associations, 235% in interactions, 138% in structures, 234% in circular RNAs, 235% in resistant lncRNAs and 4724% in exosomal lncRNAs. More importantly, it incorporated additional information include functional classifications, detailed interaction pathways, homologous lncRNAs, lncRNA locations, COVID-19, phase-separation and organoid-related lncRNAs. The web interface was substantially improved for browsing, visualization, and searching. ChatGPT was tested for information extraction and functional overview with its limitation noted. EVLncRNAs 3.0 represents the most extensive curated resource of experimentally validated functional lncRNAs and will serve as an indispensable platform for unravelling emerging lncRNA functions. The updated database is freely available at https://www.sdklab-biophysics-dzu.net/EVLncRNAs3/.


Asunto(s)
Bases de Datos de Ácidos Nucleicos , ARN Largo no Codificante , Manejo de Datos , Almacenamiento y Recuperación de la Información , ARN Largo no Codificante/genética
4.
Plants (Basel) ; 12(13)2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37447143

RESUMEN

FAR1-RELATED SEQUENCE (FRS) transcription factors are generated by transposases and play vital roles in plant growth and development, light signaling transduction, phytohormone response, and stress resistance. FRSs have been described in various plant species. However, FRS family members and their functions remain poorly understood in vegetative crops such as potato (Solanum tuberosum, St). In the present study, 20 putative StFRS proteins were identified in potato via genome-wide analysis. They were non-randomly localized to eight chromosomes and phylogenetic analysis classified them into six subgroups along with FRS proteins from Arabidopsis and tomato. Conserved protein motif, protein domain, and gene structure analyses supported the evolutionary relationships among the FRS proteins. Analysis of the cis-acting elements in the promoters and the expression profiles of StFRSs in various plant tissues and under different stress treatments revealed the spatiotemporal expression patterns and the potential roles of StFRSs in phytohormonal and stress responses. StFRSs were differentially expressed in the cultivar "Xisen 6", which is exposed to a variety of stresses. Hence, these genes may be critical in regulating abiotic stress. Elucidating the StFRS functions will lay theoretical and empirical foundations for the molecular breeding of potato varieties with high light use efficiency and stress resistance.

5.
Trends Plant Sci ; 27(4): 379-390, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34865981

RESUMEN

In eukaryotes, dynamic chromatin states are closely related to changes in gene expression. Epigenetic modifications help plants adapt to their ever-changing environment by modulating gene expression via covalent modification at specific sites on DNA or histones. Sugars provide energy, but also function as signaling molecules to control plant growth and development. Various epigenetic modifications participate in sensing and transmitting sugar signals. Here we summarize recent progress in uncovering the epigenetic mechanisms involved in sugar signal transduction, including histone acetylation and deacetylation, histone methylation and demethylation, and DNA methylation. We also highlight changes in chromatin marks when crosstalk occurs between sugar signaling and the light, temperature, and phytohormone signaling pathways, and describe potential questions and approaches for future research.


Asunto(s)
Histonas , Azúcares , Acetilación , Cromatina/metabolismo , Metilación de ADN/genética , Epigénesis Genética/genética , Histonas/genética , Histonas/metabolismo , Plantas/genética , Plantas/metabolismo , Transducción de Señal/genética , Azúcares/metabolismo
6.
Front Plant Sci ; 12: 650926, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34163498

RESUMEN

Long non-coding RNAs (lncRNAs) play a vital role in a variety of biological functions in plant growth and development. In this study, we provided an overview of the molecular mechanisms of lncRNAs in interacting with other biomolecules with an emphasis on those lncRNAs validated only by low-throughput experiments. LncRNAs function through playing multiple roles, including sponger for sequestering RNA or DNA, guider or decoy for recruiting or hijacking transcription factors or peptides, and scaffold for binding with chromatin modification complexes, as well as precursor of microRNAs or small interfering RNAs. These regulatory roles have been validated in several plant species with a comprehensive list of 73 lncRNA-molecule interaction pairs in 16 plant species found so far, suggesting their commonality in the plant kingdom. Such initial findings of a small number of functional plant lncRNAs represent the beginning of what is to come as lncRNAs with unknown functions were found in orders of magnitude more than proteins.

7.
Nucleic Acids Res ; 49(D1): D86-D91, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33221906

RESUMEN

Long non-coding RNAs (lncRNAs) play important functional roles in many diverse biological processes. However, not all expressed lncRNAs are functional. Thus, it is necessary to manually collect all experimentally validated functional lncRNAs (EVlncRNA) with their sequences, structures, and functions annotated in a central database. The first release of such a database (EVLncRNAs) was made using the literature prior to 1 May 2016. Since then (till 15 May 2020), 19 245 articles related to lncRNAs have been published. In EVLncRNAs 2.0, these articles were manually examined for a major expansion of the data collected. Specifically, the number of annotated EVlncRNAs, associated diseases, lncRNA-disease associations, and interaction records were increased by 260%, 320%, 484% and 537%, respectively. Moreover, the database has added several new categories: 8 lncRNA structures, 33 exosomal lncRNAs, 188 circular RNAs, and 1079 drug-resistant, chemoresistant, and stress-resistant lncRNAs. All records have checked against known retraction and fake articles. This release also comes with a highly interactive visual interaction network that facilitates users to track the underlying relations among lncRNAs, miRNAs, proteins, genes and other functional elements. Furthermore, it provides links to four new bioinformatics tools with improved data browsing and searching functionality. EVLncRNAs 2.0 is freely available at https://www.sdklab-biophysics-dzu.net/EVLncRNAs2/.


Asunto(s)
Biología Computacional/métodos , Bases de Datos de Ácidos Nucleicos/organización & administración , ARN Circular/genética , ARN Largo no Codificante/genética , Programas Informáticos , Animales , Bibliometría , Resistencia a Antineoplásicos/genética , Exosomas/química , Exosomas/genética , Humanos , Internet , Plantas/genética , ARN Circular/clasificación , ARN Circular/metabolismo , ARN Largo no Codificante/clasificación , ARN Largo no Codificante/metabolismo , Estrés Fisiológico
8.
J Exp Bot ; 71(16): 4890-4902, 2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32445333

RESUMEN

Vegetative (juvenile-to-adult) and flowering (vegetative-to-reproductive) phase changes are crucial in the life cycle of higher plants. MicroRNA156 (miR156) and its target SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes are master regulators that determine vegetative phase changes. The miR156 level gradually declines as a plant ages and its expression is rapidly repressed by sugar. However, the underlying regulatory mechanism of transcriptional regulation of the MIR156 gene remains largely unknown. In this study, we demonstrated that Arabidopsis NUCLEAR FACTOR Y A8 (NF-YA8) binds directly to CCAAT cis-elements in the promoters of multiple MIR156 genes, thus activating their transcription and inhibiting the juvenile-to-adult transition. NF-YA8 was highly expressed in juvenile-stage leaves, and significantly repressed with developmental age and by sugar signals. Our results suggest that NF-YA8 acts as a signaling hub, integrating internal developmental age and sugar signals to regulate the transcription of MIR156s, thus affecting the juvenile-to-adult and flowering transitions.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , MicroARNs , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factor de Unión a CCAAT , Regulación de la Expresión Génica de las Plantas , MicroARNs/genética
9.
Plant Physiol ; 183(3): 1281-1294, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32414897

RESUMEN

The greening of etiolated seedlings is crucial for the growth and survival of plants. After reaching the soil surface and sunlight, etiolated seedlings integrate numerous environmental signals and internal cues to control the initiation and rate of greening thus to improve their survival and adaption. However, the underlying regulatory mechanisms by which light and phytohormones, such as abscisic acid (ABA), coordinately regulate greening of the etiolated seedlings is still unknown. In this study, we showed that Arabidopsis (Arabidopsis thaliana) DE-ETIOLATED1 (DET1), a key negative regulator of photomorphogenesis, positively regulated light-induced greening by repressing ABA responses. Upon irradiating etiolated seedlings with light, DET1 physically interacts with FAR-RED ELONGATED HYPOCOTYL3 (FHY3) and subsequently associates to the promoter region of the FHY3 direct downstream target ABA INSENSITIVE5 (ABI5). Further, DET1 recruits HISTONE DEACETYLASE6 to the locus of the ABI5 promoter and reduces the enrichments of H3K27ac and H3K4me3 modification, thus subsequently repressing ABI5 expression and promoting the greening of etiolated seedlings. This study reveals the physiological and molecular function of DET1 and FHY3 in the greening of seedlings and provides insights into the regulatory mechanism by which plants integrate light and ABA signals to fine-tune early seedling establishment.


Asunto(s)
Ácido Abscísico/farmacología , Arabidopsis/fisiología , Luz , Plantones/fisiología , Acetilación , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Oscuridad , Etiolado/efectos de los fármacos , Etiolado/efectos de la radiación , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Histonas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Metilación , Fitocromo/genética , Fitocromo/metabolismo , Unión Proteica/efectos de los fármacos , Unión Proteica/efectos de la radiación , Plantones/efectos de los fármacos , Plantones/efectos de la radiación , Transcripción Genética/efectos de los fármacos , Transcripción Genética/efectos de la radiación
10.
Plant Cell ; 32(5): 1574-1588, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32152188

RESUMEN

Leaf senescence is tightly regulated by numerous internal cues and external environmental signals. The process of leaf senescence is promoted by a low ratio of red to far-red (R:FR) light, FR light, or extended darkness and is repressed by a high ratio of R:FR light or R light. However, the precise regulatory mechanisms by which plants assess external light signals and their internal cues to initiate and control the process of leaf senescence remain largely unknown. In this study, we discovered that the light-signaling protein FAR-RED ELONGATED HYPOCOTYL3 (FHY3) negatively regulates age-induced and light-mediated leaf senescence in Arabidopsis (Arabidopsis thaliana). FHY3 directly binds to the promoter region of transcription factor gene WRKY28 to repress its expression, thus negatively regulating salicylic acid biosynthesis and senescence. Both the fhy3 loss-of-function mutant and WRKY28-overexpressing Arabidopsis plants exhibited early senescence under high R:FR light conditions, indicating that the FHY3-WRKY28 transcriptional module specifically prevents leaf senescence under high R:FR light conditions. This study reveals the physiological and molecular functions of FHY3 and WRKY28 in leaf senescence and provides insight into the regulatory mechanism by which plants integrate dynamic environmental light signals and internal cues to initiate and control leaf senescence.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/efectos de la radiación , Fototransducción , Fitocromo/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/efectos de la radiación , Arabidopsis/efectos de los fármacos , Secuencia de Bases , Luz , Fototransducción/efectos de los fármacos , Fototransducción/efectos de la radiación , Mutación/genética , Hojas de la Planta/efectos de los fármacos , Regiones Promotoras Genéticas , Unión Proteica/efectos de los fármacos , Unión Proteica/efectos de la radiación , Ácido Salicílico/farmacología , Transcripción Genética/efectos de los fármacos , Transcripción Genética/efectos de la radiación
11.
Plant Physiol ; 180(4): 2212-2226, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31182557

RESUMEN

Sugars provide a source of energy; they also function as signaling molecules that regulate gene expression, affect metabolism, and alter growth in plants. Rapid responses to sugar signaling and metabolism are essential for optimal growth and fitness, but the regulatory mechanisms underlying these are largely unknown. In this study, we found that the rapid induction of sugar responses in Arabidopsis (Arabidopsis thaliana) requires the W-box cis-elements in the promoter region of GLC 6-PHOSPHATE/PHOSPHATE TRANSLOCATOR2, a well-studied sugar response marker gene. The transcription factors WRKY18 and WRKY53 directly bind to the W-Box cis-elements in the promoter region of sugar response genes and activate their expression. In addition, HISTONE ACETYLTRANSFERASE 1 (HAC1) is recruited to the WRKY18 and WRKY53 complex that resides on the promoters. In this complex, HAC1 facilitates the acetylation of histone 3 Lys 27 (H3K27ac) on the sugar-responsive genes. Taken together, our findings demonstrate a mechanism by which sugar regulates chromatin modification and gene expression, thus helping plants to adjust their growth in response to environmental changes.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/metabolismo , Proteínas de Unión al ADN/metabolismo , Histona Acetiltransferasas/metabolismo , Azúcares/farmacología , Factores de Transcripción/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/genética , Histona Acetiltransferasas/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...