Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Chem Phys ; 160(19)2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38767255

RESUMEN

The time-periodic modulation of a temperature gradient can alter the heat transport properties of a physical system. Oscillating thermal gradients give rise to behaviors such as modified thermal conductivity and controllable time-delayed energy storage that are not present in a system with static temperatures. Here, we examine how the heat transport properties of a molecular lattice model are affected by an oscillating temperature gradient. We use analytical analysis and molecular dynamics simulations to investigate the vibrational heat flow in a molecular lattice system consisting of a chain of particles connected to two heat baths at different temperatures, where the temperature difference between baths is oscillating in time. We derive expressions for heat currents in this system using a stochastic energetics framework and a nonequilibrium Green's function approach that is modified to treat the nonstationary average energy fluxes. We find that emergent energy storage, energy release, and thermal conductance mechanisms induced by the temperature oscillations can be controlled by varying the frequency, waveform, and amplitude of the oscillating gradient. The developed theoretical approach provides a general framework to describe how vibrational heat transmission through a molecular lattice is affected by temperature gradient oscillations.

2.
J Chem Phys ; 159(13)2023 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-37800644

RESUMEN

Classical molecular dynamics (MD) has been shown to be effective in simulating heat conduction in certain molecular junctions since it inherently takes into account some essential methodological components which are lacking in the quantum Landauer-type transport model, such as many-body full force-field interactions, anharmonicity effects and nonlinear responses for large temperature biases. However, the classical MD reaches its limit in the environments where the quantum effects are significant (e.g. with low-temperatures substrates, presence of extremely high frequency molecular modes). Here, we present an atomistic simulation methodology for molecular heat conduction that incorporates the quantum Bose-Einstein statistics into an "effective temperature" in the form of a modified Langevin equation. We show that the results from such a quasi-classical effective temperature MD method deviates drastically when the baths temperature approaches zero from classical MD simulations and the results converge to the classical ones when the bath approaches the high-temperature limit, which makes the method suitable for full temperature range. In addition, we show that our quasi-classical thermal transport method can be used to model the conducting substrate layout and molecular composition (e.g. anharmonicities, high-frequency modes). Anharmonic models are explicitly simulated via the Morse potential and compared to pure harmonic interactions to show the effects of anharmonicities under quantum colored bath setups. Finally, the chain length dependence of heat conduction is examined for one-dimensional polymer chains placed in between quantum augmented baths.

3.
Phys Rev E ; 108(2-1): 024148, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37723696

RESUMEN

Energy transport is a fundamental physical process that plays a prominent role in the function and performance of myriad systems and technologies. Recent experimental measurements have shown that subjecting a macroscale system to a time-periodic temperature gradient can increase thermal conductivity in comparison to a static temperature gradient. Here, we theoretically examine this mechanism in a nanoscale model by applying a stochastic Langevin framework to describe the energy transport properties of a particle connecting two heat baths with different temperatures, where the temperature difference between baths is oscillating in time. Analytical expressions for the energy flux of each heat bath and for the system itself are derived for the case of a free particle and a particle in a harmonic potential. We find that dynamical effects in the energy flux induced by temperature oscillations give rise to complex energy transport hysteresis effects. The presented results suggest that applying time-periodic temperature modulations is a potential route to control energy storage and release in molecular devices and nanosystems.

4.
Front Med (Lausanne) ; 10: 1166429, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37457580

RESUMEN

Purpose: This study aimed to investigate the relationship among changes in corneal topography, retinal vascular density, and retinal thickness in myopic children who underwent orthokeratology for 3 months. Method: Thirty children with myopia wore orthokeratology lenses for 3 months. Using optical coherence tomography angiography (OCTA), the retina was imaged as 6 × 6 mm en-face images at baseline and 3 months after orthokeratology. Cornea data was acquired by topography and analyzed by customer MATLAB software. The cornea was divided into 3 zones and 9 sectors. The relative corneal refractive power shift (RCRPS) was used in this study. Changes in retinal vascular density (RVDC) and retinal thickness change (RTC) were associated with RCRPS by using spearman test. Statistical significance was set at p < 0.05. Result: A significant correlation was observed between the RVDC and the RCRPS in many regions (the r was 0.375 ~ 0.548, all p value <0.05). Significant positive correlations were found between RVDC in inner and outer temple regions with RCRPS at inner and outer nasal sectors. There were no significant correlations between RTC and RCRPS in other sectors except in the central cornea and the outer nasal retina (r:0.501, p:0.006). At baseline and 3 months after wearing the orthokeratology lens, no significant differences in the retinal microvasculature or thickness (p > 0.05) were observed at any regions. Conclusion: The correlation between the cornea and the retina was observed after orthokeratology. Cornea changes may affect regional retinal responses accordingly,which may explain how orthokeratology delays myopia progression partially.

5.
J Chem Phys ; 153(14): 144113, 2020 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-33086795

RESUMEN

Understanding phononic heat transport processes in molecular junctions is a central issue in the developing field of nanoscale heat conduction. Here, we present a Langevin dynamics simulation framework to investigate heat transport processes in molecular junctions at and beyond the linear response regime and apply it to saturated and unsaturated linear hydrocarbon chains connecting two gold substrates. Thermal boundary conditions represented by Markovian noise and damping are filtered through several (up to four) gold layers to provide a realistic and controllable bath spectral density. Classical simulations using the full universal force field are compared with quantum calculations that use only the harmonic part of this field. The close agreement found at about room temperature between these very different calculations suggests that heat transport at such temperatures is dominated by lower frequency vibrations whose dynamics is described well by classical mechanics. The results obtained for alkanedithiol molecules connecting gold substrates agree with previous quantum calculations based on the Landauer formula and match recent experimental measurements [e.g., thermal conductance around 20 pW/K for alkanedithiols in single-molecule junctions (SMJs)]. Heat conductance simulations on polyynes of different lengths illuminate the effects of molecular conjugation on thermal transport. The difference between alkanes and polyynes is not large but correlates with the larger rigidity and stronger mode localization that characterize the polyyne structure. This computational approach has been recently used [R. Chen, I. Sharony, and A. Nitzan, J. Phys. Chem. Lett. 11, 4261-4268 (2020)] to unveil local atomic heat currents and phononic interference effect in aromatic-ring based SMJs.

6.
J Phys Chem Lett ; 11(11): 4261-4268, 2020 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-32375004

RESUMEN

We consider interference effects in vibrational heat conduction across single-molecule junctions. Previous theoretical descriptions of such effects have relied on the quantum Landauer-type expression for heat transport by harmonic molecules, and such observations are sometimes termed "quantum interference". Here we demonstrate via classical atomistic simulations of heat conduction in benzenedithiol single-molecule junctions that the room-temperature effect is essentially classical. In fact, classical simulations and quantum evaluation of room-temperature heat conduction in these systems yield similar results. Simulations of para-, meta-, and ortho-connected benzenedithiols between gold substrates yield conductions in the order para > ortho > meta, which is similar to trends found in the electronic conduction of these structures. The (essentially classical) interference origin of this ordering is indicated by the similarity of the quantum and classical behaviors of these systems.

7.
J Chem Phys ; 149(10): 104103, 2018 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-30219017

RESUMEN

The energy partitioning during activation and relaxation events under steady-state conditions for a Brownian particle driven by multiple thermal reservoirs of different local temperatures is investigated. Specifically, we apply the formalism derived in Paper I [G. T. Craven and A. Nitzan, J. Chem. Phys. 148, 044101 (2018)] to examine the thermal transport properties of two sub-ensembles of Brownian processes, distinguished at any given time by the specification that all the trajectories in each group have, at that time, energy either above (upside) or below (downside) a preselected energy threshold. Dynamical properties describing energy accumulation and release during activation/relaxation events and relations for upside/downside energy partitioning between thermal reservoirs are derived. The implications for heat transport induced by upside and downside events are discussed.

8.
J Chem Phys ; 147(12): 124101, 2017 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-28964027

RESUMEN

A unified theory of heat transport in environments that sustain intersite phononic coupling and electron hopping is developed. The heat currents generated by both phononic transport and electron transfer between sites characterized by different local temperatures are calculated and compared. Using typical molecular parameters we find that the electron-transfer-induced heat current can be comparable to that of the standard phononic transport for donor-acceptor pairs with efficient bidirectional electron transfer rates (relatively small intersite distance and favorable free-energy difference). In most other situations, phononic transport is the dominant heat transfer mechanism.

9.
Medicine (Baltimore) ; 96(19): e6907, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28489806

RESUMEN

To investigate the relationship between corneal biomechanics and anterior segment parameters in the early stage of overnight orthokeratology.Twenty-three eyes from 23 subjects were involved in the study. Corneal biomechanics, including corneal hysteresis (CH) and corneal resistance factor (CRF), and parameters of the anterior segment, including corneal curvature, central corneal thickness (CCT), and corneal sublayers' thickness, were measured at baseline and day 1 and 7 after wearing orthokeratology lens. One-way analysis of variance with repeated measures was used to compare the longitudinal changes and partial least squares linear regression was used to explore the relationship between corneal biomechanics and anterior segment parameters.At baseline, CH and CRF were positively correlated with CCT (r = 0.244, P = .008 for CH; r = 0.249, P < .001 for CRF), central stroma thickness (CST) (r = 0.241, P = .008 for CH; r = 0.244, P = .002 for CRF) and central Bowman layer thickness (CBT) (r = 0.138, P = .039 for CH; r = 0.171, P = .006 for CRF). Both CH and CRF significantly decreased from day 1 after orthokeratology. The corneal curvature and the epithelium thickness also significantly decreased, while the stromal layer thickened significantly from day 1 after orthokeratology. There was no correlation between the changes of corneal biomechanics and anterior segment parameters at day 1 and 7 after orthokeratology.While corneal biomechanics were positively correlated with CCT, CST, and CBT, the changes of CH and CRF were not correlated with the changes of corneal curvature, CCT, and corneal sublayers' thickness in the early stage of orthokeratology in our study.


Asunto(s)
Lentes de Contacto , Córnea/fisiopatología , Miopía/fisiopatología , Miopía/terapia , Adolescente , Análisis de Varianza , Fenómenos Biomecánicos , Niño , Córnea/patología , Femenino , Humanos , Análisis de los Mínimos Cuadrados , Modelos Lineales , Estudios Longitudinales , Masculino , Miopía/patología , Tamaño de los Órganos , Sueño/fisiología , Factores de Tiempo , Resultado del Tratamiento
10.
Polymers (Basel) ; 8(12)2016 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-30974693

RESUMEN

In bulk heterojunction polymer solar cells, external photoexcitation results in localized excitons in the polymer chain. After hot exciton formation and subsequent relaxation, the dipole moment drives the electron to partially transfer to extended orbitals from the original localized ones, leading to self-delocalization. Based on the dynamic fluorescence spectra, the delocalization of excitons is revealed to be an intrinsic property dominated by exciton decay, acting as a bridge for the exciton to diffuse in the polymeric solar cell. The modification of the dipole moment enhances the efficiency of polymer solar cells.

11.
Nanoscale ; 7(2): 479-86, 2015 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-25407625

RESUMEN

In a real bulk heterojunction polymer solar cell, after exciton separation in the heterojunction, the resulting negatively-charged carrier, a polaron, moves along the polymer chain of the acceptor, which is believed to be of significance for the charged carrier transport properties in a polymer solar cell. During the negative polaron transport, due to the external light field, the polaron, which is re-excited and induces deep localization, also forms a new local distortion of the alternating bonds. It is revealed that the excited polaron moves more slowly than the ground-state polaron. Furthermore, the velocity of the polaron moving along the polymer chain is crucially dependent on the photoexcitation. With an increase in the intensity of the optical field, the localization of the excited polaron will be deepened, with a decrease of the polaron's velocity. It is discovered that, for a charged carrier, photoexcitation is a significant factor in reducing the efficiency during the charged carrier transport in polymer solar cells. Mostly, the deep trapping effect of charged carrier in composite conjugated polymer solar cell presents an opportunity for the future application in nanoscale memory and imaging devices.

12.
J Phys Chem B ; 117(11): 3258-63, 2013 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-23477348

RESUMEN

This paper employs a molecular dynamics approach to uncover the time profile of exciton formation, which can be divided into two stages: localization of electron-hole pairs and relaxation process (nuclear and electronic). Under photoexcitation, an electron-hole pair is formed by an electronic transition, and the pair in turn becomes localized through the electron-lattice interaction, which triggers the total energy to shift violently and oscillate. The oscillation during the first 40 fs induces the excitation to step into the second stage, i.e., relaxation. After the relaxation process of about 850 fs, the total energy, lattice energy, and electron energy reach certain values whereas the lattice configuration and electron remain localized, indicating the formation of a singlet exciton.

13.
Materials (Basel) ; 6(3): 886-896, 2013 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-28809346

RESUMEN

With the development of experimental techniques, effective injection and transportation of electrons is proven as a way to obtain polymer light-emitting diodes (PLEDs) with high quantum efficiency. This paper reveals a valid mechanism for the enhancement of quantum efficiency in PLEDs. When an external electric field is applied, the interaction between a negative polaron and triplet exciton leads to an electronic two-transition process, which induces the exciton to emit light and thus improve the emission efficiency of PLEDs.

14.
J Phys Chem A ; 116(49): 12089-95, 2012 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-23186537

RESUMEN

After a hole injection layer is inserted into a polymer light-emitting material, the injection of positive charge not only easily causes distortion in the conjugated polymer chain but also produces positive polarons. The ultrafast dynamics shows that, when the positive polaron approaches and collides with the triplet exciton, that exciton will become charged, whereby the non-emissive triplet exciton becomes radiative and emits light. Furthermore, the lifetime of the charged triplet exciton is longer than the singlet exciton. This paper explicitly depicts the dynamic fluorescence spectra of the radiative transition of the charged triplet exciton occurring during the decay of the charged exciton, and also exhibits the difference between traditional adiabatic dynamics and non-adiabatic dynamics.

15.
J Phys Chem B ; 115(51): 15196-201, 2011 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-22087752

RESUMEN

Both fluorescence dynamics and time-dependent electron transitions are introduced within a previously developed molecule dynamics approach for treating conjugated polymers. This is able to provide a panoramic view of luminescence dynamics during singlet exciton decay, in which the fluorescence dynamics is largely determined by the electron population and the evolution of the dipole moment. The fluorescence intensity is weakened due to a reduced dipole moment and diminished decay rate of the electron, which validates a previous assumption based on experimental studies. The lifetime of the singlet exciton in a conjugated polymer is found to be 1.2 ns, and the calculated time profile of the fluorescence intensity is in agreement with recent experimental results.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...