Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Kaohsiung J Med Sci ; 40(1): 11-22, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37950620

RESUMEN

Long noncoding RNA MYLK antisense RNA 1 (MYLK-AS1) is the crux in multiple diseases. Therefore, the purpose of this study was to investigate the possible mechanism of MYLK-AS1. A total of 62 colon cancer (CC) specimens and paired adjacent normal tissues were collected, and the expression of MYLK-AS1, microRNA (miR)-101-5p/cell division cycle 42 (CDC42) was detected. CC cell lines were transfected with MYLK-AS1, miR-101-5p, CDC42-related plasmids, and the biological functions and markers of epithelial-mesenchymal transition (EMT) were analyzed. The binding relationship between MYLK-AS1, miR-101-5p, and CDC42 was evaluated. In CC tissues and cell lines, MYLK-AS1 and CDC42 were highly expressed, and miR-101-5p was lowly expressed. Inhibition of MYLK-AS1 or upregulation of miR-101-5p can inhibit CC cell growth and EMT. miR-101-5p inhibited CDC42/N-wasp axis activation in CC cells by targeting CDC42. Knockdown of CDC42 or upregulation of miR-101-5p partially reversed the effects caused by upregulation of MYLK-AS1. MYLK-AS1, which is significantly upregulated in CC, may be a molecular sponge for miR-101-5p, and MYLK-AS1 promotes the activation of the CDC42/N-wasp axis in CC cells by targeting CDC42 through miR-101-5p, which in turn promotes tumor development. MYLK-AS1 may be a potential biomarker and target for CC therapy.


Asunto(s)
Neoplasias del Colon , MicroARNs , ARN Largo no Codificante , Humanos , MicroARNs/genética , MicroARNs/metabolismo , ARN Largo no Codificante/metabolismo , Proteína del Síndrome de Wiskott-Aldrich/genética , Proteína del Síndrome de Wiskott-Aldrich/metabolismo , Transición Epitelial-Mesenquimal/genética , Neoplasias del Colon/genética , Ciclo Celular/genética , Línea Celular Tumoral , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Movimiento Celular/genética , Proteínas de Unión al Calcio/metabolismo , Quinasa de Cadena Ligera de Miosina/genética , Quinasa de Cadena Ligera de Miosina/metabolismo
2.
Food Funct ; 14(4): 2138-2148, 2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36752061

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is the main cause of chronic liver disease, and its pathological development is closely related to the gut-liver axis. The intestinal barrier, an important component of the gut-liver axis, can prevent gut microbes and endotoxins from entering the liver. Intestinal barrier function is impaired in patients with NAFLD. Baicalein, which is the main flavonoid in Scutellariae Radix, can improve NAFLD. However, whether baicalein alleviates NAFLD by ameliorating intestinal barrier dysfunction remains unclear. In this study, a methionine-choline deficient (MCD) diet-induced NAFLD mouse model is used. The effects of baicalein on lipid accumulation, inflammation and the intestinal barrier in MCD-fed mice were evaluated by detecting blood lipid levels, lipid accumulation, liver pathological changes, inflammatory factors, inflammatory signaling pathways, the three main short-chain fatty acids (acetate, propionate and butyrate), intestinal permeability and intestinal tight junction protein expression. Compared with the MCD-only group, baicalein intake decreased the serum and liver lipid levels. Moreover, the accumulation of lipid droplets and steatosis in the liver were also alleviated; all these results demonstrated that baicalein could alleviate NAFLD. Meanwhile, the levels of inflammatory cytokines decreased in the baicalein group. Further investigation of the mucosal permeability to 4 kDa fluorescein isothiocyanate-dextran, concentrations of short-chain fatty acids in feces, and the expression of intestinal zonula occluden 1 and claudin-1 indicated that a baicalein diet could decrease the intestinal permeability caused by a MCD diet. Moreover, the protein levels of p-NF-κB p65 and the ratio of p-NF-κB p65/NF-κB p65 increased, and IκB-α and PPARα decreased in NAFLD mice, while the administration of baicalein could alleviate these changes. The above results indicated that the mechanism of baicalein in the alleviation of NAFLD lies in the regulation of the intestinal barrier.


Asunto(s)
Flavanonas , Enfermedades Gastrointestinales , Enfermedades Intestinales , Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/metabolismo , FN-kappa B/metabolismo , Hígado/metabolismo , Flavanonas/farmacología , Colina/metabolismo , Enfermedades Intestinales/metabolismo , Metionina/metabolismo , Ratones Endogámicos C57BL
3.
J Gastrointest Oncol ; 13(4): 1832-1841, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36092334

RESUMEN

Background: Colorectal cancer (CRC) has few or no symptoms and is often diagnosed at its end stage. Boeravinone B (BB) is a natural rotenoid which induces an antioxidative effect and has been used in cancer prevention. In this study, we scrutinized the chemoprotective effect of BB against 1,2dimethyl hydrazine (DMH) induced CRC in rats. Methods: Subcutaneous administration of DMH (40 mg/kg) was used for the induction of CRC in rats, followed by oral administration of BB. The body weight, tumor volume, tumor incidence, and total number of tumors were estimated in all rat groups rats except the normal group. Antioxidant parameters, phase I and II enzymes, and inflammatory cytokines and parameters were estimated at the completion of the study. Results: DMH induced group rats exhibited a tumor incidence of 100% along with several tumors/polyps per tumor­bearing rat, while BB treatment remarkably suppressed the incidence of tumors and suppressed polyps per tumor bearing rat. BB treatment significantly (P<0.001) altered the level of antioxidant parameters, phase I and phase II enzymes, and cytokines such as TNF-α, IL-1ß, IL-4, IL-6, and IL-10, and treatment significantly (P<0.001) suppressed the level of inflammatory cytokines, including cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2), and inducible nitric oxide synthase (iNOS). Conclusions: BB treatment considerably suppresses colon cancer via its antioxidant and anti-inflammatory mechanism.

4.
J Minim Access Surg ; 18(4): 578-584, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35899917

RESUMEN

Background: To summarise data from previous reports and perform a meta-analysis to compare the short-term surgical outcomes and post-operative recovery between single-incision and multi-port laparoscopic distal gastrectomy (MLDG) for gastric cancer. Methods: A systematic literature search was performed using PubMed and Embase databases and relevant data were extracted. Short-term surgical outcomes and post-operative recovery of single-incision laparoscopic distal gastrectomy (SLDG) and MLDG for gastric cancer were compared using a fixed or random-effect model. Results: In total, we identified five relevant studies involving 983 participants for this systematic review and meta-analysis, and 45.8% (450/983) of patients underwent SLDG. The results demonstrated that mean operation time (weighted mean difference [WMD]:-3.22, 95% confidence interval [CI]: 14.64,8.19, P = 0.580; I2 = 75.6%), intra-operative blood loss (WMD:-19.77, 95% CI: 40.20,0.65, P = 0.058; I2 = 85.0%) and lymph node yield (WMD:-0.71, 95% CI: 1.47, 0.05, P = 0.068; I2 = 0%) of SLDG were comparable to those of MLDG for gastric cancer. In addition, SLDG had a similar incidence of post-operative complications compared with MLDG (odds ratio: 0.82, 95% CI: 0.55-1.22, P = 0.326; I2 = 0%). There was no significant difference between the two surgical procedures for the conversion to open surgery (OR: 0.32, 95%CI: 0.03-3.15, P = 0.331; I2 = 0%), the length of hospital stay (WMD:-0.05, 95% CI: 0.65, 0.55, P = 0.876; I2 = 44.1%), the time to first flatus (WMD:-0.24, 95% CI: 0.58, 0.10, P = 0.169; I2 = 85.3%) and the time to oral intake (WMD:-0.05, 95% CI: 0.20, 0.10, P = 0.500; I2 = 0%). Conclusion: Single-incision laparoscopic gastrectomy may be technically feasible and safe for gastric cancer. However, it did not show a more obvious advantage over MLDG.

5.
Gut Liver ; 16(6): 861-874, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-35686503

RESUMEN

Background/Aims: The increased mortality of gastric cancer (GC) is mainly attributed to the development of chemoresistance. Circular RNAs, as the novel type of biomarkers in GC, have attracted wide attention. The purpose of this study was to investigate the functional role of circ_0081143 in GC with doxorubicin (DR) resistance and its potential action mechanism. Methods: The expression of circ_0081143, miR-129-2-3p and YES proto-oncogene 1 (YES1) in GC tissues and cells was measured by quantitative real-time polymerase chain reaction. The half maximal inhibitory concentration value was calculated based on the MTT cell viability assay. Cell proliferation and apoptosis were monitored by MTT and flow cytometry assays. Transwell assays were employed to check cell migration and invasion. The protein levels of YES1 and apoptosis-related proteins were detected by western blotting. The interaction between miR-129-2-3p and circ_0081143 or YES1 was verified by dual-luciferase reporter and pull-down assays. A tumorigenicity assay was conducted to verify the role of circ_0081143 in vivo. Results: Circ_0081143 was highly expressed in DR-resistant GC tumor tissues and cells. Depletion of circ_0081143 reduced DR resistance and inhibited DR-resistant GC cell proliferation, migration and invasion. Circ_0081143 targeted miR-129-2-3p and inhibited the role of miR-129-2-3p. In addition, YES1 was a target of miR-129-2-3p, and its function was suppressed by miR-129-2-3p. Importantly, circ_0081143 positively modulated the expression of YES1 through mediating miR-129-2-3p. Circ_0081143 knockdown weakened the DR-resistant GC tumor growth in vivo. Conclusions: Circ_0081143 knockdown weakened DR resistance and blocked the development of DR-resistant GC by regulating the miR-129-2-3p/YES1 axis. Our data suggest that circ_0081143 is a promising target for the treatment of GC with DR resistance.


Asunto(s)
MicroARNs , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Línea Celular Tumoral , ARN Circular/genética , Proliferación Celular/genética , Doxorrubicina/farmacología , Proteínas Proto-Oncogénicas c-yes/genética
6.
J Chemother ; 34(1): 35-44, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34167436

RESUMEN

Along with the occurrence of cisplatin resistance, treatment on gastric cancer (GC) becomes difficult. Therefore, researches on new therapeutic methods to revert cisplatin resistance are becoming increasingly urgent. qRT-PCR was used to quantify the expression of miR-4486, JAK3 in SGC-7901 or SGC-7901/DDP cell lines. WB was utilized to analyze the expression of JAK3, STAT3 and p-STAT3 in SGC-7901/DDP cell lines. CCK-8 assay was used to determine the IC50 of cisplatin on both cell lines and cell viability of SGC-7901/DDP cell lines. The target relationship between miR-4486 and JAK3 was determined by luciferase assay. MiR-4486 expression on apoptosis of SGC-7901/DDP cell lines was determined by flow cytometry. qRT-PCR testified that miR-4486 decreased in SGC-7901/DDP cells, and the expression of miR-4486 mimic increased significantly compared with miR-4486 NC. By CCK-8 assay, the IC50 of cisplatin on both cell lines were 9 µg/mL and 81.3 µg/mL, and overexpression of miR-4486 decreased the viability of SGC-7901/DDP cells. Compared with DDP group, the expression of miR-4486 accelerated SGC-7901/DDP cells apoptosis. Dual-luciferase assay suggested that JAK3 was the target gene of miR-4486. qRT-PCR and WB proved that miR-4486/JAK3 axis inhibit the activation of JAK3/STAT3 pathway, and JAK3 overexpression can partly reverse this. As shown by CCK-8 and flow cytometry, miR-4486 overexpression decreased viability and stimulated apoptosis of SGC-7901/DDP cells. However, JAK3 overexpression can also partly revert this. miR-4486 overexpression could decrease viability and improve apoptosis of SGC-7901/DDP cells to revert its cisplatin-resistance, and the mechanism may be related to JAK3/STAT3 signalling pathway.


Asunto(s)
Antineoplásicos/farmacología , Cisplatino/farmacología , MicroARNs/farmacología , Neoplasias Gástricas/patología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular , Relación Dosis-Respuesta a Droga , Humanos , Concentración 50 Inhibidora , Janus Quinasa 3/efectos de los fármacos , Factor de Transcripción STAT3/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
7.
Plant J ; 108(6): 1597-1608, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34612535

RESUMEN

Maize leaf angle (LA) is a complex quantitative trait that is controlled by developmental signals, hormones, and environmental factors. However, the connection between histone methylation and LAs in maize remains unclear. Here, we reported that SET domain protein 128 (SDG128) is involved in leaf inclination in maize. Knockdown of SDG128 using an RNA interference approach resulted in an expanded architecture, less large vascular bundles, more small vascular bundles, and larger spacing of large vascular bundles in the auricles. SDG128 interacts with ZmGID2 both in vitro and in vivo. Knockdown of ZmGID2 also showed a larger LA with less large vascular bundles and larger spacing of vascular bundles. In addition, the transcription level of cell wall expansion family genes ZmEXPA1, ZmEXPB2, and GRMZM2G005887; transcriptional factor genes Lg1, ZmTAC1, and ZmCLA4; and auxin pathway genes ZmYUCCA7, ZmYUCCA8, and ZmARF22 was reduced in SDG128 and ZmGID2 knockdown plants. SDG128 directly targets ZmEXPA1, ZmEXPB2, LG1, and ZmTAC1 and is required for H3K4me3 deposition at these genes. Together, the results of the present study suggest that SDG128 and ZmGID2 are involved in the maize leaf inclination.


Asunto(s)
Hojas de la Planta/fisiología , Proteínas de Plantas/genética , Zea mays/fisiología , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Regulación de la Expresión Génica de las Plantas , Histonas , Ácidos Indolacéticos/metabolismo , Mutación , Hojas de la Planta/citología , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Interferencia de ARN , Zea mays/citología
8.
Oncol Lett ; 16(5): 5829-5837, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30333863

RESUMEN

Colorectal cancer (CRC) is an important cause of morbidity and mortality worldwide, and is difficult to detect in its early stages. Diagnostic and prognostic biomarkers are required, which may also be the basis for improving the targeted therapy for CRC. Sirtuin 6 (SIRT6) is a member of the sirtuin family of gene regulators, which have specific functions in genomic stability, gene transcription and energy metabolism in tumorigenesis. Nicotinamide mononucleotide adenylyltransferase 2 (NMNAT2) is a metabolic enzyme which can be deacetylated by sirtuins. In this study, tissue samples from 29 patients with histologically confirmed CRC of varying grade and stage were studied for SIRT6 and NMNAT2 expression by western blotting and reverse transcription-quantitative polymerase chain reaction. Immunohistochemistry was performed for SIRT6 and NMNAT2 expression in 113 paired (CRC and adjacent) tissue sections. SIRT6 protein and mRNA expression levels were significantly reduced in CRC tissues; NMNAT2 protein and mRNA expression levels were significantly increased in CRC tissues (P<0.01). A negative correlation between the expression of SIRT6 and NMNAT2 in CRC tissue samples was identified (r=-0.246, P<0.01). The reduced expression of SIRT6 and increased expression of NMNAT2 were associated with the tumor depth invasion, stage, differentiation grade (SIRT6 only) and the presence of lymph node metastasis (P<0.05). In conclusion, the findings of the present preliminary study demonstrated that the increased expression of NMNAT2 and reduced expression of SIRT6 may be associated with the progression of CRC. The downregulation of SIRT6 may promote the expression of NMNAT2. Further studies are indicated on the role of NMNAT2 and SIRT6 as potential diagnostic and prognostic biomarkers and as targets for therapy in CRC and other malignant tumors.

9.
Plant Cell ; 30(1): 67-82, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29255112

RESUMEN

Gibberellins (GAs) modulate diverse developmental processes throughout the plant life cycle. However, the interaction between GAs and the circadian rhythm remains unclear. Here, we report that MUT9p-LIKE KINASE1 (MLK1) and MLK2 mediate the interaction between GAs and the circadian clock to regulate hypocotyl elongation in Arabidopsis thaliana DELLA proteins function as master growth repressors that integrate phytohormone signaling and environmental pathways in plant development. MLK1 and MLK2 interact with the DELLA protein REPRESSOR OF ga1-3 (RGA). Loss of MLK1 and MLK2 function results in plants with short hypocotyls and hyposensitivity to GAs. MLK1/2 and RGA directly interact with CIRCADIAN CLOCK ASSOCIATED1 (CCA1), which targets the promoter of DWARF4 (DWF4) to regulate its roles in cell expansion. MLK1/2 antagonize the ability of RGA to bind CCA1, and these factors coordinately regulate the expression of DWF4 RGA suppressed the ability of CCA1 to activate expression from the DWF4 promoter, but MLK1/2 reversed this suppression. Genetically, MLK1/2 act in the same pathway as RGA and CCA1 in hypocotyl elongation. Together, our results provide insight into the mechanism by which MLK1 and MLK2 antagonize the function of RGA in hypocotyl elongation and suggest that MLK1/2 coordinately mediate the regulation of plant development by GAs and the circadian rhythm in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Hipocótilo/crecimiento & desarrollo , Hipocótilo/metabolismo , Giberelinas/metabolismo , Giberelinas/farmacología , Mutación/genética , Regiones Promotoras Genéticas , Unión Proteica
10.
Tumour Biol ; 39(6): 1010428317699126, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28618931

RESUMEN

Previous studies used to enumerate circulating tumor cells to predict prognosis and therapeutic effect of colorectal cancer. However, increasing studies have shown that only circulating tumor cells enumeration was not enough to reflect the heterogeneous condition of tumor. In this study, we classified different metastatic-potential circulating tumor cells from colorectal cancer patients and measured FAM172A expression in circulating tumor cells to improve accuracy of clinical diagnosis and treatment of colorectal cancer. Blood samples were collected from 45 primary colorectal cancer patients. Circulating tumor cells were enriched by blood filtration using isolation by size of epithelial tumor cells, and in situ hybridization with RNA method was used to identify and discriminate subgroups of circulating tumor cells. Afterwards, FAM172A expression in individual circulating tumor cells was measured. Three circulating tumor cell subgroups (epithelial/biophenotypic/mesenchymal circulating tumor cells) were identified using epithelial-mesenchymal transition markers. In our research, mesenchymal circulating tumor cells significantly increased along with tumor progression, development of distant metastasis, and vascular invasion. Furthermore, FAM172A expression rate in mesenchymal circulating tumor cells was significantly higher than that in epithelial circulating tumor cells, which suggested that FAM172A may correlate with malignant degree of tumor. This hypothesis was further verified by FAM172A expression in mesenchymal circulating tumor cells, which was strictly related to tumor aggressiveness factors. Mesenchymal circulating tumor cells and FAM172A detection may predict highrisk stage II colorectal cancer. Our research proved that circulating tumor cells were feasible surrogate samples to detect gene expression and could serve as a predictive biomarker for tumor evaluation.


Asunto(s)
Biomarcadores de Tumor/biosíntesis , Neoplasias Colorrectales/genética , Pronóstico , Proteínas/genética , Adulto , Anciano , Biomarcadores de Tumor/sangre , Biomarcadores de Tumor/genética , Línea Celular Tumoral , Neoplasias Colorrectales/sangre , Neoplasias Colorrectales/patología , Transición Epitelial-Mesenquimal/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Células Neoplásicas Circulantes/patología , Proteínas/metabolismo
11.
Biomed Res Int ; 2016: 1804137, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27218101

RESUMEN

Colorectal cancer (CRC) is one of the most common cancers all over the world. It is essential to search for more effective diagnostic and therapeutic methods for CRC. Abnormal nicotinamide adenine dinucleotide (NAD) metabolism has been considered as a characteristic of cancer cells. In this study, nicotinamide mononucleotide adenylyl transferases (NMNATs) as well as p53-mediated cancer signaling pathways were investigated in patients with colorectal cancer. The CRC tissues and adjacent normal tissues were obtained from 95 untreated colorectal cancer patients and were stained for expression of nicotinamide mononucleotide adenylyl transferase 2 (NMNAT2) and p53. The survival rate was analyzed by the Kaplan-Meier method and the log-rank test. The multivariate Cox proportional hazard regression analysis was conducted as well. Our data demonstrated that expression of NMNAT2 and p53 was significantly higher in CRC tissues, while NMNAT2 expression is in correlation with the invasive depth of tumors and TNM stage. Significant positive correlation was found between the expression of NMNAT2 and the expression of p53. However, NMNAT2 expression was not a statistically significant prognostic factor for overall survival. In conclusion, our results indicated that NMNAT2 might participate in tumorigenesis of CRC in a p53-dependent manner and NMNAT2 expression might be a potential therapeutic target for CRC.


Asunto(s)
Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Nicotinamida-Nucleótido Adenililtransferasa/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Carcinogénesis/metabolismo , Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/tratamiento farmacológico , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias/métodos , Pronóstico , Transducción de Señal/efectos de los fármacos , Tasa de Supervivencia , Proteína p53 Supresora de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...