Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Water Res ; 254: 121355, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38430755

RESUMEN

Stormwater harvesting (SWH) addresses the UN's Sustainable Development Goals (SDGs). Conventional stormwater control measures (SCMs) effectively remove particulate and colloidal contaminants from urban runoff; however, they fail to retain dissolved contaminants, particularly substances of concern like polycyclic aromatic hydrocarbons (PAHs) and heavy metals (HMs), thereby hindering the SWH applicability. Here, inspired by protein folding in nature, we reported a novel biomimetic SCM for the efficient removal of dissolved PAHs and HMs from urban runoff. Lab-scale tests were conducted together with a more mechanistic investigation on how the contaminants were removed. By integrating hydrophobic organic chains with low-cost hydrophilic flocculant matrixes, our biomimetic flocculants achieved a 1.4-9.5 times removal of all detected dissolved PAHs and HMs, while enhancing the removal of a wide-spectrum of particulate and colloidal contaminants, compared to existing SCMs. Ecotoxicity, as indicated by newborn Daphnia magna as experimental organisms, was reduced from "acute toxicity" of the original runoff sample (toxic unit of ∼2.6) to "non-toxicity" (toxic unit < 0.4) of the treated water. The improved performance is attributed to the protein-folding-like features of the bioinspired flocculants providing: (i) stronger binding to PAHs (via hydrophobic association) and HMs (via coordination), and (ii) the ability of spontaneous aggregation. The bio-inspired approach in this work holds strong promise as an alternative or supplementary component in SCM systems, and is expected to contribute to sustainable water management practices in relation to SDGs.


Asunto(s)
Metales Pesados , Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Hidrocarburos Policíclicos Aromáticos/análisis , Contaminantes Químicos del Agua/química , Monitoreo del Ambiente , Metales Pesados/análisis
2.
Angew Chem Int Ed Engl ; 62(52): e202314634, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-37955915

RESUMEN

Surface ligands play an important role in shape-controlled growth and stabilization of colloidal nanocrystals. Their quick removal tends to cause structural deformation and/or aggregation to the nanocrystals. Herein, we demonstrate that the surface ligand based on poly(vinylpyrrolidone) (PVP) can be slowly removed from Pd nanosheets (NSs, 0.93±0.17 nm in thickness) by simply aging the colloidal suspension. The aged Pd NSs show well-preserved morphology, together with significantly enhanced stability toward both e-beam irradiation and electrocatalysis (e.g., ethanol oxidation). It is revealed that the slow desorption of PVP during aging forces the re-exposed Pd atoms to reorganize, facilitating the surface to transform from being nearly perfect to defect-rich. The resultant Pd NSs with abundant defects no longer rely on surface ligand to stabilize the atomic arrangement and thus show excellent structural and electrochemical stability. This work provides a facile and effective method to maintain the integrity of colloidal nanocrystals by slowly removing the surface ligand.

3.
ACS Appl Mater Interfaces ; 15(42): 49146-49153, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37831786

RESUMEN

Electrocatalysts comprised of Pt-Ni alloy nanocrystals have garnered substantial attention due to their outstanding performance in catalyzing the oxygen reduction reaction (ORR). Herein, we present the synthesis of Pt-Ni nanocrystals with a variety of controlled shapes and compositions in an effort to investigate the impact of the Ni content on the formation of {111} facets and thereby the ORR activity. By completely excluding O2 from the reaction system, we could prevent the generation of Ni(OH)2 on the surface of the nanocrystals and thereby achieve a linear relationship between the atomic ratio of Pt to Ni in the nanocrystals and the feeding ratio of the precursors. The atomic ratio of Pt to Ni in the Pt-Ni nanocrystals was tunable within the range of 1.2-7.2, while their average sizes were kept around 9 nm in terms of edge length. In addition, a quantitative correlation between the area ratio of {111} to {100} facets and the feeding ratio of Pt(II) to Ni(II) was obtained by adjusting the mole fraction of the Ni(II) precursor in the reaction mixture. For the catalysts comprising octahedral nanocrystals, their specific ORR activities exhibited a positive correlation with the Pt/Ni atomic ratio. After the accelerated durability test, both specific and mass activity displayed a volcano-type trend with a peak value at a Pt/Ni atomic ratio of 1.6.

4.
Water Res ; 236: 119942, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37031529

RESUMEN

Hydrophobic-modified flocculants have demonstrated considerable promise in the removal of emerging contaminants by flocculation. However, there is a lack of information about the impacts of dosing such flocculants on the performance of subsequent treatment unit(s) in the overall water treatment process. In this work, inspired by the ubiquitous protein folding phenomenon, an innovative approach using an elevated membrane cleaning temperature as the means to induce residual hydrophobic-modified chitosan flocculant (TRC), after flocculation-sedimentation, to reduce membrane fouling in a subsequent ultrafiltration was proposed; this was evaluated in a continuous flocculation-sedimentation-ultrafiltration (FSUF) process treating samples of the Yangtze River. The hydrophobic chains of TRC had similar temperature-dependent hydrophobicity to those of natural proteins. In the 40-day operation of the FSUF system with combined dosing of alum and TRC, a moderately elevated cleaning water temperature (45 °C) of both backwash with air-bubbling and soaking with sponge-scrubbing cleaning, significantly reduced reversible and irreversible fouling resistance by 49.8%∼61.3% and 73.9%∼83.3%, respectively, compared to the system using cleaning water at 25 °C. Material flow analysis, statistical analysis, instrumental characterizations, and computational simulations, showed that the enhanced fouling mitigation originated from three factors: the reduced contaminant accumulation onto membranes, the strengthened membrane-surface-modification role of TRC, and the weakened structure of the fouling material containing TRC, at the elevated cleaning temperature. Other measures of the performance, these being water purification, membrane stability and economic aspects, also confirmed the potential and feasibility of the proposed approach. This work has provided new insights into the role of hydrophobic-modified flocculants in membrane fouling control, in addition to emerging contaminant removal, in a FSUF surface water treatment process.


Asunto(s)
Membranas Artificiales , Purificación del Agua , Floculación , Temperatura , Ultrafiltración , Interacciones Hidrofóbicas e Hidrofílicas , Pliegue de Proteína
5.
J Am Chem Soc ; 144(6): 2556-2568, 2022 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-35108015

RESUMEN

Palladium is one of the few metals capable of forming hydrides, with the catalytic properties being dependent on the elemental composition and spatial distribution of H atoms in the lattice. Herein, we report a facile method for the complete transformation of Pd nanocubes into a stable phase made of PdH0.706 by treating them with aqueous hydrazine at a concentration as low as 9.2 mM. Using formic acid oxidation (FAO) as a model reaction, we systematically investigated the structure-catalytic property relationship of the resultant nanocubes with different degrees of hydride formation. The current density at 0.4 V was enhanced by four times when the nanocubes were completely converted from Pd to PdH0.706. On the basis of a set of slab models with PdH(100) overlayers on Pd(100), we conducted density functional theory calculations to demonstrate that the degree of hybrid formation could influence both the activity and selectivity toward FAO by modulating the relative stability of formate (HCOO) and carboxyl (COOH) intermediates. This work provides a viable strategy for augmenting the performance of Pd-based catalysts toward various reactions without altering the loading of this scarce metal.

6.
ACS Appl Mater Interfaces ; 13(44): 51988-51996, 2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34296606

RESUMEN

Carbon-supported Pt-M (M = Co, Ni, and Fe) alloy nanocrystals are widely used as catalysts toward oxygen reduction, a reaction key to the operation of proton-exchange membrane fuel cells. Here we report a colloidal method for the in situ growth of Pt-Co nanocrystals on various commercial carbon supports. The use of different carbon supports resulted in not only variations in size and composition for the nanocrystals but also their catalytic activity and durability toward oxygen reduction in acidic media. Among the nanocrystals, those grown on Vulcan XC72 and Ketjenblack EC300J showed the highest specific and mass activities in the 0.1 M HClO4 and 0.05 M H2SO4 electrolytes, respectively. Additionally, the catalysts also showed different durability depending on the strength of the interaction between the nanocrystals and the carbon support. Our analysis demonstrated that the difference in catalytic performance could be ascribed to the distinct effects of carbon support on both the synthetic and catalytic processes.

7.
Chemistry ; 27(55): 13855-13863, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34314521

RESUMEN

Colloidal synthesis of metal nanocrystals with controlled shapes and internal structures calls for a tight control over both the nucleation and growth processes. Here we report a method for the facile synthesis of Pt right bipyramids (RBPs) by separating nucleation from growth and controlling the nucleation step in a continuous flow reactor. Specifically, homogeneous nucleation was thermally triggered by introducing the reaction solution into a tubular flow reactor held at an elevated temperature to generate singly-twinned seeds. At a lower temperature, the singly-twinned seeds were protected from oxidative etching to allow their slow growth and evolution into RBPs while additional nucleation of undesired seeds could be largely suppressed to ensure RBPs as the main product. Further investigation indicated that the internal structure and growth pattern of the seeds were determined by the temperatures used for the nucleation and growth steps, respectively. The Br- ions involved in the synthesis also played a critical role in the generation of RBPs by serving as a capping agent for the Pt{100} facets while regulating the reduction kinetics through coordination with the Pt(IV) ions.


Asunto(s)
Nanopartículas del Metal , Platino (Metal) , Iones , Cinética , Oxidación-Reducción
8.
Angew Chem Int Ed Engl ; 60(36): 19643-19647, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34128305

RESUMEN

We report a simple route based upon seed-mediated growth to the synthesis of Pd@Aux Pd1-x (0.8≤x≤1) core-shell nanocubes. Benefiting from the well-defined {100} facets and an optimal Au/Pd ratio for the surface, the nanocubes bearing a shell made of Au0.95 Pd0.05 work as an efficient electrocatalyst toward H2 O2 production, with high selectivity of 93-100 % in the low-overpotential region of 0.4-0.7 V. When the Au0.95 Pd0.05 alloy is confined to a shell of only three atomic layers in thickness, the electrocatalyst is able to maintain its surface structure and elemental composition, endowing continuous and stable production of H2 O2 during oxygen reduction at a high rate of 1.62 mol g(Pd+Au) -1  h-1 . This work demonstrates a versatile route to the rational development of active and durable electrocatalysts based upon alloy nanocrystals.

9.
J Am Chem Soc ; 143(22): 8509-8518, 2021 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-34043340

RESUMEN

Despite extensive efforts devoted to the synthesis of Pt-Co bimetallic nanocrystals for fuel cell and related applications, it remains a challenge to simultaneously control atomic arrangements in the bulk and on the surface. Here we report a synthesis of Pt-Co@Pt octahedral nanocrystals that feature an intermetallic, face-centered tetragonal Pt-Co core and an ultrathin Pt shell, together with the dominance of {111} facets on the surface. When evaluated as a catalyst toward the oxygen reduction reaction (ORR), the nanocrystals delivered a mass activity of 2.82 A mg-1 and a specific activity of 9.16 mA cm-2, which were enhanced by 13.4 and 29.5 times, respectively, relative to the values of a commercial Pt/C catalyst. More significantly, the mass activity of the nanocrystals only dropped 21% after undergoing 30 000 cycles of accelerated durability test, promising an outstanding catalyst with optimal performance for ORR and related reactions.

10.
Nano Lett ; 21(5): 2248-2254, 2021 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-33599510

RESUMEN

Platinum nanocrystals featuring a multiply twinned structure and uniform sizes below 5 nm are superb catalytic materials, but it is difficult to synthesize such particles owing to the high twin-boundary energy (166 mJ/m2) of Pt. Here, we report a simple route to the synthesis of such nanocrystals by selectively growing them from the vertices of Pd icosahedral seeds. The success of this synthesis critically depends on the introduction of Br- ions to slow the reduction kinetics of the Pt(II) precursor while limiting the surface diffusion of Pt adatoms by conducting the synthesis at 30 °C. Owing to the small size and multiply twinned structure of Pt dots, the as-obtained Pd-Pt nanocrystals show remarkably enhanced activity and durability toward oxygen reduction, with a mass activity of 1.23 A mg-1Pt and a specific activity of 0.99 mA cm-2Pt, which are 8.2 and 4.5 times as high as those of the commercial Pt/C.

11.
Inorg Chem ; 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33522790

RESUMEN

Improving the performance of noble-metal nanocrystals in various applications critically depends on our ability to manipulate their synthesis in a rational, robust, and controllable fashion. Different from a conventional trial-and-error approach, the reduction kinetics of a colloidal synthesis has recently been demonstrated as a reliable knob for controlling the synthesis of noble-metal nanocrystals in a deterministic and predictable manner. Here we present a brief Viewpoint on the recent progress in leveraging reduction kinetics for controlling and predicting the outcome of a synthesis of noble-metal nanocrystals. With a focus on Pd nanocrystals, we first offer a discussion on the correlation between the initial reduction rate and the internal structure of the resultant seeds. The kinetic approaches for controlling both nucleation and growth in a one-pot setting are then introduced with an emphasis on manipulation of the reduction pathways taken by the precursor. We then illustrate how to extend the strategy into a bimetallic system for the preparation of nanocrystals with different shapes and elemental distributions. Finally, the influence of speciation of the precursor on reduction kinetics is highlighted, followed by our perspectives on the challenges and future endeavors in achieving a controllable and predictable synthesis of noble-metal nanocrystals.

12.
Angew Chem Int Ed Engl ; 60(18): 10384-10392, 2021 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-33600031

RESUMEN

Janus nanocages with distinctive platinum-group metals on the outer and inner surfaces can naturally catalyze at least two different reactions. Here we report a general method based on successive deposition and then selective etching for the facile synthesis of such nanocages. We have fabricated 11 different types of Janus nanocages characterized by a uniform size and well-defined {100} facets, together with porous, ultrathin, asymmetric walls up to 1.6 nm thick. When tested as dual-electrocatalysts toward oxygen reduction and evolution reactions, the Janus nanocages based on Pt and Ir exhibited superior activities depending on the thickness and relative position of the metal layer. Density functional theory studies suggest that the alloy composition and surface structure of the nanocages both play important roles in enhancing the electrocatalytic activities by modulating the stability of key reaction intermediates.

13.
Chem Rev ; 121(2): 649-735, 2021 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-32667792

RESUMEN

The successful synthesis of noble-metal nanocrystals with controlled shapes offers many opportunities to not only maneuver their physicochemical properties but also optimize their figures of merit in a wide variety of applications. In particular, heterogeneous catalysis and surface science have benefited enormously from the availability of this new class of nanomaterials as the atomic structure presented on the surface of a nanocrystal is ultimately determined by its geometric shape. The immediate advantages may include significant enhancement in catalytic activity and/or selectivity and substantial reduction in materials cost while providing a well-defined model system for mechanistic study. With a focus on the monometallic system, this review article provides a comprehensive account of recent progress in the development of noble-metal nanocrystals with controlled shapes, in addition to their remarkable performance in a large number of catalytic and electrocatalytic reactions. We hope that this review article offers the impetus and roadmap for the development of next-generation catalysts vital to a broad range of industrial applications.

14.
Angew Chem Int Ed Engl ; 60(4): 1909-1915, 2021 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-33006809

RESUMEN

Copper nanostructures are promising catalysts for the electrochemical reduction of CO2 because of their unique ability to produce a large proportion of multi-carbon products. Despite great progress, the selectivity and stability of such catalysts still need to be substantially improved. Here, we demonstrate that controlling the surface oxidation of Cu nanowires (CuNWs) can greatly improve their C2+ selectivity and stability. Specifically, we achieve a faradaic efficiency as high as 57.7 and 52.0 % for ethylene when the CuNWs are oxidized by the O2 from air and aqueous H2 O2 , respectively, and both of them show hydrogen selectivity below 12 %. The high yields of C2+ products can be mainly attributed to the increase in surface roughness and the generation of defects and cavities during the electrochemical reduction of the oxide layer. Our results also indicate that the formation of a relatively thick, smooth oxide sheath can improve the catalytic stability by mitigating the fragmentation issue.

15.
Chemistry ; 27(8): 2760-2766, 2021 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-33152800

RESUMEN

Noble-metal nanocrystals with anisotropic shapes have received increasing interest owing to their unique properties. Here, a facile route to the preparation of Pt nanobars with aspect ratios tunable up to 2.1 was reported by simply reducing a PtIV precursor in N,N-dimethylformamide (DMF) at 160 °C in the presence of poly(vinyl pyrrolidone) (PVP). In addition to its commonly observed roles as a solvent and a reductant, DMF could also decompose to generate CO, a capping agent capable of selectively passivating Pt{100} facets to promote the formation of nanobars. The size and aspect ratio of the nanobars could be tuned by varying the amount of PtIV precursor involved in the synthesis, as well as the concentration of PVP because of its dual roles as a stabilizer and a co-reductant. Our mechanistic study indicated that the anisotropic growth resulted from both particle coalescence and localized oxidative etching followed by preferential growth.

16.
Acc Chem Res ; 54(1): 1-10, 2021 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-33275422

RESUMEN

ConspectusThe last two decades have witnessed the successful development of noble-metal nanocrystals with well-controlled properties for a variety of applications in catalysis, plasmonics, electronics, and biomedicine. Most of these nanocrystals are kinetically controlled products greatly deviated from the equilibrium state defined by thermodynamics. When subjected to elevated temperatures, their arrangements of atoms are expected to undergo various physical transformations, inducing changes to the shape, morphology (hollow vs solid), spatial distribution of elements (segregated vs alloyed/intermetallic), internal structure (twinned vs single-crystal), and crystal phase. In order to optimize the performance of these nanocrystals in various applications, there is a pressing need to understand and improve their thermal stability.By integrating in situ heating with transmission electron microscopy or X-ray diffraction, we have investigated the physical transformations of various types of noble-metal nanocrystals in real time. We have also explored the atomistic detail responsible for a physical transformation using first-principles calculations, providing insightful guidance for the development of noble-metal nanocrystals with augmented thermal stability. Specifically, solid nanocrystals were observed to transform into pseudospherical particles favored by thermodynamics by reducing the surface area while eliminating the facets high in surface energy. For nanocrystals of relatively large in size, a single-crystal lattice was more favorable than a twinned structure. When switching to core-shell nanocrystals, the elevation in temperature caused changes to the elemental distribution in addition to shape transformation. The compositional stability of a core-shell nanocrystal was found to be strongly dependent on the shape and thus the type of facet expressed on the surface. For hollow nanocrystals such as nanocages and nanoframes, their thermal stabilities were typically inferior to the solid counterparts, albeit their unique structure and large specific surface area are highly desired in applications such as catalysis. When a metastable crystal structure was involved, phase transition was also observed at a temperature close to that responsible for shape or compositional change. We hope the principles, methodologies, and mechanistic insights presented in this Account will help the readers achieve a good understanding of the physical transformations that are expected to take place in noble-metal nanocrystals when they are subjected to thermal activation. Such an understanding may eventually lead to the development of effective methods for retarding or even preventing some of the transformations.

17.
Chemistry ; 26(67): 15636-15642, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-32820552

RESUMEN

Oleic acid (OAc) is commonly used as a surfactant and/or solvent for the oil-phase synthesis of metal nanocrystals but its explicit roles are yet to be resolved. Here, we report a systematic study of this problem by focusing on a synthesis that simply involves heating of Pt(acac)2 in OAc for the generation of Pt nanocrystals. When heated at 80 °C, the ligand exchange between Pt(acac)2 and OAc leads to the formation of a PtII -oleate complex that serves as the actual precursor to Pt atoms. Upon increasing the temperature to 120 °C, the decarbonylation of OAc produces CO, which can act as a reducing agent for the generation of Pt atoms and thus formation of nuclei. Afterwards, several catalytic reactions can take place on the surface of the Pt nuclei to produce more CO, which also serves as a capping agent for the formation of Pt nanocrystals enclosed by {100} facets. The emergence of Pt nanocrystals further promotes the autocatalytic surface reduction of PtII precursor to enable the continuation of growth. This work not only elucidates the critical roles of OAc at different stages in a synthesis of Pt nanocrystals, but also represents a pivotal step forward toward the rational synthesis of metal nanocrystals.

18.
Chemistry ; 25(71): 16397-16404, 2019 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-31589785

RESUMEN

Surface capping has been shown to play a pivotal role in controlling the evolution of metal nanocrystals into different shapes or morphologies. With the synthesis of Au@Pd concave nanocubes as an example, here we demonstrate that the capping agent can also impact the reduction kinetics of a precursor, and thereby its reduction pathway, for the formation of metal nanocrystals with distinct morphologies. A typical synthesis involves the reduction of a PdII precursor by ascorbic acid at room temperature in the presence of Au nanospheres as seeds, together with the use of hexadecyltrimethylammonium chloride (CTAC) or hexadecyltrimethylammonium bromide (CTAB) as the capping agent. In the case of CTAC, the PdII precursor prevails as PdCl4 2- , leading to the formation of Au@Pd concave nanocubes with a rough surface because of the fast reduction kinetics and thus the dominance of solution reduction pathway. When switched to CTAB, the PdII precursor changes to PdBr4 2- that features slow reduction kinetics and surface reduction pathway. Accordingly, the Au@Pd concave nanocubes take a smooth surface. This work demonstrates that both reduction kinetics and surface capping play important roles in controlling the morphology of metal nanocrystals and these two roles are often coupled to each other.

19.
Theranostics ; 7(18): 4605-4617, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29158848

RESUMEN

Metal-organic-frameworks (MOFs) possess high porosity, large surface area, and tunable functionality are promising candidates for synchronous diagnosis and therapy in cancer treatment. Although large number of MOFs has been discovered, conventional MOF-based nanoplatforms are mainly limited to the sole MOF source with sole functionality. In this study, surfactant modified Prussian blue (PB) core coated by compact ZIF-8 shell (core-shell dual-MOFs, CSD-MOFs) has been reported through a versatile stepwise approach. With Prussian blue as core, CSD-MOFs are able to serve as both magnetic resonance imaging (MRI) and fluorescence optical imaging (FOI) agents. We show that CSD-MOFs crystals loading the anticancer drug doxorubicin (DOX) are efficient pH and near-infrared (NIR) dual-stimuli responsive drug delivery vehicles. After the degradation of ZIF-8, simultaneous NIR irradiation to the inner PB MOFs continuously generate heat that kill cancer cells. Their efficacy on HeLa cancer cell lines is higher compared with the respective single treatment modality, achieving synergistic chemo-thermal therapy efficacy. In vivo results indicate that the anti-tumor efficacy of CSD-MOFs@DOX+NIR was 7.16 and 5.07 times enhanced compared to single chemo-therapy and single thermal-therapy respectively. Our strategy opens new possibilities to construct multifunctional theranostic systems through integration of two different MOFs.


Asunto(s)
Terapia Combinada/métodos , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Doxorrubicina/uso terapéutico , Sistemas de Liberación de Medicamentos/métodos , Células HeLa , Humanos , Nanomedicina Teranóstica
20.
Biomaterials ; 107: 88-101, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27614161

RESUMEN

Dihydroartemisinin (DHA) has been investigated in cancer therapy for its reactive oxygen species (ROS) based cytotoxicity originated from interacting with ferrous ions that may reduce or eliminate the multidrug resistance commonly associated with conventional chemotherapy agents. However, synchronously delivery of hydrophobic DHA and Fe (Ⅲ) ions into tumor cells remains a major challenge. In this work, we develop novel Fe3O4@C@MIL-100(Fe) (FCM) nanoparticles for synchronously delivery of DHA and Fe (Ⅲ) for cancer therapy. The MOFs structure based on Fe (Ⅲ) carboxylate materials MIL-100 (Fe) holds great potential for storage/delivery of hydrophobic drug DHA. As a unique nanoplatform, the hybrid inorganic-organic drug delivery vehicles show pH-responsive biodegradation and synchronous releasing of DHA and Fe (Ⅲ) upon reaching tumor sites. The intracellular Fe (Ⅲ) will be reduced further to ferrous ion and interact with DHA to increase its cytotoxicity. The potential of this alternative anti-tumor modality is demonstrated in vivo due to an increased intracellular accumulation of DHA in tumor and activated mechanism via co-release of DHA and Fe (Ⅲ), especially under the guidance of an external applied magnetic field.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Sistemas de Liberación de Medicamentos/métodos , Óxido Ferrosoférrico/química , Nanocápsulas/química , Neoplasias Experimentales/tratamiento farmacológico , Absorción Fisicoquímica , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/química , Artemisininas/administración & dosificación , Artemisininas/química , Sinergismo Farmacológico , Femenino , Óxido Ferrosoférrico/efectos de la radiación , Células HeLa , Humanos , Concentración de Iones de Hidrógeno , Iones/administración & dosificación , Iones/química , Hierro/administración & dosificación , Hierro/química , Campos Magnéticos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Nanocápsulas/efectos de la radiación , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...