Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Exp Bot ; 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38820225

RESUMEN

Citrus bacterial canker (CBC) is a disease that poses a major threat to global citrus production and is caused by infection with Xanthomonas citri subsp. citri (Xcc). Wall-associated receptor-like kinase (WAKL) proteins play an important role in shaping plant resistance to various bacterial and fungal pathogens. In a prior report, CsWAKL01 was identified as a candidate Xcc-inducible gene found to be upregulated in CBC-resistant citrus plants. However, the functional role of CsWAKL01 and the mechanisms whereby it may influence resistance to CBC have yet to be clarified. Here, CsWAKL01 was found to localize to the plasma membrane, and the overexpression of the corresponding gene in transgenic sweet oranges resulted in the pronounced enhancement of CBC resistance, whereas its knockdown had the opposite effect. Mechanistically, the ability of CsWAKL01 was linked to its ability to reprogram jasmonic acid, salicylic acid, and abscisic acid signaling activity. CsWRKY53 was further identified as a transcription factor capable of directly binding the CsWAKL01 promoter and inducing its transcriptional upregulation. CsWRKY53 silencing conferred greater CBC susceptibility to infected plants. Overall, these data support a model wherein CsWRKY53 functions as a positive regulator of CsWAKL01 to enhance resistance to CBC via the reprogramming of phytohormone signaling. Together these results offer new insight into the mechanisms whereby WAKLs shape phytopathogen resistance while underscoring the potential value of targeting the CsWRKY53-CsWAKL01 axis when seeking to breed CBC-resistant citrus plant varieties.

2.
Adv Sci (Weinh) ; : e2307639, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38626369

RESUMEN

Regulating nuclear export precisely is essential for maintaining mRNA homeostasis and impacts tumor progression. However, the mechanisms governing nuclear mRNA export remain poorly elucidated. Herein, it is revealed that the enhanced hypoxic long no-ncoding RNA (lncRNA prostate cancer associated transcript 6 (PCAT6) in breast cancer (BC) promotes the nuclear export of m6A-modified mRNAs, bolstering breast cancer stem cells (BCSCs) stemness and doxorubicin resistance. Clinically, hypoxic PCAT6 correlates with malignant BC features and poor prognosis. Mechanically, PCAT6 functions as a scaffold between interferon-stimulated gene 15 (ISG15) and heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNPA2B1), leading to ISGylation of hnRNPA2B1, thus protecting hnRNPA2B1 from ubiquitination-mediated proteasomal degradation. Interestingly, as an m6A reader, hnRNPA2B1 selectively mediates m6A-tagged mRNAs nuclear export via the Aly/REF export factor (ALYREF)/ nuclear RNA export factor 1 (NXF1) complex, which promotes stemness-related genes expression. HnRNPA2B1 knockdown or mRNA export inhibition can result in the retention of nuclear m6A-tagged mRNA associated with stemness maintenance, which suppresses BCSCs self-renewal and effectively improves the efficacy of doxorubicin therapy. These findings demonstrate the pivotal role of m6A-modified mRNA nuclear export in BC progression, highlighting that the inhibition of m6A-tagged mRNA and its nuclear export is a potential therapeutic strategy for the amelioration of cancer chemotherapy.

3.
Int J Biol Macromol ; 267(Pt 2): 131442, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38621573

RESUMEN

Citrus bacterial canker (CBC) is a harmful bacterial disease caused by Xanthomonas citri subsp. citri (Xcc), negatively impacting citrus production worldwide. The basic helix-loop-helix (bHLH) transcription factor family plays crucial roles in plant development and stress responses. This study aimed to identify and annotate bHLH proteins encoded in the Citrus sinensis genome and explore their involvement and functional importance in regulating CBC resistance. A total of 135 putative CsbHLHs TFs were identified and categorized into 16 subfamilies. Their chromosomal locations, collinearity, and phylogenetic relationships were comprehensively analyzed. Upon Xcc strain YN1 infection, certain CsbHLHs were differentially regulated in CBC-resistant and CBC-sensitive citrus varieties. Among these, CsbHLH085 was selected for further functional characterization. CsbHLH085 was upregulated in the CBC-resistant citrus variety, was localized in the nucleus, and had a transcriptional activation activity. CsbHLH085 overexpression in Citrus significantly enhanced CBC resistance, accompanied by increased levels of salicylic acid (SA), jasmonic acid (JA), reactive oxygen species (ROS), and decreased levels of abscisic acid (ABA) and antioxidant enzymes. Conversely, CsbHLH085 virus-induced gene silencing resulted in opposite phenotypic and biochemical responses. CsbHLH085 silencing also affected the expression of phytohormone biosynthesis and signaling genes involved in SA, JA, and ABA signaling. These findings highlight the crucial role of CsbHLH085 in regulating CBC resistance, suggesting its potential as a target for biotechnological-assisted breeding citrus varieties with improved resistance against phytopathogens.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Citrus sinensis , Resistencia a la Enfermedad , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas , Proteínas de Plantas , Xanthomonas , Citrus sinensis/microbiología , Citrus sinensis/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Resistencia a la Enfermedad/genética , Xanthomonas/patogenicidad , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Filogenia , Oxilipinas/metabolismo , Genoma de Planta , Ciclopentanos/metabolismo , Ácido Salicílico/metabolismo , Familia de Multigenes
4.
Int J Mol Sci ; 25(5)2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38474170

RESUMEN

Citrus bacterial canker (CBC) is a severe bacterial infection caused by Xanthomonas citri subsp. citri (Xcc), which continues to adversely impact citrus production worldwide. Members of the GATA family are important regulators of plant development and regulate plant responses to particular stressors. This report aimed to systematically elucidate the Citrus sinensis genome to identify and annotate genes that encode GATAs and evaluate the functional importance of these CsGATAs as regulators of CBC resistance. In total, 24 CsGATAs were identified and classified into four subfamilies. Furthermore, the phylogenetic relationships, chromosomal locations, collinear relationships, gene structures, and conserved domains for each of these GATA family members were also evaluated. It was observed that Xcc infection induced some CsGATAs, among which CsGATA12 was chosen for further functional validation. CsGATA12 was found to be localized in the nucleus and was differentially upregulated in the CBC-resistant and CBC-sensitive Kumquat and Wanjincheng citrus varieties. When transiently overexpressed, CsGATA12 significantly reduced CBC resistance with a corresponding increase in abscisic acid, jasmonic acid, and antioxidant enzyme levels. These alterations were consistent with lower levels of salicylic acid, ethylene, and reactive oxygen species. Moreover, the bacteria-induced CsGATA12 gene silencing yielded the opposite phenotypic outcomes. This investigation highlights the important role of CsGATA12 in regulating CBC resistance, underscoring its potential utility as a target for breeding citrus varieties with superior phytopathogen resistance.


Asunto(s)
Infecciones Bacterianas , Citrus sinensis , Citrus , Xanthomonas , Citrus sinensis/genética , Citrus/genética , Filogenia , Xanthomonas/fisiología , Fitomejoramiento , Enfermedades de las Plantas/microbiología
5.
Hortic Res ; 11(2): uhad276, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38344648

RESUMEN

Huanglongbing (HLB) primarily caused by Candidatus Liberibacter asiaticus (CLas) has been threatening citrus production globally. Under HLB conditions, an excessive accumulation of the polysaccharide callose in citrus phloem occurs, leading to phloem blockage and starch accumulation in leaves. The callose production is controlled by callose synthases (CalS), which have multiple members within plants. However, the knowledge of callose production in the citrus upon infection with CLas is limited. In this study, we firstly identified 11 CalSs in the Citrus sinensis genome through bioinformatics and found the expression pattern of CsCalS11 exhibited a positive correlation with callose deposition in CLas-infected leaves (correlation coefficient of 0.77, P ≤ 0.05). Knockdown of CsCalS11 resulted in a reduction of callose deposition and starch accumulation in CLas-infected citrus. Interestingly, we observed significantly higher concentrations of abscisic acid (ABA) in HLB-infected citrus leaves compared to uninfected ones. Furthermore, the expressions of CsABI5, CsPYR, and CsSnRK2 in the ABA pathway substantially increased in citrus leaves upon CLas infection. Additionally, the expression of CsCalS11 was significantly upregulated in citrus leaves following the application of exogenous ABA. We confirmed that CsABI5, a pivotal component of the ABA signaling pathway, regulates CsCalS11 expression by binding to its promoter using yeast one-hybrid assay, dual luciferase assay, and transient expression in citrus leaves. In conclusion, our findings strongly suggest that the CsABI5-CsCalS11 module plays a crucial role in regulating callose deposition through the ABA signaling pathway during CLas infection. The results also revealed new function of the ABA signaling pathway in plants under biotic stress.

6.
Plant J ; 118(2): 534-548, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38230828

RESUMEN

Citrus bacterial canker (CBC) is a serious bacterial disease caused by Xanthomonas citri subsp. citri (Xcc) that adversely impacts the global citrus industry. In a previous study, we demonstrated that overexpression of an Xcc-inducible apetala 2/ethylene response factor encoded by Citrus sinensis, CsAP2-09, enhances CBC resistance. The mechanism responsible for this effect, however, is not known. In the present study, we showed that CsAP2-09 targeted the promoter of the Xcc-inducible WRKY transcription factor coding gene CsWRKY25 directly, activating its transcription. CsWRKY25 was found to localize to the nucleus and to activate transcriptional activity. Plants overexpressing CsWRKY25 were more resistant to CBC and showed higher expression of the respiratory burst oxidase homolog (RBOH) CsRBOH2, in addition to exhibiting increased RBOH activity. Transient overexpression assays in citrus confirmed that CsWRKY25 and CsRBOH2 participated in the generation of reactive oxygen species (ROS) bursts, which were able to restore the ROS degradation caused by CsAP2-09 knockdown. Moreover, CsWRKY25 was found to bind directly to W-box elements within the CsRBOH2 promoter. Notably, CsRBOH2 knockdown had been reported previously to reduce the CBC resistance, while demonstrated in this study, CsRBOH2 transient overexpression can enhance the CBC resistance. Overall, our results outline a pathway through which CsAP2-09-CsWRKY25 transcriptionally reprograms CsRBOH2-mediated ROS homeostasis in a manner conducive to CBC resistance. These data offer new insight into the mechanisms and regulatory pathways through which CsAP2-09 regulates CBC resistance, highlighting its potential utility as a target for the breeding of CBC-resistant citrus varieties.


Asunto(s)
Citrus sinensis , Citrus , Xanthomonas , Citrus/genética , Citrus/microbiología , Especies Reactivas de Oxígeno , Xanthomonas/genética , Fitomejoramiento , Citrus sinensis/genética , Citrus sinensis/microbiología , Homeostasis , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología
7.
Sheng Wu Gong Cheng Xue Bao ; 40(1): 15-34, 2024 Jan 25.
Artículo en Chino | MEDLINE | ID: mdl-38258629

RESUMEN

Jasmonic acid (JA), a plant endogenously synthesized lipid hormone, plays an important role in response to stress. This manuscript summarized the biosynthesis and metabolism of JA and its related regulatory mechanisms, as well as the signal transduction of JA. The mechanism and regulatory network of JA in plant response to biotic and abiotic stresses were systematically reviewed, with the latest advances highlighted. In addition, this review summarized the signal crosstalk between JA and other hormones in regulating plant resistance to various stresses. Finally, the problems to be solved in the study of plant stress resistance mediated by JA were discussed, and the application of new molecular biological technologies in regulating JA signaling to enhance crop resistance was prospected, with the aim to facilitate future research and application of plant stress resistance.


Asunto(s)
Ciclopentanos , Transducción de Señal , Oxilipinas , Reguladores del Crecimiento de las Plantas
8.
J Exp Clin Cancer Res ; 42(1): 342, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38102722

RESUMEN

BACKGROUND: More than 90% of the mortality of triple-negative breast cancer (TNBC) patients is attributed to cancer metastasis with organotropism. The lung is a frequent site of TNBC metastasis. However, the precise molecular mechanism for lung-specific metastasis of TNBC is not well understood. METHODS: RNA sequencing was performed to identify patterns of gene expression associated with lung metastatic behavior using 4T1-LM3, MBA-MB-231-LM3, and their parental cells (4T1-P, MBA-MB-231-P). Expressions of RGCC, called regulator of cell cycle or response gene to complement 32 protein, were detected in TNBC cells and tissues by qRT-PCR, western blotting, and immunohistochemistry. Kinase activity assay was performed to evaluate PLK1 kinase activity. The amount of phosphorylated AMP-activated protein kinase α2 (AMPKα2) was detected by immunoblotting. RGCC-mediated metabolism was determined by UHPLC system. Oxidative phosphorylation was evaluated by JC-1 staining and oxygen consumption rate (OCR) assay. Fatty acid oxidation assay was conducted to measure the status of RGCC-mediated fatty acid oxidation. NADPH and ROS levels were detected by well-established assays. The chemical sensitivity of cells was evaluated by CCK8 assay. RESULTS: RGCC is aberrantly upregulated in pulmonary metastatic cells. High level of RGCC is significantly related with lung metastasis in comparison with other organ metastases. RGCC can effectively promote kinase activity of PLK1, and the activated PLK1 phosphorylates AMPKα2 to facilitate TNBC lung metastasis. Mechanistically, the RGCC/PLK1/AMPKα2 signal axis increases oxidative phosphorylation of mitochondria to generate more energy, and promotes fatty acid oxidation to produce abundant NADPH. These metabolic changes contribute to sustaining redox homeostasis and preventing excessive accumulation of potentially detrimental ROS in metastatic tumor cells, thereby supporting TNBC cell survival and colonization during metastases. Importantly, targeting RGCC in combination with paclitaxel/carboplatin effectively suppresses pulmonary TNBC lung metastasis in a mouse model. CONCLUSIONS: RGCC overexpression is significantly associated with lung-specific metastasis of TNBC. RGCC activates AMPKα2 and downstream signaling through RGCC-driven PLK1 activity to facilitate TNBC lung metastasis. The study provides implications for RGCC-driven OXPHOS and fatty acid oxidation as important therapeutic targets for TNBC treatment.


Asunto(s)
Neoplasias Pulmonares , Neoplasias de la Mama Triple Negativas , Animales , Ratones , Humanos , Neoplasias de la Mama Triple Negativas/genética , Línea Celular Tumoral , Fosforilación Oxidativa , NADP/metabolismo , NADP/farmacología , NADP/uso terapéutico , Especies Reactivas de Oxígeno , Neoplasias Pulmonares/metabolismo , Ácidos Grasos/metabolismo , Proliferación Celular
9.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 39(10): 891-897, 2023 Oct.
Artículo en Chino | MEDLINE | ID: mdl-37882712

RESUMEN

Objective To investigate the effects of paclitaxel and doxorubicin on the immune microenvironment of breast cancer in mice. Methods The CTR-DB database, a database for analysis of gene expression profiles and drug resistance characteristics related to tumor drug response, was used to analyze the effect of chemotherapeutic drugs on the immune microenvironment of breast cancer. Mouse models with breast cancer were established by in situ injection with 4T1 cells, a triple-negative breast cancer (TNBC) cells. Then they were treated with doxorubicin and paclitaxel, respectively. The sizes of tumor were recorded and analyzed by growth curve. The number of different types of immune cells was analyzed using flow cytometry. The expressions of Ki67, S100 calcium binding protein A9 (S100A9) and matrix metalloproteinase 9 (MMP9) were detected by immunohistochemistry. The cell cycles of 4T1 cells in paclitaxel group and doxorubicin group were analyzed by flow cytometry. Results The results of CTR_Microarray_75 analysis showed that the immune scores, and the number of cytotoxic lymphocytes, B lineages, CD8+ T cells, dendritic cells (DCs), monocytic lineages and natural killer (NK) cells in chemotherapy-sensitive breast cancer were higher than those in chemotherapy-insensitive breast cancer. Through growth curve analysis in mice with breast cancer, we found that both paclitaxel and doxorubicin could inhibit the increase of the tumor sizes, and the paclitaxel showed a higher inhibitory effect. The results of cytometry displayed that both paclitaxel and doxorubicin could restrain the expression of Ki67 and increase the number of breast cancer cells in G2/M phase, and in the paclitaxel group, the expression of Ki67 was lower and the number of breast cancer cells in G2/M phase was larger. Paclitaxel and doxorubicin enhanced the infiltration of CD45+ immune cells but decreased the infiltration of neutrophils. Additionally, paclitaxel promoted the infiltration of CD3+CD4+ T helper cells, CD3+CD8+ cytotoxic T cells and CD45+CD19+B cells, while doxorubicin increased the infiltration of CD4+CD25+ regulatory T cells (Tregs). The results of immunohistochemistry displayed that the paclitaxel significantly inhibited the expression of S100A9, while the doxorubicin significantly restrained the expression of MMP9. Conclusion Paclitaxel and doxorubicin can effectively inhibit the growth of breast cancer cells and change immune microenvironment of TNBC by regulating the different patterns of cell infiltration and the expression of different extracellular matrix components.


Asunto(s)
Paclitaxel , Neoplasias de la Mama Triple Negativas , Animales , Ratones , Humanos , Paclitaxel/farmacología , Metaloproteinasa 9 de la Matriz , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Linfocitos T CD8-positivos , Antígeno Ki-67 , Doxorrubicina/farmacología , Calgranulina B , Microambiente Tumoral
10.
Pharmacol Res ; 197: 106964, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37865128

RESUMEN

Hypoxia is a key feature of tumor microenvironment that contributes to the development of breast cancer stem cells (BCSCs) with strong self-renewal properties. However, the specific mechanism underlying hypoxia in BCSC induction is not completely understood. Herein, we provide evidence that a novel hypoxia-specific circSTT3A is significantly upregulated in clinical breast cancer (BC) tissues, and is closely related to the clinical stage and poor prognosis of patients with BC. The study revealed that hypoxia-inducible factor 1 alpha (HIF1α)-regulated circSTT3A has a remarkable effect on mammosphere formation in breast cancer cells. Mechanistically, circSTT3A directly interacts with nucleotide-binding domain of heat shock protein 70 (HSP70), thereby facilitating the recruitment of phosphoglycerate kinase 1 (PGK1) via its substrate-binding domain, which reduces the ubiquitination and increases the stability of PGK1. The enhanced levels of PGK1 catalyze 1,3-diphosphoglycerate (1,3-BPG) into 3-phosphoglycerate (3-PG) leading to 3-PG accumulation and increased serine synthesis, S-adenosylmethionine (SAM) accumulation, and trimethylation of histone H3 lysine 4 (H3K4me3). The activation of the H3K4me3 contributes to BCSCs by increasing the transcriptional level of stemness-related factors. Especially, our work reveals that either loss of circSTT3A or PGK1 substantially suppresses tumor initiation and tumor growth, which dramatically increases the sensitivity of tumors to doxorubicin (DOX) in mice. Injection of PGK1-silenced spheroids with 3-PG can significantly reverse tumor initiation and growth in mice, thereby increasing tumor resistance to DOX. In conclusion, our study sheds light on the functional role of hypoxia in the maintenance of BCSCs via circSTT3A/HSP70/PGK1-mediated serine synthesis, which provides new insights into metabolic reprogramming, tumor initiation and growth. Our findings suggest that targeting circSTT3A alone or in combination with chemotherapy has potential clinical value for BC management.


Asunto(s)
Neoplasias de la Mama , Humanos , Ratones , Animales , Femenino , Neoplasias de la Mama/metabolismo , Histonas/metabolismo , Hipoxia/metabolismo , Transformación Celular Neoplásica/metabolismo , Células Madre Neoplásicas/patología , Línea Celular Tumoral , Microambiente Tumoral
11.
Hortic Res ; 10(8): uhad138, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37575655

RESUMEN

As the bacterial etiologic agent causing citrus bacterial canker (CBC), Xanthomonas citri subsp. citri (Xcc) seriously impacts citrus plantation and fruit production globally. In an earlier study, we demonstrated that CsBZIP40 can positively impact CBC resistance in the sweet orange (Citrus sinensis). However, the mechanistic basis for the protective benefits conferred by CsBZIP40 is yet to be delineated. Here, we show that CsBZIP40 positively regulates CBC resistance and reactive oxygen species (ROS) homeostasis in transgenic sweet orange overexpressing CsBZIP40. CsBZIP40 directly binds to the TGA-box of the CsWRKY43 promoter to repress its transcriptional activity. CsWRKY43 overexpression induces CBC susceptibility in transgenic sweet oranges. In contrast, its inhibition produces strong resistance to CBC. CsWRKY43 directly binds to the W-boxes of the CsPrx53 and CsSOD13 promoters to positively regulate the activities of these antioxidant enzymes, resulting in the negative regulation of ROS homeostasis and CBC resistance in sweet orange plants. CsPrx53/CsSOD13 knockdown enhances ROS accumulation and CBC resistance. Overall, our results outline a regulatory pathway through which CsBZIP40 transcriptionally represses CsWRKY43-CsPrx53/CsSOD13 cascade-mediated ROS scavenging in a manner conducive to CBC resistance. These mechanisms underscore the potential importance of CsBZIP40, CsWRKY43, CsPrx53, and CsSOD13, providing promising strategies for the prevention of CBC.

12.
Int J Biol Macromol ; 229: 964-973, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36587648

RESUMEN

Citrus bacterial canker (CBC) is a serious bacterial disease affecting citrus plantations and the citrus industry all over the world. We have previously shown that an apetala 2/ethylene response factor in Citrus sinensis, CsAP2-09, positively regulated resistance to CBC, although the regulatory mechanisms remained undetermined. Here, we demonstrated that CsAP2-09 positively and sustainably controlled resistance to CBC in three-year transgenic plants. CsAP2-09 was found to be a transcriptional activator, and qRT-PCR and dual luciferase assays showed that it controlled the expression CsGH3.1L. CsAP2-09 bound directly to the promotor of CsGH3.1L, shown by yeast one-hybrid assay, with the binding site confirmed by electrophoretic mobility shift assay. Biochemical assays showed that CsAP2-09 negatively regulated the biosynthesis of indole acetic acid (IAA) and positively regulated that of salicylic acid (SA) and ethylene, verified with transient overexpression of CsGH3.1L. The combination of these results with those of previous reports indicated that SA, ethylene, and IAA can directly regulate CBC resistance. Overall, we revealed a pathway whereby CsAP2-09 conferred CBC resistance by direct binding to the CsGH3.1L promoter, activating its expression and modulating IAA, SA, and ethylene biosynthesis. Our study indicates the potential value of manipulating CsAP2-09 and CsGH3.1L in the breeding of CBC-resistant citrus.


Asunto(s)
Citrus sinensis , Citrus , Citrus/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Fitomejoramiento , Citrus sinensis/metabolismo , Ácido Salicílico/metabolismo , Etilenos/metabolismo , Enfermedades de las Plantas/microbiología , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
13.
Toxicology ; 470: 153118, 2022 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-35124147

RESUMEN

Sorafenib is an orally administered inhibitor of several tyrosine protein kinases. Treatment with sorafenib induces autophagy, which may suppress the growth of hepatocellular carcinoma (HCC) and other cancers. Aryl hydrocarbon receptor (AhR) is activated by xenbiotics and is involved in detoxification, but also plays other physiological roles. The following results were obtained. ITE and ß-NF are endogenous and synthetic AhR ligands, respectively. One µM sorafenib can strongly suppress baseline as well as 0.5 µM ITE- and 1 µM ß-NF-induced transcriptional activity of the aryl hydrocarbon response element (AHRE) in both human and mouse cells. Cytochrome p450 (CYP) 1A1 is mainly transcribed by activated AhR. Sorafenib (2-15 µM) strongly and dose-dependently suppressed baseline as well as 2 µM ITE- and 10 µM ß-NF-induced CYP1A1 mRNA and protein expression. Ligand-activated AhR translocates from the cytoplasm to the nucleus. While sorafenib was found to suppress AhR activity, the drug alone was able to induce AhR translocation into the nucleus. Sorafenib's antagonistic action on AhR was comparable to that of the known AhR antagonist CH-223191 in human liver and ovarian cell lines. In summary, we demonstrate that sorafenib is a potent AhR antagonist and likely endocrine disruptor of the AhR. Moreover, sorafenib offers potential benefit for diseases treatable through AhR suppression strategies. Further investigation is warranted into sorafenib's AhR antagonistic behavior.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Carcinoma Hepatocelular/tratamiento farmacológico , Citocromo P-450 CYP1A1/metabolismo , Ligandos , Neoplasias Hepáticas/tratamiento farmacológico , Ratones , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo , Sorafenib/farmacología , Sorafenib/uso terapéutico
14.
J Extracell Vesicles ; 10(11): e12146, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34545708

RESUMEN

Cancer-associated fibroblasts (CAFs) as a predominant cell component in the tumour microenvironment (TME) play an essential role in tumour progression. Our earlier studies revealed oxidized ATM activation in breast CAFs, which is independent of DNA double-strand breaks (DSBs). Oxidized ATM has been found to serve as a redox sensor to maintain cellular redox homeostasis. However, whether and how oxidized ATM in breast CAFs regulates breast cancer progression remains poorly understood. In this study, we found that oxidized ATM phosphorylates BNIP3 to induce autophagosome accumulation and exosome release from hypoxic breast CAFs. Inhibition of oxidized ATM kinase by KU60019 (a small-molecule inhibitor of activated ATM) or shRNA-mediated knockdown of endogenous ATM or BNIP3 blocks autophagy and exosome release from hypoxic CAFs. We also show that oxidized ATM phosphorylates ATP6V1G1, a core proton pump in maintaining lysosomal acidification, leading to lysosomal dysfunction and autophagosome fusion with multi-vesicular bodies (MVB) but not lysosomes to facilitate exosome release. Furthermore, autophagy-associated GPR64 is enriched in hypoxic CAFs-derived exosomes, which stimulates the non-canonical NF-κB signalling to upregulate MMP9 and IL-8 in recipient breast cancer cells, enabling cancer cells to acquire enhanced invasive abilities. Collectively, these results provide novel insights into the role of stromal CAFs in promoting tumour progression and reveal a new function of oxidized ATM in regulating autophagy and exosome release.


Asunto(s)
Fibroblastos Asociados al Cáncer/metabolismo , Exosomas/metabolismo , Animales , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Autofagia , Femenino , Humanos , Ratones , Ratones Desnudos , Invasividad Neoplásica
15.
NPJ Biofilms Microbiomes ; 7(1): 54, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34210981

RESUMEN

Biofilm and nitrogen fixation are two competitive strategies used by many plant-associated bacteria; however, the mechanisms underlying the formation of nitrogen-fixing biofilms remain largely unknown. Here, we examined the roles of multiple signalling systems in the regulation of biofilm formation by root-associated diazotrophic P. stutzeri A1501. Physiological analysis, construction of mutant strains and microscale thermophoresis experiments showed that RpoN is a regulatory hub coupling nitrogen fixation and biofilm formation by directly activating the transcription of pslA, a major gene involved in the synthesis of the Psl exopolysaccharide component of the biofilm matrix and nifA, the transcriptional activator of nif gene expression. Genetic complementation studies and determination of the copy number of transcripts by droplet digital PCR confirmed that the regulatory ncRNA RsmZ serves as a signal amplifier to trigger biofilm formation by sequestering the translational repressor protein RsmA away from pslA and sadC mRNAs, the latter of which encodes a diguanylate cyclase that synthesises c-di-GMP. Moreover, RpoS exerts a braking effect on biofilm formation by transcriptionally downregulating RsmZ expression, while RpoS expression is repressed posttranscriptionally by RsmA. These findings provide mechanistic insights into how the Rpo/Gac/Rsm regulatory networks fine-tune nitrogen-fixing biofilm formation in response to the availability of nutrients.


Asunto(s)
Proteínas Bacterianas/genética , Biopelículas/crecimiento & desarrollo , Regulación Bacteriana de la Expresión Génica , Redes Reguladoras de Genes , Fijación del Nitrógeno , Pseudomonas stutzeri/fisiología , Proteínas Bacterianas/metabolismo , Orden Génico , Nitrogenasa/genética , Nitrogenasa/metabolismo , Secuencias Repetitivas de Ácidos Nucleicos , Activación Transcripcional
16.
Transgenic Res ; 30(5): 635-647, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34076822

RESUMEN

Citrus canker, caused by Xanthomonas citri subsp. citri (Xcc), is a major bacterial disease responsible for substantial economic losses in citrus-producing areas. To breed transgenic citrus plants with enhanced resistance to citrus canker, two antimicrobial peptide genes, PR1aCB and AATCB, were incorporated into 'Tarocco' blood orange (Citrus sinensis Osbeck) plants via co-transformation and sequential re-transformation. The presence of PR1aCB and AATCB in double transgenic plants was confirmed by PCR. The expression of PR1aCB and AATCB in double transformants was demonstrated by quantitative real-time PCR. An in vivo disease resistance assay involving the injection of Xcc revealed that the double transformants were more resistant to citrus canker than the single gene transformants and wild-type plants. An analysis of the bacterial population indicated that the enhanced citrus canker resistance of the double transformants was due to inhibited Xcc growth. These results proved that the pyramiding of multiple genes is a more effective strategy for increasing the disease resistance of transgenic citrus plants than single gene transformations.


Asunto(s)
Antiinfecciosos , Citrus sinensis , Citrus , Péptidos Antimicrobianos , Citrus/genética , Citrus sinensis/genética , Fitomejoramiento , Enfermedades de las Plantas/genética
17.
Cell Death Dis ; 12(5): 437, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33934099

RESUMEN

Tumor initiation, development, and relapse may be closely associated with cancer stem cells (CSCs). The complicated mechanisms underlying the maintenance of CSCs are keeping in illustration. Long noncoding RNAs (lncRNAs), due to their multifunction in various biological processes, have been indicated to play a crucial role in CSC renewal and stemness maintenance. Using lncRNA array, we identified a novel lncRNA (named lnc408) in epithelial-mesenchymal transition-related breast CSCs (BCSCs). The lnc408 is high expressed in BCSCs in vitro and in vivo. The enhanced lnc408 is critical to BCSC characteristics and tumorigenesis. Lnc408 can recruit transcript factor SP3 to CBY1 promoter to serve as an inhibitor in CBY1 transcription in BCSCs. The high expressed CBY1 in non-BCSC interacts with 14-3-3 and ß-catenin to form a ternary complex, which leads a translocation of the ternary complex into cytoplasm from nucleus and degradation of ß-catenin in phosphorylation-dependent pattern. The lnc408-mediated decrease of CBY1 in BCSCs impairs the formation of 14-3-3/ß-catenin/CBY1 complex, and keeps ß-catenin in nucleus to promote CSC-associated CD44, SOX2, Nanog, Klf4, and c-Myc expressions and contributes to mammosphere formation; however, restoration of CBY1 expression in tumor cells reduces BCSC and its enrichment, thus lnc408 plays an essential role in maintenance of BCSC stemness. In shortly, these findings highlight that the novel lnc408 functions as an oncogenic factor by recruiting SP3 to inhibit CBY1 expression and ß-catenin accumulation in nucleus to maintain stemness properties of BCSCs. Lnc408-CBY1-ß-catenin signaling axis might serve as a new diagnostic and therapeutic target for breast cancer.


Asunto(s)
Neoplasias de la Mama/metabolismo , Proteínas Portadoras/metabolismo , Células Madre Neoplásicas/metabolismo , Proteínas Nucleares/metabolismo , Factor de Transcripción Sp3/metabolismo , beta Catenina/metabolismo , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Femenino , Xenoinjertos , Humanos , Factor 4 Similar a Kruppel , Ratones , Ratones Desnudos , Células Madre Neoplásicas/patología
18.
Int J Mol Sci ; 22(6)2021 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-33802058

RESUMEN

Citrus Huanglongbing (HLB) disease or citrus greening is caused by Candidatus Liberibacter asiaticus (Las) and is the most devastating disease in the global citrus industry. Salicylic acid (SA) plays a central role in regulating plant defenses against pathogenic attack. SA methyltransferase (SAMT) modulates SA homeostasis by converting SA to methyl salicylate (MeSA). Here, we report on the functions of the citrus SAMT (CsSAMT1) gene from HLB-susceptible Wanjincheng orange (Citrus sinensis (L.) Osbeck) in plant defenses against Las infection. The CsSAMT1 cDNA was expressed in yeast. Using in vitro enzyme assays, yeast expressing CsSAMT1 was confirmed to specifically catalyze the formation of MeSA using SA as a substrate. Transgenic Wanjincheng orange plants overexpressing CsSAMT1 had significantly increased levels of SA and MeSA compared to wild-type controls. HLB resistance was evaluated for two years and showed that transgenic plants displayed significantly alleviated symptoms including a lack of chlorosis, low bacterial counts, reduced hyperplasia of the phloem cells, and lower levels of starch and callose compared to wild-type plants. These data confirmed that CsSAMT1 overexpression confers an enhanced tolerance to Las in citrus fruits. RNA-seq analysis revealed that CsSAMT1 overexpression significantly upregulated the citrus defense response by enhancing the transcription of disease resistance genes. This study provides insight for improving host resistance to HLB by manipulation of SA signaling in citrus fruits.


Asunto(s)
Citrus sinensis/genética , Resistencia a la Enfermedad/genética , Metiltransferasas/genética , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Secuencia de Aminoácidos , Citrus sinensis/microbiología , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Liberibacter/fisiología , Metiltransferasas/metabolismo , Enfermedades de las Plantas/microbiología , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/microbiología , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , RNA-Seq/métodos , Ácido Salicílico/metabolismo , Homología de Secuencia de Aminoácido
19.
Plant J ; 106(4): 1039-1057, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33754403

RESUMEN

Citrus sinensis lateral organ boundary 1 (CsLOB1) was previously identified as a critical disease susceptibility gene for citrus bacterial canker, which is caused by Xanthomonas citri subsp. citri (Xcc). However, the molecular mechanisms of CsLOB1 in citrus response to Xcc are still elusive. Here, we constructed transgenic plants overexpressing and RNAi-silencing of CsLOB1 using the canker-disease susceptible 'wanjincheng' orange (C. sinensis Osbeck) as explants. CsLOB1-overexpressing plants exhibited dwarf phenotypes with smaller and thicker leaf, increased branches and adventitious buds clustered on stems. These phenotypes were followed by a process of pustule- and canker-like development that exhibited enhanced cell proliferation. Pectin depolymerization and expansin accumulation were enhanced by CsLOB1 overexpression, while cellulose and hemicellulose synthesis were increased by CsLOB1 silence. Whilst overexpression of CsLOB1 increased susceptibility, RNAi-silencing of CsLOB1 enhanced resistance to canker disease without impairing pathogen entry. Transcriptome analysis revealed that CsLOB1 positively regulated cell wall degradation and modification processes, cytokinin metabolism, and cell division. Additionally, 565 CsLOB1-targeted genes were identified in chromatin immunoprecipitation-sequencing (ChIP-seq) experiments. Motif discovery analysis revealed that the most highly overrepresented binding sites had a conserved 6-bp 'GCGGCG' consensus DNA motif. RNA-seq and ChIP-seq data suggested that CsLOB1 directly activates the expression of four genes involved in cell wall remodeling, and three genes that participate in cytokinin and brassinosteroid hormone pathways. Our findings indicate that CsLOB1 promotes cell proliferation by mechanisms depending on cell wall remodeling and phytohormone signaling, which may be critical to citrus canker development and bacterial growth in citrus.


Asunto(s)
Citrus sinensis/genética , Enfermedades de las Plantas/inmunología , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/metabolismo , Xanthomonas/fisiología , Proliferación Celular , Pared Celular/metabolismo , Citrus sinensis/citología , Citrus sinensis/inmunología , Citrus sinensis/microbiología , Susceptibilidad a Enfermedades , Perfilación de la Expresión Génica , Enfermedades de las Plantas/microbiología , Hojas de la Planta/citología , Hojas de la Planta/genética , Hojas de la Planta/inmunología , Hojas de la Planta/microbiología , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Transducción de Señal , Transcriptoma , Xanthomonas/patogenicidad
20.
Sci Rep ; 11(1): 5457, 2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33750846

RESUMEN

Prostate cancer is a major cause of death in males. Cyproterone acetate (CPA), the steroidal anti-androgen for part of androgen deprivation therapy, may block the androgen-receptor interaction and then reduce serum testosterone through its weak anti-gonadotropic action. In addition to CPA inducing hepatitis, CPA is known to cause liver tumors in rats also. Aryl hydrocarbon receptor (AhR) is a cytoplasmic receptor and regulates multiple physiological functions. CYP1A1 is an AhR-targeted gene. We found that CPA induced CYP1A1 expression, transcriptional activity of the aryl hydrocarbon response element (AHRE), and the nuclear localization of AhR in mouse Hepa-1c1c7 cells. However, CPA suppressed CYP1A1 mRNA expression and the transcriptional activity of AHRE in human HepG2 and MCF7 cells, and also decreased AhR ligand-induced CYP1A1 protein expression and transcriptional activity of AHRE in HepG2 cells. In summary, CPA is an AhR agonist in mouse cells, but an AhR antagonist in human cells. Accordingly, CPA potentially plays a role as an endocrine disruptor of the AhR. This study helps us to understand why CPA induces acute hepatitis, gene mutation, and many other side effects. In addition, it may trigger further studies investigating the relationships between CPA, glucocorticoid receptor and castration-resistant prostate cancer in the future.


Asunto(s)
Antineoplásicos/farmacología , Acetato de Ciproterona/farmacología , Receptores de Hidrocarburo de Aril/metabolismo , Animales , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Citocromo P-450 CYP1A1/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Ratones , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Receptores de Hidrocarburo de Aril/genética , Activación Transcripcional/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...