Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Virol ; 97(8): e0054023, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37504571

RESUMEN

Epstein-Barr virus (EBV) is a human oncogenic γ-herpesvirus that establishes persistent infection in more than 90% of the world's population. EBV has two life cycles, latency and lytic replication. Reactivation of EBV from latency to the lytic cycle is initiated and controlled by two viral immediate-early transcription factors, Zta and Rta, encoded by BZLF1 and BRLF1, respectively. In this study, we found that IQGAP2 expression was elevated in EBV-infected B cells and identified Rta as a viral gene responsible for the IQGAP2 upregulation in both B cells and nasopharyngeal carcinoma cell lines. Mechanistically, we showed that Rta increases IQGAP2 expression through direct binding to the Rta-responsive element in the IQGAP2 promoter. We also demonstrated the direct interaction between Rta and IQGAP2 as well as their colocalization in the nucleus. Functionally, we showed that the induced IQGAP2 is required for the Rta-mediated Rta promoter activation in the EBV lytic cycle progression and may influence lymphoblastoid cell line clumping morphology through regulating E-cadherin expression. IMPORTANCE Elevated levels of antibodies against EBV lytic proteins and increased EBV DNA copy numbers in the sera have been reported in patients suffering from Burkitt's lymphoma, Hodgkin's lymphoma, and nasopharyngeal carcinoma, indicating that EBV lytic cycle progression may play an important role in the pathogenesis of EBV-associated diseases and highlighting the need for a more complete mechanistic understanding of the EBV lytic cycle. Rta acts as an essential transcriptional activator to induce lytic gene expression and thus trigger EBV reactivation. In this study, scaffolding protein IQGAP2 was found to be upregulated prominently following EBV infection via the direct binding of Rta to the RRE in the IQGAP2 promoter but not in response to other biological stimuli. Importantly, IQGAP2 was demonstrated to interact with Rta and promote the EBV lytic cycle progression. Suppression of IQGAP2 was also found to decrease E-cadherin expression and affect the clumping morphology of lymphoblastoid cell lines.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Herpesvirus Humano 4 , Proteínas Inmediatas-Precoces , Neoplasias Nasofaríngeas , Humanos , Infecciones por Virus de Epstein-Barr/genética , Regulación Viral de la Expresión Génica , Herpesvirus Humano 4/fisiología , Proteínas Inmediatas-Precoces/metabolismo , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas/genética , Proteínas Activadoras de ras GTPasa/genética , Proteínas Activadoras de ras GTPasa/metabolismo , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Regulación hacia Arriba , Proteínas Virales/genética , Proteínas Virales/metabolismo , Activación Viral
2.
J Virol ; 97(4): e0010223, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-37022164

RESUMEN

Whether and how a local virus infection affects the hematopoietic system in the bone marrow is largely unknown, unlike with systemic infection. In this study, we showed that influenza A virus (IAV) infection leads to demand-adapted monopoiesis in the bone marrow. The beta interferon (IFN-ß) promoter stimulator 1 (IPS-1)-type I IFN-IFN-α receptor 1 (IFNAR1) axis-mediated signaling was found to induce the emergency expansion of the granulocyte-monocyte progenitor (GMP) population and upregulate the expression of the macrophage colony-stimulating factor receptor (M-CSFR) on bipotent GMPs and monocyte progenitors via the signal transducer and activator of transcription 1 (STAT1), leading to a scaled-back proportion of granulocyte progenitors. To further address the influence of demand-adapted monopoiesis on IAV-induced secondary bacterial infection, IAV-infected wild-type (WT) and Stat1-/- mice were challenged with Streptococcus pneumoniae. Compared with WT mice, Stat1-/- mice did not demonstrate demand-adapted monopoiesis, had more infiltrating granulocytes, and were able to effectively eliminate the bacterial infection. IMPORTANCE Our findings show that influenza A virus infection induces type I interferon (IFN)-mediated emergency hematopoiesis to expand the GMP population in the bone marrow. The type I IFN-STAT1 axis was identified as being involved in mediating the viral-infection-driven demand-adapted monopoiesis by upregulating M-CSFR expression in the GMP population. As secondary bacterial infections often manifest during a viral infection and can lead to severe or even fatal clinical complications, we further assessed the impact of the observed monopoiesis on bacterial clearance. Our results suggest that the resulting decrease in the proportion of granulocytes may play a role in diminishing the IAV-infected host's ability to effectively clear secondary bacterial infection. Our findings not only provide a more complete picture of the modulatory functions of type I IFN but also highlight the need for a more comprehensive understanding of potential changes in hematopoiesis during local infections to better inform clinical interventions.


Asunto(s)
Interferón Tipo I , Infecciones por Orthomyxoviridae , Receptor de Factor Estimulante de Colonias de Macrófagos , Factor de Transcripción STAT1 , Regulación hacia Arriba , Animales , Humanos , Ratones , Virus de la Influenza A/inmunología , Interferón Tipo I/inmunología , Receptor de Factor Estimulante de Colonias de Macrófagos/genética , Receptor de Factor Estimulante de Colonias de Macrófagos/inmunología , Factor de Transcripción STAT1/genética , Factor de Transcripción STAT1/inmunología , Infecciones por Orthomyxoviridae/inmunología , Hematopoyesis/inmunología , Células Progenitoras de Granulocitos y Macrófagos/inmunología , Streptococcus pneumoniae/inmunología , Infecciones Neumocócicas/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...