Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Mater ; : e2401375, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38747977

RESUMEN

Owing to the quantum size effect and high redox activity, quantum dots (QDs) play very essential roles toward electrochemical energy storage. However, it is very difficult to obtain different types and uniformly dispersed high-active QDs in a stable conductive microenvironment, because QDs prepared by traditional methods are mostly dissolved in solution or loaded on the surface of other semiconductors. Herein, dual-type semiconductor QDs (Co9S8 and CdS) are skillfully constructed within the interlayer of ultrathin-layered double hydroxides. In particular, the expandable interlayer provides a very suitable confined space for the growth and uniform dispersion of QDs, where Co9S8 originates from in situ transformation of cobalt atoms in laminate and CdS is generated from interlayer pre-embedding Cd2+. Meanwhile, XAFS and GGA+U calculations are employed to explore and prove the mechanism of QDs formation and energy storage characteristics as compared to surface loading QDs. Significantly, the hybrid supercapacitors achieve a high energy density of 329.2 µWh cm-2, capacitance retention of 99.1%, and coulomb efficiency of 96.9% after 22 000 cycles, which is superior to the reported QDs-based supercapacitors. These findings provide unique insights for designing and developing stable, ordered, and highly active QDs.

2.
Med Phys ; 51(6): 4434-4446, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38683184

RESUMEN

BACKGROUND: Motor dysfunctions in children with cerebral palsy (CP) are caused by nonprogressive brain damage. Understanding the functional characteristics of the brain is important for rehabilitation. PURPOSE: This paper aimed to study the brain networks of children with CP during bilateral lower limb movement using functional near-infrared spectroscopy (fNIRS) and to explore effective fNIRS indices for reflecting functional brain activity. METHODS: Using fNIRS, cerebral oxygenation signals in the bilateral prefrontal cortex (LPFC/RPFC) and motor cortex (LMC/RMC) were recorded from fifteen children with spastic CP and seventeen children with typical development (CTDs) in the resting state and during bilateral lower limb movement. Functional connectivity matrices based on phase-locking values (PLVs) were calculated using Hilbert transformation, and binary networks were constructed at different sparsity levels. Network metrics such as the clustering coefficient, global efficiency, local efficiency, and transitivity were calculated. Furthermore, the time-varying curves of network metrics during movement were obtained by dividing the time window and using sparse inverse covariance matrices. Finally, conditional Granger causality (GC) was used to explore the causal relationships between different brain regions. RESULTS: Compared to CTDs, the connectivity between RMC-RPFC (p = 0.017) and RMC-LMC (p = 0.002) in the brain network was decreased in children with CP, and the clustering coefficient (p = 0.003), global efficiency (p = 0.034), local efficiency (p = 0.015), and transitivity (p = 0.009) were significantly lower. The standard deviation of the changes in global efficiency of children with CP during motion was also greater than that of CTDs. Using GC, it was found that there was a significant increase in causal strength from the RMC to the RPFC (p = 0.04) and from the RMC to the LMC (p = 0.042) in children with CP during motion. Additionally, there were significant negative correlations between the PLV of LMC-RMC (p = 0.002) and the Gross Motor Function Classification System (GMFCS) and between the GMFCS and the clustering coefficient (p = 0.01). CONCLUSIONS: During rehabilitation training of the lower limbs, there were significant differences in brain network indices between children with CP and CTDs. The indicators proposed in this paper are effective at evaluating motor function and the real-time impact of rehabilitation training on the brain network and have great potential for application in guiding clinical motor function assessment and planning rehabilitation strategies.


Asunto(s)
Parálisis Cerebral , Extremidad Inferior , Movimiento , Espectroscopía Infrarroja Corta , Humanos , Parálisis Cerebral/fisiopatología , Parálisis Cerebral/diagnóstico por imagen , Espectroscopía Infrarroja Corta/métodos , Niño , Extremidad Inferior/fisiopatología , Extremidad Inferior/diagnóstico por imagen , Masculino , Femenino , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Red Nerviosa/fisiopatología , Red Nerviosa/diagnóstico por imagen
3.
J Biophotonics ; : e202400012, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38659122

RESUMEN

Focal damage due to stroke causes widespread abnormal changes in brain function and hemispheric asymmetry. In this study, functional near-infrared spectroscopy (fNIRS) was used to collect resting-state hemoglobin data from 85 patients with subacute stroke and 26 healthy controls, to comparatively analyze the characteristics of lateralization after stroke in terms of cortical activity, functional networks, and hemodynamic lags. Higher intensity of motor cortical activity, lower hemispheric autonomy, and more abnormal hemodynamic leads or lags were found in the affected hemisphere. Lateralization metrics of the three aspects were all associated with the Fugl-Meyer score. The results of this study prove that three lateralization metrics may provide clinical reference for stroke rehabilitation. Meanwhile, the present study piloted the use of resting-state fNIRS for analyzing hemodynamic lag, demonstrating the potential of fNIRS to assess hemodynamic abnormalities in addition to the study of cortical neurological function after stroke.

4.
ACS Appl Mater Interfaces ; 16(10): 13305-13315, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38421948

RESUMEN

Photochromic materials with rapid color-switching, long color retention times, and rewritability are crucial for meeting the requirements of future rewritable ink-free media. However, these requirements are challenging to satisfy simultaneously due to the inherent constraints among these features. Herein, a novel photochromic nanofiber nonwoven fabric was designed and constructed based on a conjugated organic-inorganic hybrid structure through electrospinning and hot-pressing techniques. The as-prepared fabric can change color in merely 5 s under UV irradiation and can reach saturation within 2 min. In addition, upon the introduction of a potent metal chelator, its color retention time exceeds 14 days under ambient conditions, significantly longer than that of most rewritable materials recently reported (several hours to 5 days). Moreover, the fabric exhibits high writing resolution and can be photoprinted and heat-erased for over 100 cycles while still retaining 96% of its initial reflectivity. Hydrophobic thermoplastic polyurethane provides the fabric with excellent waterproof and antifouling properties, thus preventing the composite from swelling or collecting graffiti due to moisture or dust. This work exploits a competitive approach for designing flexible, rewritable, and superior functional wearables with practical applications.

5.
Neural Regen Res ; 19(7): 1517-1522, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38051894

RESUMEN

ABSTRACT: Non-invasive cerebral neuromodulation technologies are essential for the reorganization of cerebral neural networks, which have been widely applied in the field of central neurological diseases, such as stroke, Parkinson's disease, and mental disorders. Although significant advances have been made in neuromodulation technologies, the identification of optimal neurostimulation parameters including the cortical target, duration, and inhibition or excitation pattern is still limited due to the lack of guidance for neural circuits. Moreover, the neural mechanism underlying neuromodulation for improved behavioral performance remains poorly understood. Recently, advancements in neuroimaging have provided insight into neuromodulation techniques. Functional near-infrared spectroscopy, as a novel non-invasive optical brain imaging method, can detect brain activity by measuring cerebral hemodynamics with the advantages of portability, high motion tolerance, and anti-electromagnetic interference. Coupling functional near-infrared spectroscopy with neuromodulation technologies offers an opportunity to monitor the cortical response, provide real-time feedback, and establish a closed-loop strategy integrating evaluation, feedback, and intervention for neurostimulation, which provides a theoretical basis for development of individualized precise neurorehabilitation. We aimed to summarize the advantages of functional near-infrared spectroscopy and provide an overview of the current research on functional near-infrared spectroscopy in transcranial magnetic stimulation, transcranial electrical stimulation, neurofeedback, and brain-computer interfaces. Furthermore, the future perspectives and directions for the application of functional near-infrared spectroscopy in neuromodulation are summarized. In conclusion, functional near-infrared spectroscopy combined with neuromodulation may promote the optimization of central neural reorganization to achieve better functional recovery from central nervous system diseases.

6.
ACS Appl Mater Interfaces ; 14(35): 40276-40285, 2022 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-36001388

RESUMEN

Sensing materials that are ultrastrong but still superelastic and highly sensitive are crucial for meeting the requirements of future flexible sensors. However, these requirements are challenging to satisfy simultaneously due to the internal constraints among these properties. Here, an ultrastrong and superelastic eutectogel is designed and prepared using a waterborne polyurethane (WPU) network enhanced by two-dimensional (2D) nanosheets in a deep eutectic solvent. The 2D nanosheet-induced noncovalent cross-linking endows the prepared eutectogel with superelasticity and flexibility, and its elongation at break reaches 2071%, higher than those of most polymers (<1000%). Meanwhile, this eutectogel also exhibits a high tensile strength (21.6 MPa), which is strong enough to support 20 000 times its own weight. Such a composite design provides a feasible route for preparing eutectogels with outstanding comprehensive functions without trade-offs among these features. In addition, the eutectogel-assembled sensor possesses a high ionic conductivity of 0.225 S/m and a high strain sensitivity of 1.18 kPa-1. Furthermore, it can be integrated into the sensing arrays for multidimensional signal monitoring without diminishing its pristine strength and flexibility. Surprisingly, the eutectogel can be quickly disintegrated in ethanol due to the WPU's pseudoplastic behavior, providing a competitive way to dispose of waste electronic devices.

7.
J Nanosci Nanotechnol ; 19(4): 2211-2218, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30486970

RESUMEN

The submicron-sized Fe3O4 particles were synthesized by solvothermal method. Then polydopamine (PDA) was used to modify the surface of Fe3O4 particles. And then the core-shell Fe3O4@PDA@BSA (single layer and multilayer) microspheres were prepared by the layer by layer self-assembly method (SAM). In addition, Ag nanospheres were grafted onto the surface of Fe3O4@PDA particles to obtain Fe3O4@PDA-Ag core-shell nanoparticles using silver mirror reaction. The morphology and component of the obtained core-shell particles were characterized by transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The biocompatibility of the microspheres was researched in vitro by MTT method and its magnetic properties were also evaluated. The results showed that the microsphere has excellent magnetic properties and good biological safety. Then the catalytic performance of Fe3O4@PDA-Ag microspheres for methylene blue (MB) was studied. And the antimicrobial properties of Fe3O4@PDA-Ag microspheres for Escherichia coli and Bacillus subtilis were also be discussed. The results indicated good catalytic properties and antibacterial properties.

8.
Opt Lett ; 42(8): 1552-1555, 2017 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-28409796

RESUMEN

We present an optical study on high-quality and single-phase LiTi2O4 (LTO) superconductor thin films grown on MgAl2O4 substrates by pulsed laser deposition. The near infrared (NIR) reflectivity is measured for samples with (001) and (111) lattice orientations. The temperature-induced metal-superconductor transition can be observed, and the superconducting transition temperature can be measured for both samples. We find that the NIR reflection experiment can reflect rightly the basic features of LTO superconductor thin films. Furthermore, the results obtained from this simple optical measurement suggest that the photo-induced electronic localization effect can be present in LTO thin films in a metallic state. Such information cannot be obtained directly from conventional transport and magneto-transport measurements. These interesting and important findings demonstrate that the NIR reflection experiment is a powerful optical technique for contactless characterizations and investigations of superconductor materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...