Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 304
Filtrar
1.
Chem Commun (Camb) ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38747249

RESUMEN

The salt metathesis of a boryl-ethynyl lithium salt {[(HCDipN)2]B-CC-Li} with a monochlorosilylene [LSi(:)Cl; L = PhC(NtBu)2] produced an isolable boryl-ethynyl silylene {1; [(HCDipN)2]B-CC-Si(L)}. The Si(II) center in 1 possesses a nonbonding lone pair and forms a covalent bond with the ethynyl group. The characterization of 1 was carried out by multinuclear NMR spectroscopy, single-crystal X-ray structure analysis and DFT calculations. Additionally, a reactivity study of 1 was conducted towards oxygen-containing and aryl C-F substrates.

2.
Chemphyschem ; : e202400290, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38695835

RESUMEN

Dye-sensitized solar cells (DSSCs), quantum dot-sensitized solar cells (QDSSCs) and perovskite solar cells (PSCs) have attracted wide attention. DSSCs, QDSSCs and PSCs can be prepared by liquid phase or solid phase, which causes a certain range of interface micro-mass changes during preparation. In addition, the photoelectric conversion process occurring inside the device also inevitably causes interface micro-mass changes. Interpretation of these interface micro-mass changes can help to optimize the cell structure, improve the stability and performance repeatability of the device, as well as directly or indirectly infer, track and predict the internal photoelectric conversion mechanism of the device. Quartz crystal microbalance (QCM) is a powerful tool for studying surface mass changes, extending this technology to the fields of solar cells to directly obtain interface micro mass changes, which makes the research more in-depth and opens up a new perspective for explaining the basic principles of solar cells. This review summarizes the research progress of QCM application in DSSCs, QDSSCs and PSCs in recent years, and explores the challenges and new opportunities of QCM application in new solar cells in the future.

3.
Research (Wash D C) ; 7: 0355, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38694202

RESUMEN

Proper timing of vigilance states serves fundamental brain functions. Although disturbance of sleep onset rapid eye movement (SOREM) sleep is frequently reported after orexin deficiency, their causal relationship still remains elusive. Here, we further study a specific subgroup of orexin neurons with convergent projection to the REM sleep promoting sublaterodorsal tegmental nucleus (OXSLD neurons). Intriguingly, although OXSLD and other projection-labeled orexin neurons exhibit similar activity dynamics during REM sleep, only the activation level of OXSLD neurons exhibits a significant positive correlation with the post-inter-REM sleep interval duration, revealing an essential role for the orexin-sublaterodorsal tegmental nucleus (SLD) neural pathway in relieving REM sleep pressure. Monosynaptic tracing reveals that multiple inputs may help shape this REM sleep-related dynamics of OXSLD neurons. Genetic ablation further shows that the homeostatic architecture of sleep/wakefulness cycles, especially avoidance of SOREM sleep-like transition, is dependent on this activity. A positive correlation between the SOREM sleep occurrence probability and depression states of narcoleptic patients further demonstrates the possible significance of the orexin-SLD pathway on REM sleep homeostasis.

4.
Phytomedicine ; 129: 155567, 2024 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-38579644

RESUMEN

BACKGROUND: Sarcopenia, an age-related disease, is characterized by a gradual loss of muscle mass, strength, and function. It has been linked to abnormal organelle function in myotubes, including the mitochondria and endoplasmic reticulum (ER). Recent studies revealed that mitochondria-associated membranes (MAM), the sites connecting mitochondria and the ER, may be implicated in skeletal muscle aging. In this arena, the potential of Polygonatum sibiricum polysaccharide (PSP) emerges as a beacon of hope. PSP, with its remarkable antioxidant and anti-senescence properties, is on the cusp of a therapeutic revolution, offering a promising strategy to mitigate the impacts of sarcopenia. PURPOSE: The objective of this research is to explore the effects of PSP on age-related muscle dysfunction and the underlying mechanisms involved both in vivo and in vitro. METHODS: In this investigation, we used in vitro experiments using D-galactose (D-gal)-induced aging in C2C12 myotubes and in vivo experiments on aged mice. Key indices were assessed, including reactive oxygen species (ROS) levels, mitochondrial function, the expression of aging-related markers, and the key proteins of mitochondria and MAM fraction. Differentially expressed genes (DEGs) related to mitochondria and ER were identified, and bioinformatic analyses were performed to explore underlying mechanisms. Muscle mass and function were determined to evaluate the quantity and quality of skeletal muscle in vivo. RESULTS: PSP treatment effectively mitigated oxidative stress and mitochondrial malfunction caused by D-gal in C2C12 myotubes, preserving mitochondrial fitness and reducing MAM formation. Besides, PSP attenuated D-gal-induced increases in Ca2+ concentrations intracellularly by modulating the calcium-related proteins, which were also confirmed by gene ontology (GO) analysis of DEGs. In aged mice, PSP increased muscle mass and improved grip strength, hanging time, and other parameters while reducing ROS levels and increasing antioxidant enzyme activities in skeletal muscle tissue. CONCLUSION: PSP offers protection against age-associated muscle impairments. The proposed mechanism suggests that modulation of calcium homeostasis via regulation of the MAM results in a favorable functional outcome during skeletal muscle aging. The results of this study highlight the prospect of PSP as a curative intervention for sarcopenia and affiliated pathological conditions, warranting further investigation.

5.
IEEE Trans Med Imaging ; PP2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38557622

RESUMEN

Ophthalmic diseases such as central serous chorioretinopathy (CSC) significantly impair the vision of millions of people globally. Precise segmentation of choroid and macular edema is critical for diagnosing and treating these conditions. However, existing 3D medical image segmentation methods often fall short due to the heterogeneous nature and blurry features of these conditions, compounded by medical image clarity issues and noise interference arising from equipment and environmental limitations. To address these challenges, we propose the Spectrum Analysis Synergy Axial-Spatial Network (SASAN), an approach that innovatively integrates spectrum features using the Fast Fourier Transform (FFT). SASAN incorporates two key modules: the Frequency Integrated Neural Enhancer (FINE), which mitigates noise interference, and the Axial-Spatial Elementum Multiplier (ASEM), which enhances feature extraction. Additionally, we introduce the Self-Adaptive Multi-Aspect Loss (LSM), which balances image regions, distribution, and boundaries, adaptively updating weights during training. We compiled and meticulously annotated the Choroid and Macular Edema OCT Mega Dataset (CMED-18k), currently the world's largest dataset of its kind. Comparative analysis against 13 baselines shows our method surpasses these benchmarks, achieving the highest Dice scores and lowest HD95 in the CMED and OIMHS datasets. Our code is publicly available at https://github.com/IMOP-lab/SASAN-Pytorch.

6.
Mol Immunol ; 170: 110-118, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38653076

RESUMEN

Sepsis is a systemic inflammatory response syndrome caused by trauma or infection, which can lead to multiple organ dysfunction. In severe cases, sepsis can also progress to septic shock and even death. Effective treatments for sepsis are still under development. This study aimed to determine if targeting the PI3K/Akt signaling with CAL-101, a PI3K p110δ inhibitor, could alleviate lipopolysaccharide (LPS)-induced sepsis and contribute to immune tolerance. Our findings indicated that CAL-101 treatment improved survival rates and alleviated the progression of LPS-induced sepsis. Compared to antibiotics, CAL-101 not only restored the Th17/regulatory T cells (Treg) balance but also enhanced Treg cell function. Additionally, CAL-101 promoted type 2 macrophage (M2) polarization, inhibited TNF-α secretion, and increased IL-10 secretion. Moreover, CAL-101 treatment reduced pyroptosis in peritoneal macrophages by inhibiting caspase-1/gasdermin D (GSDMD) activation. This study provides a mechanistic basis for future clinical exploration of targeted therapeutics and immunomodulatory strategies in the treatment of sepsis.


Asunto(s)
Fosfatidilinositol 3-Quinasa Clase I , Lipopolisacáridos , Ratones Endogámicos C57BL , Piroptosis , Sepsis , Linfocitos T Reguladores , Células Th17 , Animales , Piroptosis/efectos de los fármacos , Sepsis/inmunología , Sepsis/tratamiento farmacológico , Lipopolisacáridos/farmacología , Ratones , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/efectos de los fármacos , Células Th17/inmunología , Células Th17/efectos de los fármacos , Fosfatidilinositol 3-Quinasa Clase I/antagonistas & inhibidores , Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Macrófagos/inmunología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino , Macrófagos Peritoneales/inmunología , Macrófagos Peritoneales/efectos de los fármacos , Macrófagos Peritoneales/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3/farmacología , Transducción de Señal/efectos de los fármacos
7.
Aquat Toxicol ; 271: 106928, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38688065

RESUMEN

The significant role of aquatic phytoplankton in global primary productivity, accounting for approximately 50 % on an annual basis, has been recognized as a crucial factor in the reduction of Hg(II). In this study, we compared the efficiency of Hg(II) photoreduction mediated by three types of algae leaching dissolved organic matter (DOM) and humic acid (DOM-HA). Especially, we investigated the potential effects of algae-leached DOM on the photoreduction of Hg(II) and its subsequent uptake by lettuce, which serves as an indicator of Hg bioavailability for aquatic plants. The results revealed that under light conditions, the conversion of Hg(II) to Hg(0) mediated by algae-leached DOM and DOM-HA was 6.4-39.9 % higher compared to dark condition. Furthermore, the free radical quenching experiment demonstrated that the reduction of Hg(II) mediated by DOM-HA was higher than algae-leached DOM, mainly due to its ability to generate superoxide anion (O2•-). Moreover, the photoreduction efficiences of Hg(II) mediated by algae-leached DOM were 29-18 % lower compared to DOM-HA. The FT-IR analysis revealed that the production of -SH from algae-leached DOM led to the formation of strong metal-complexes, which restricts the reduction process from Hg(II) to Hg(0). Finally, the hydroponics experiment demonstrated that algae-leached DOM inhibited the bioavailability of Hg(II) to plants more effectively than DOM-HA. Our research emphasizes the significant functional roles and potential mechanisms of algae in reducing Hg levels, thereby influencing the availability of Hg in aquatic ecosystems.


Asunto(s)
Sustancias Húmicas , Lactuca , Luz , Mercurio , Contaminantes Químicos del Agua , Lactuca/metabolismo , Lactuca/efectos de la radiación , Oxidación-Reducción
8.
ACS Omega ; 9(15): 17028-17035, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38645333

RESUMEN

Gluten is a well-known food allergen globally, and it can induce immune responses in celiac- and nonceliac gluten-sensitive patients. The gliadin proteins from gluten have a special amino acid sequence that make it hydrophobic. One way to deal with gluten allergies is to provide a gluten-free diet. The hydrophobic characteristic of gliadin makes gliadin detection more difficult. An analyst needs to use an organic solvent or multiple processes to denature gluten for extraction. Although organic solvents can rapidly extract gluten in a sample, organic solvent also denatures the antibody and induces false biotest results without buffer dilute, and the accuracy will reduce with buffer dilute. An ionic liquid (IL) is a highly modifiable green chemical organic salt. The imidazolium has a cationic structure and is modified with different lengths (C = 0, 1, 3, 5, 7, 9, and 12) of carbon side chains with organic and inorganic anions [methanesulfonate (MSO), Cl-, F-, NO3-, HSO4-, and H2PO4-] to make different kinds of ILs for testing the solubility of gliadin. Different IL/water ratios were used to test the solubility of gluten. We measured the solubility of gliadin in different imidazolium ILs, and the kinetic curve of gliadin dissolved in 1% [C5DMIM][MSO]aq was conducted. We also used circular dichroism spectroscopy and an enzyme-linked immunosorbent assay to measure the gliadin structure and the effect of binding with an antibody after 1% [C5DMIM][MSO]aq treatment. An 2,3-bis-(2-methoxy-4- nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) assay was used to test the toxicity of [C5DMIM][MSO]aq in N2a cells. In our research, 1% [C5DMIM][MSO]aq produced a good solubility of gluten, and it could dissolve more than 3000 ppm of gluten in 5 min. [C5DMIM][MSO]aq did not break down the gluten structure and did not restrict antibody binding to gluten, and more importantly, [C5DMIM][MSO] did not exhibit cell toxicity. In this report, we showed that [C5DMIM][MSO] could be a good extraction solution applied for gluten detection.

9.
BMC Musculoskelet Disord ; 25(1): 338, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38671421

RESUMEN

OBJECTIVES: The application of a growing rod technique can retain the growth and development potential of the spine and thorax while controlling the progression of scoliosis deformity. Theoretically, convex side short fusion combined with a concave side single growing rod technique can significantly reduce the asymmetric growth of the spine in the vertex region in most patients. However, the final clinical outcome of various techniques is yet to be clearly determined and compared between studies. Therefore, we compared the efficacy of these two growing rod techniques in treating early onset scoliosis. METHODS: In a retrospective study of 152 EOS patients seen between 2013.1 and 2019.12, 36 cases of EOS patients were selected for inclusion. Among the 36 cases, 11 cases were treated with convex side short fusion combined with a concave side single growing rod technique, group (A) The remaining 25 cases were treated with traditional bilateral growing rod technique, group (B) Age, gender, etiology, follow-up time, Cobb angle of main curve, T1-S1 height, coronal trunk shift, sagittal vertical axis (SVA), Cobb angle of thoracic kyphosis at last follow-up, and Cobb angle at proximal junction kyphosis of the first and last post-operation follow-up were recorded. In addition, internal fixation related complications, infection, nervous system complications were recorded as well. RESULTS: There was no statistically significant difference between group A and group B in preoperative age, Cobb angle of main curve, coronal trunk shift, T1-S1 height, SVA, Cobb angle of thoracic kyphosis (p > 0.05). However, at the last follow-up (Group A, mean 4.4 ± 1.01 years; Group B, mean 3.6 ± 0.01 years) the Cobb angle of the main curve was less and T1-S1 height greater in group A compared with group B (p < 0.05). There was no statistically significant difference between group A and group B in the correction rate of the Cobb angle of the main curve or the growth rate of T1-S1 height (p > 0.05). There was no statistically significant difference in the coronal imbalance ratio, thoracic kyphosis abnormality ratio, or the occurrence PJK ratio between group A and group B at the last follow-up (p > 0.05), but the sagittal imbalance ratio and internal fixation abnormality ratio were higher in group A than in the group B (p < 0.05). CONCLUSIONS: During the treatment of EOS, both the convex side short fusion combined with concave side single growing rod technique and traditional bilateral growing rod technique can correct the Cobb angle of main curve with no significant hindering of the spinal growth observed. The traditional bilateral growing rod technique has advantages in control of the sagittal balance of the spine, and the complications associated with internal fixation were lower.


Asunto(s)
Escoliosis , Fusión Vertebral , Humanos , Escoliosis/cirugía , Escoliosis/diagnóstico por imagen , Femenino , Estudios Retrospectivos , Masculino , Fusión Vertebral/métodos , Fusión Vertebral/efectos adversos , Fusión Vertebral/instrumentación , Niño , Resultado del Tratamiento , Vértebras Torácicas/cirugía , Vértebras Torácicas/diagnóstico por imagen , Preescolar , Estudios de Seguimiento , Edad de Inicio
10.
Sci Immunol ; 9(94): eadh0085, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38669317

RESUMEN

Thymic negative selection of the T cell receptor (TCR) repertoire is essential for establishing self-tolerance and acquired allograft tolerance following organ transplantation. However, it is unclear whether and how peripheral clonal deletion of alloreactive T cells induces transplantation tolerance. Here, we establish that programmed cell death protein 1 (PD-1) is a hallmark of alloreactive T cells and is associated with clonal expansion after alloantigen encounter. Moreover, we found that diphtheria toxin receptor (DTR)-mediated ablation of PD-1+ cells reshaped the TCR repertoire through peripheral clonal deletion of alloreactive T cells and promoted tolerance in mouse transplantation models. In addition, by using PD-1-specific depleting antibodies, we found that antibody-mediated depletion of PD-1+ cells prevented heart transplant rejection and the development of experimental autoimmune encephalomyelitis (EAE) in humanized PD-1 mice. Thus, these data suggest that PD-1 is an attractive target for peripheral clonal deletion and induction of immune tolerance.


Asunto(s)
Supresión Clonal , Tolerancia Inmunológica , Ratones Endogámicos C57BL , Receptor de Muerte Celular Programada 1 , Animales , Receptor de Muerte Celular Programada 1/inmunología , Ratones , Supresión Clonal/inmunología , Tolerancia Inmunológica/inmunología , Humanos , Encefalomielitis Autoinmune Experimental/inmunología , Trasplante de Corazón , Linfocitos T/inmunología , Ratones Noqueados , Ratones Endogámicos BALB C , Femenino
11.
Sci Rep ; 14(1): 9676, 2024 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-38678059

RESUMEN

To utilize metabolomics in conjunction with RNA sequencing to identify biomarkers in the blood of sepsis patients and discover novel targets for diagnosing and treating sepsis. In January 2019 and December 2020, blood samples were collected from a cohort of 16 patients diagnosed with sepsis and 11 patients diagnosed with systemic inflammatory response syndrome (SIRS). Non-targeted metabolomics analysis was conducted using liquid chromatography coupled with mass spectrometry (LC-MS/MS technology), while gene sequencing was performed using RNA sequencing. Afterward, the metabolite data and sequencing data underwent quality control and difference analysis, with a fold change (FC) greater than or equal to 2 and a false discovery rate (FDR) less than 0.05.Co-analysis was then performed to identify differential factors with consistent expression trends based on the metabolic pathway context; KEGG enrichment analysis was performed on the crossover factors, and Meta-analysis of the targets was performed at the transcriptome level using the public dataset. In the end, a total of five samples of single nucleated cells from peripheral blood (two normal controls, one with systemic inflammatory response syndrome, and two with sepsis) were collected and examined to determine the cellular location of the essential genes using 10× single cell RNA sequencing (scRNA-seq). A total of 485 genes and 1083 metabolites were found to be differentially expressed in the sepsis group compared to the SIRS group. Among these, 40 genes were found to be differentially expressed in both the metabolome and transcriptome. Functional enrichment analysis revealed that these genes were primarily involved in biological processes related to inflammatory response, immune regulation, and amino acid metabolism. Furthermore, a meta-analysis identified four genes, namely ITGAM, CD44, C3AR1, and IL2RG, which were highly expressed in the sepsis group compared to the normal group (P < 0.05). Additionally, scRNA-seq analysis revealed that the core genes ITGAM and C3AR1 were predominantly localized within the macrophage lineage. The primary genes ITGAM and C3AR1 exhibit predominant expression in macrophages, which play a significant role in inflammatory and immune responses. Moreover, these genes show elevated expression levels in the plasma of individuals with sepsis, indicating their potential as valuable subjects for further research in sepsis.


Asunto(s)
Biomarcadores , Metabolómica , Sepsis , Humanos , Sepsis/genética , Sepsis/sangre , Sepsis/metabolismo , Biomarcadores/sangre , Metabolómica/métodos , Masculino , Femenino , Persona de Mediana Edad , Transcriptoma , Perfilación de la Expresión Génica , Anciano , Adulto , Cromatografía Liquida , Espectrometría de Masas en Tándem , Síndrome de Respuesta Inflamatoria Sistémica/genética , Síndrome de Respuesta Inflamatoria Sistémica/sangre , Síndrome de Respuesta Inflamatoria Sistémica/metabolismo , Síndrome de Respuesta Inflamatoria Sistémica/diagnóstico
12.
J Am Chem Soc ; 146(17): 12215-12224, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38629769

RESUMEN

We report the construction of frustrated Lewis pairs (FLPs) in a metal-organic framework (MOF), where both Lewis acid (LA) and Lewis base (LB) are fixed to the backbone. The anchoring of a tritopic organoboron linker as LA and a monotopic linker as LB to separate metal oxide clusters in a tetrahedron geometry allows for the precise control of distance between them. As the type of monotopic LB linker varies, pyridine, phenol, aniline, and benzyl alcohol, a series of 11 FLPs were constructed to give fixed distances of 7.1, 5.5, 5.4, and 4.8 Å, respectively, revealed by 11B-1H solid-state nuclear magnetic resonance spectroscopy. Keeping LA and LB apart by a fixed distance makes it possible to investigate the electrostatic effect by changing the functional groups in the monotopic LB linker, while the LA counterpart remains unaffected. This approach offers new chemical environments of the active site for FLP-induced catalysis.

13.
iScience ; 27(4): 109449, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38551002

RESUMEN

MicroRNAs (miRNAs) interact with mRNAs in various pathophysiological processes. In developmental dysplasia of the hip (DDH), the miRNA-mRNA pairs affecting acetabular cartilage (AC) development remain unknown. We investigated dynamic microstructure changes and mRNA and miRNA expression profiles in the AC proliferative zone in a DDH rat model. Abnormal chondrocyte proliferation was observed, and several differentially expressed mRNAs and miRNAs were identified. Downregulated mRNAs and target genes of upregulated miRNAs were primarily enriched in bone and cartilage development. Six hub genes were identified using the predicted miRNA-mRNA interaction network and gene expression pattern analysis. The expression levels of these hub genes and paired miRNAs aligned with our predictions, and most of the pairs were significantly negatively correlated. Excessive chondrocyte proliferation in the AC proliferative zone can delay AC ossification, which might be crucial to DDH development. Specific miRNA-mRNA interaction pairs may serve as diagnostic biomarkers and therapeutic targets.

14.
Molecules ; 29(6)2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38542827

RESUMEN

Incorporation of a trifluoromethyl group with 1,2,3-triazoles motifs was described. We explored a click reaction approach for regioselective synthesis of 1-susbstituted-4-trifluoromethyl-1,2,3-triazoles in which 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) reacts with commercial 2-bromo-3,3,3-trifluoropropene (BTP) to form 3,3,3-trifloropropyne (TFP) in situ. Arising from merits associated with the availability and stability of BTP, and the high efficiencies of CuI/1,10-Phenanthroline (Phen)-catalyzed cycloaddition reactions of azides with alkynes, this readily performed click process takes place to form the target 1,2,3-triazoles in high yields, and with a wide azide substrate scope. The potential value of this protocol was demonstrated by its application to a gram-scale reaction.

16.
Heliyon ; 10(5): e27217, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38449612

RESUMEN

Trilobolide-6-O-isobutyrate exhibits significant antitumor effects on cholangiocarcinoma (CCA) cells by effectively inhibiting the JAK/STAT3 signaling pathway. This study aims to investigate the mechanisms underlying the antitumor properties of trilobolide-6-O-isobutyrate, and to explore its potential as a therapeutic agent for CCA. This study illustrates that trilobolide-6-O-isobutyrate efficiently suppresses CCA cell proliferation in a dose- and time-dependent manner. Furthermore, trilobolide-6-O-isobutyrate stimulates the production of reactive oxygen species, leading to oxidative stress and initiation of apoptosis via the activation of the mitochondrial pathway. Data from xenograft tumor assays in nude mice confirms that TBB inhibits tumor growth, and that there are no obvious toxic effects or side effects in vivo. Mechanistically, trilobolide-6-O-isobutyrate exerts antitumor effects by inhibiting STAT3 transcriptional activation, reducing PCNA and Bcl-2 expression, and increasing P21 expression. These findings emphasizes the potential of trilobolide-6-O-isobutyrate as a promising therapeutic candidate for the treatment of CCA.

17.
BMC Cardiovasc Disord ; 24(1): 160, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38491412

RESUMEN

OBJECTIVE: Dyslipidemia is a co-existing problem in patients with diabetes mellitus (DM) and coronary artery disease (CAD), and apolipoprotein E (APOE) plays an important role in lipid metabolism. However, the relationship between the APOE gene polymorphisms and the risk of developing CAD in type 2 DM (T2DM) patients remains controversial. The aim of this study was to assess this relationship and provide a reference for further risk assessment of CAD in T2DM patients. METHODS: The study included 378 patients with T2DM complicated with CAD (T2DM + CAD) and 431 patients with T2DM alone in the case group, and 351 individuals without DM and CAD were set as controls. The APOE rs429358 and rs7412 polymorphisms were genotyped by polymerase chain reaction (PCR) - microarray. Differences in APOE genotypes and alleles between patients and controls were compared. Multiple logistic regression analysis was performed after adjusting for age, gender, body mass index (BMI), history of smoking, and history of drinking to access the relationship between APOE genotypes and T2DM + CAD risk. RESULTS: The frequencies of the APOE ɛ3/ɛ4 genotype and ε4 allele were higher in the T2DM + CAD patients, and the frequencies of the APOE ɛ3/ɛ3 genotype and ε3 allele were lower than those in the controls (all p < 0.05). The T2DM + CAD patients with ɛ4 allele had higher level in low-density lipoprotein cholesterol (LDL-C) than those in patients with ɛ2 and ɛ3 allele (p < 0.05). The results of logistic regression analysis showed that age ≥ 60 years old, and BMI ≥ 24.0 kg/m2 were independent risk factors for T2DM and T2DM + CAD, and APOE ɛ3/ɛ4 genotype (adjusted odds ratio (OR) = 1.93, 95% confidence interval (CI) = 1.18-3.14, p = 0.008) and ɛ4 allele (adjusted OR = 1.97, 95% CI = 1.23-3.17) were independent risk factors for T2DM + CAD. However, the APOE genotypes and alleles were not found to have relationship with the risk of T2DM. CONCLUSIONS: APOE ε3/ε4 genotype and ε4 allele were independent risk factors for T2DM complicated with CAD, but not for T2DM.


Asunto(s)
Enfermedad de la Arteria Coronaria , Diabetes Mellitus Tipo 2 , Humanos , Persona de Mediana Edad , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/genética , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Enfermedad de la Arteria Coronaria/genética , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Apolipoproteínas E/genética , Genotipo , Factores de Riesgo , Apolipoproteína E3/genética , Alelos
18.
Sensors (Basel) ; 24(3)2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38339491

RESUMEN

Optical coherence tomography angiography (OCTA) offers critical insights into the retinal vascular system, yet its full potential is hindered by challenges in precise image segmentation. Current methodologies struggle with imaging artifacts and clarity issues, particularly under low-light conditions and when using various high-speed CMOS sensors. These challenges are particularly pronounced when diagnosing and classifying diseases such as branch vein occlusion (BVO). To address these issues, we have developed a novel network based on topological structure generation, which transitions from superficial to deep retinal layers to enhance OCTA segmentation accuracy. Our approach not only demonstrates improved performance through qualitative visual comparisons and quantitative metric analyses but also effectively mitigates artifacts caused by low-light OCTA, resulting in reduced noise and enhanced clarity of the images. Furthermore, our system introduces a structured methodology for classifying BVO diseases, bridging a critical gap in this field. The primary aim of these advancements is to elevate the quality of OCTA images and bolster the reliability of their segmentation. Initial evaluations suggest that our method holds promise for establishing robust, fine-grained standards in OCTA vascular segmentation and analysis.


Asunto(s)
Oclusión de la Vena Retiniana , Tomografía de Coherencia Óptica , Humanos , Tomografía de Coherencia Óptica/métodos , Reproducibilidad de los Resultados , Oclusión de la Vena Retiniana/diagnóstico , Vasos Retinianos/diagnóstico por imagen , Angiografía
19.
Nicotine Tob Res ; 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38407960

RESUMEN

INTRODUCTION: The use of electronic vaping products (EVPs) containing nicotine, marijuana, and/or other substances remains prominent among youth; with EVPs containing nicotine being the most commonly used tobacco product among youth since 2014. However, a detailed understanding of the chemical composition of these products is limited. METHODS: During February 25th-March 15th, 2019, a total of 576 EVPs, including 233 e-cigarette devices (with 43 disposable vape pens) and 343 e-liquid cartridges/pods/bottled e-liquids, were found or confiscated from a convenience sample of 16 public high schools in California. Liquids inside 251 vape pens and cartridges/pods/bottled e-liquids were analyzed using a gas chromatography/mass spectrometry (GC/MS). For comparison, new JUUL pods, the most commonly used e-cigarette among youth during 2018-2019, with different flavorings and nicotine content were purchased and analyzed. RESULTS: For e-cigarette cartridges/pods/bottled e-liquids, nicotine was detected in 204 of 208 (98.1%) samples. Propylene glycol (PG) and vegetable glycerin (VG) were dominant solvents in nicotine-containing EVPs. Among 43 disposable vape pen devices, cannabinoids such as tetrahydrocannabinol (THC) or cannabidiol (CBD) were identified in 39 of 43 (90.1%) samples, of which 3 contained both nicotine and THC. Differences in chemical compositions were observed between confiscated or collected JUULs and purchased JUULs. Measured nicotine was inconsistent with labels on some confiscated or collected bottled e-liquids. CONCLUSIONS: EVPs from 16 participating schools were found to widely contain substances with known adverse health effects among youth, including nicotine and cannabinoids. There was inconsistency between labeled and measured nicotine on the products from schools. IMPLICATIONS: This study measured the main chemical compositions of EVPs found at 16 California public high schools. Continued efforts are warranted, including at the school-level, to educate, prevent and reduce youth use of EVPs.

20.
Front Biosci (Landmark Ed) ; 29(2): 58, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38420829

RESUMEN

BACKGROUND: Pyroptosis is a critical form of cell death during the development of chronic kidney disease (CKD). Tripartite motif 6 (TRIM6) is an E3-ubiquitin ligase that participates in the progression renal fibrosis (RF). The aim of this study was to investigate the roles of TRIM6 and Glutathione peroxidase 3 (GPX3) in oxidative stress-induced inflammasome activation and pyroptosis in Ang-II treated renal tubular epithelial cells. METHODS: To study its role in RF, TRIM6 expression was either reduced or increased in human kidney-2 (HK2) cells using lentivirus, and Ang-II, NAC and BMS-986299 were served as reactive oxygen species (ROS) inducer, ROS scavenger and NLRP3 agonist respectively. Pyroptosis and mitochondrial ROS were measured by flow cytometry. The levels of malondialdehyde (MDA), glutathione (GSH), and superoxide dismutase (SOD) were determined using commercial kits, while the levels of IL-1ß, IL-18, IL-6, and tumor necrosis factor-α (TNF-α) were determined by Enzyme-Linked Immunosorbent Assay (ELISA). Co-immunoprecipitation (Co-IP) assay was used to evaluate the interaction between TRIM6 and GPX3. Reverse transcription-polymerase chain reaction (RT-PCR) and western blot were used to measure mRNA and protein expression, respectively. RESULTS: Treatment with Angiotensin II (Ang II) increased the protein and mRNA levels of TRIM6 in HK2 cells. Ang II also increased mitochondrial ROS production and the malondialdehyde (MDA) level, but decreased the levels of GSH and SOD. In addition, Ang II enhanced HK2 cell pyroptosis, increased the levels of IL-1ß, IL-18, IL-6, and TNF-α, and promoted the expression of active IL-1ß, NLRP3, caspase-1, and GSDMD-N proteins. These effects were reversed by knockdown of TRIM6 and by treatment with N-acetyl-L-cysteine (NAC), a ROS scavenger. BMS-986299, an NLRP3 agonist treatment, did not affect ROS production in HK2 cells exposed to Ang II combined with NAC, but cell pyroptosis and inflammation were aggravated. Moreover, the overexpression of TRIM6 in HK2 cells resulted in similar effects to Ang II. NAC and GPX3 overexpression in HK2 cells could reverse ROS production, inflammation, and pyroptosis induced by TRIM6 overexpression. TRIM6 overexpression decreased the GPX3 protein level by promoting its ubiquitination, without affecting the GPX3 mRNA level. Thus, TRIM6 facilitates GPX3 ubiquitination, contributing to increased ROS levels and pyroptosis in HK2 cells. CONCLUSIONS: TRIM6 increases oxidative stress and promotes the pyroptosis of HK2 cells by regulating GPX3 ubiquitination. These findings could contribute to the development of novel drugs for the treatment of RF.


Asunto(s)
Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Proteínas de Motivos Tripartitos , Ubiquitina-Proteína Ligasas , Humanos , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Interleucina-18/metabolismo , Interleucina-18/farmacología , Piroptosis , Interleucina-6/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Transducción de Señal , Inflamación , Acetilcisteína/metabolismo , Acetilcisteína/farmacología , Superóxido Dismutasa/metabolismo , Células Epiteliales/metabolismo , Glutatión Peroxidasa/metabolismo , Glutatión Peroxidasa/farmacología , Ubiquitinación , Malondialdehído/metabolismo , ARN Mensajero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...