Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Rev Sci Instrum ; 95(5)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38819258

RESUMEN

We designed and built up a new type of ambient scanning probe microscope (SPM), which is fully compatible with state-of-the-art quantum sensing technology based on the nitrogen-vacancy (NV) centers in diamond. We chose a qPlus-type tuning fork (Q up to ∼4400) as the current/force sensor of SPM for its high stiffness and stability under various environments, which yields atomic resolution under scanning tunneling microscopy mode and 1.2-nm resolution under atomic force microscopy mode. The tip of SPM can be used to directly image the topography of nanoscale targets on diamond surfaces for quantum sensing and to manipulate the electrostatic environment of NV centers to enhance their sensitivity up to a single proton spin. In addition, we also demonstrated scanning magnetometry and electrometry with a spatial resolution of ∼20 nm. Our new system not only paves the way for integrating atomic/molecular-scale color-center qubits onto SPM tips to produce quantum tips but also provides the possibility of fabricating color-center qubits with nanoscale or atomic precision.

2.
Nat Commun ; 12(1): 2457, 2021 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-33911073

RESUMEN

Nitrogen-vacancy (NV) centers in diamond can be used as quantum sensors to image the magnetic field with nanoscale resolution. However, nanoscale electric-field mapping has not been achieved so far because of the relatively weak coupling strength between NV and electric field. Here, using individual shallow NVs, we quantitatively image electric field contours from a sharp tip of a qPlus-based atomic force microscope (AFM), and achieve a spatial resolution of ~10 nm. Through such local electric fields, we demonstrated electric control of NV's charge state with sub-5 nm precision. This work represents the first step towards nanoscale scanning electrometry based on a single quantum sensor and may open up the possibility of quantitatively mapping local charge, electric polarization, and dielectric response in a broad spectrum of functional materials at nanoscale.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...