Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Digit Health ; 9: 20552076221149528, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36636727

RESUMEN

Background: Thrombolysis is the first-line treatment for patients with acute ischemic stroke. Previous studies leveraged machine learning to assist neurologists in selecting patients who could benefit the most from thrombolysis. However, when designing the algorithm, most of the previous algorithms traded interpretability for predictive power, making the algorithms hard to be trusted by neurologists and be used in real clinical practice. Methods: Our proposed algorithm is an advanced version of classical k-nearest neighbors classification algorithm (KNN). We achieved high interpretability by changing the isotropy in feature space of classical KNN. We leveraged a cohort of 189 patients to prove that our algorithm maintains the interpretability of previous models while in the meantime improving the predictive power when compared with the existing algorithms. The predictive powers of models were assessed by area under the receiver operating characteristic curve (AUC). Results: In terms of interpretability, only onset time, diabetes, and baseline National Institutes of Health Stroke Scale (NIHSS) were statistically significant and their contributions to the final prediction were forced to be proportional to their feature importance values by the rescaling formula we defined. In terms of predictive power, our advanced KNN (AUC 0.88) outperformed the classical KNN (AUC 0.75, p = 0.0192 ). Conclusions: Our preliminary results show that the advanced KNN achieved high AUC and identified consistent significant clinical features as previous clinical trials/observational studies did. This model shows the potential to assist in thrombolysis patient selection for improving the successful rate of thrombolysis.

2.
Children (Basel) ; 9(11)2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-36360404

RESUMEN

The early diagnosis of biliary atresia (BA) in cholestatic infants is critical to the success of the treatment. Intraoperative cholangiography (IOC), an invasive imaging technique, is the current strategy for the diagnosis of BA. Ultrasonography has advanced over recent years and emerging techniques such as shear wave elastography (SWE) have the potential to improve BA diagnosis. This review sought to evaluate the diagnostic efficacy of advanced ultrasonography techniques in the diagnosis of BA. Six databases (CINAHL, Medline, PubMed, Google Scholar, Web of Science (core collection), and Embase) were searched for studies assessing the diagnostic performance of advanced ultrasonography techniques in differentiating BA from non-BA causes of infantile cholestasis. The meta-analysis was performed using Meta-DiSc 1.4 and Comprehensive Meta-analysis v3 software. Quality Assessment of Diagnostic Accuracy Studies tool version 2 (QUADAS-2) assessed the risk of bias. Fifteen studies consisting of 2185 patients (BA = 1105; non-BA = 1080) met the inclusion criteria. SWE was the only advanced ultrasonography technique reported and had a good pooled diagnostic performance (sensitivity = 83%; specificity = 77%; AUC = 0.896). Liver stiffness indicators were significantly higher in BA compared to non-BA patients (p < 0.000). SWE could be a useful tool in differentiating BA from non-BA causes of infantile cholestasis. Future studies to assess the utility of other advanced ultrasonography techniques are recommended.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA