Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 764
Filtrar
1.
Bio Protoc ; 14(9): e4982, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38737509

RESUMEN

Apolipoprotein B (APOB) is the primary structural protein of atherogenic lipoproteins, which drive atherogenesis and thereby lead to deadly cardiovascular diseases (CVDs). Plasma levels of APOB-containing lipoproteins are tightly modulated by LDL receptor-mediated endocytic trafficking and cargo receptor-initiated exocytic route; the latter is much less well understood. This protocol aims to present an uncomplicated yet effective method for detecting APOB/lipoprotein secretion. We perform primary mouse hepatocyte isolation and culture coupled with well-established techniques such as immunoblotting for highly sensitive, specific, and semi-quantitative analysis of the lipoprotein secretion process. Its inherent simplicity facilitates ease of operation, rendering it a valuable tool widely utilized to explore the intricate landscape of cellular lipid metabolism and unravel the mechanistic complexities underlying lipoprotein-related diseases. Key features • A pipeline for the isolation and subsequent culture of mouse primary hepatocytes. • A procedure for tracking the secretion of APOB-containing lipoproteins. • A rapid and sensitive assay for detecting the APOB level based on immunoblotting.

2.
bioRxiv ; 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38712283

RESUMEN

A successful pregnancy relies on the proper cellular, biochemical, and mechanical functions of the uterus. A comprehensive understanding of uterine mechanical properties during pregnancy is key to understanding different gynecological and obstetric disorders such as preterm birth, placenta accreta, leiomyoma, and endometriosis. This study sought to characterize the macro-scale equilibrium material behaviors of the human uterus in non-pregnancy and late pregnancy under both compressive and tensile loading. Fifty human uterine specimens from 16 patients (8 nonpregnant [NP] and 8 pregnant [PG]) were tested using spherical indentation and uniaxial tension coupled with digital image correlation (DIC). A three-level incremental load-hold protocol was applied to both tests. A microstructurally-inspired material model considering fiber architecture was applied to this dataset. Inverse finite element analysis (IFEA) was then performed to generate a single set of mechanical parameters to describe compressive and tensile behaviors. The freeze-thaw effect on uterine macro mechanical properties was also evaluated. PG tissue exhibits decreased overall stiffness and increased fiber network extensibility compared to NP uterine tissue. Under indentation, ground substance compressibility was similar between NP and PG uterine tissue. In tension, the fiber network of the PG uterus was found to be more extensible and dispersed than in nonpregnancy. Lastly, a single freeze-thaw cycle did not systematically alter the macro-scale material behavior of the human uterus.

3.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38731925

RESUMEN

Hemifacial microsomia (HFM) is a rare congenital genetic syndrome primarily affecting the first and second pharyngeal arches, leading to defects in the mandible, external ear, and middle ear. The pathogenic genes remain largely unidentified. Whole-exome sequencing (WES) was conducted on 12 HFM probands and their unaffected biological parents. Predictive structural analysis of the target gene was conducted using PSIPRED (v3.3) and SWISS-MODEL, while STRING facilitated protein-to-protein interaction predictions. CRISPR/Cas9 was applied for gene knockout in zebrafish. In situ hybridization (ISH) was employed to examine the spatiotemporal expression of the target gene and neural crest cell (NCC) markers. Immunofluorescence with PH3 and TUNEL assays were used to assess cell proliferation and apoptosis. RNA sequencing was performed on mutant and control embryos, with rescue experiments involving target mRNA injections and specific gene knockouts. CDC27 was identified as a novel candidate gene for HFM, with four nonsynonymous de novo variants detected in three unrelated probands. Structural predictions indicated significant alterations in the secondary and tertiary structures of CDC27. cdc27 knockout in zebrafish resulted in craniofacial malformation, spine deformity, and cardiac edema, mirroring typical HFM phenotypes. Abnormalities in somatic cell apoptosis, reduced NCC proliferation in pharyngeal arches, and chondrocyte differentiation issues were observed in cdc27-/- mutants. cdc27 mRNA injections and cdkn1a or tp53 knockout significantly rescued pharyngeal arch cartilage dysplasia, while sox9a mRNA administration partially restored the defective phenotypes. Our findings suggest a functional link between CDC27 and HFM, primarily through the inhibition of CNCC proliferation and disruption of pharyngeal chondrocyte differentiation.


Asunto(s)
Síndrome de Goldenhar , Pez Cebra , Animales , Pez Cebra/genética , Humanos , Masculino , Femenino , Síndrome de Goldenhar/genética , Síndrome de Goldenhar/patología , Apoptosis/genética , Cresta Neural/metabolismo , Secuenciación del Exoma , Proliferación Celular/genética , Fenotipo , Mutación , Técnicas de Inactivación de Genes
4.
J Neuroeng Rehabil ; 21(1): 77, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38745227

RESUMEN

BACKGROUND: Over 80% of patients with stroke experience finger grasping dysfunction, affecting independence in activities of daily living and quality of life. In routine training, task-oriented training is usually used for functional hand training, which may improve finger grasping performance after stroke, while augmented therapy may lead to a better treatment outcome. As a new technology-supported training, the hand rehabilitation robot provides opportunities to improve the therapeutic effect by increasing the training intensity. However, most hand rehabilitation robots commonly applied in clinics are based on a passive training mode and lack the sensory feedback function of fingers, which is not conducive to patients completing more accurate grasping movements. A force feedback hand rehabilitation robot can compensate for these defects. However, its clinical efficacy in patients with stroke remains unknown. This study aimed to investigate the effectiveness and added value of a force feedback hand rehabilitation robot combined with task-oriented training in stroke patients with hemiplegia. METHODS: In this single-blinded randomised controlled trial, 44 stroke patients with hemiplegia were randomly divided into experimental (n = 22) and control (n = 22) groups. Both groups received 40 min/day of conventional upper limb rehabilitation training. The experimental group received 20 min/day of task-oriented training assisted by a force feedback rehabilitation robot, and the control group received 20 min/day of task-oriented training assisted by therapists. Training was provided for 4 weeks, 5 times/week. The Fugl-Meyer motor function assessment of the hand part (FMA-Hand), Action Research Arm Test (ARAT), grip strength, Modified Ashworth scale (MAS), range of motion (ROM), Brunnstrom recovery stages of the hand (BRS-H), and Barthel index (BI) were used to evaluate the effect of two groups before and after treatment. RESULTS: Intra-group comparison: In both groups, the FMA-Hand, ARAT, grip strength, AROM, BRS-H, and BI scores after 4 weeks of treatment were significantly higher than those before treatment (p < 0.05), whereas there was no significant difference in finger flexor MAS scores before and after treatment (p > 0.05). Inter-group comparison: After 4 weeks of treatment, the experimental group's FMA-Hand total score, ARAT, grip strength, and AROM were significantly better than those of the control group (p < 0.05). However, there were no statistically significant differences in the scores of each sub-item of the FMA-Hand after Bonferroni correction (p > 0.007). In addition, there were no statistically significant differences in MAS, BRS-H, and BI scores (p > 0.05). CONCLUSION: Hand performance improved in patients with stroke after 4 weeks of task-oriented training. The use of a force feedback hand rehabilitation robot to support task-oriented training showed additional value over conventional task-oriented training in stroke patients with hand dysfunction. CLINICAL TRIAL REGISTRATION INFORMATION: NCT05841108.


Asunto(s)
Fuerza de la Mano , Hemiplejía , Robótica , Rehabilitación de Accidente Cerebrovascular , Humanos , Rehabilitación de Accidente Cerebrovascular/métodos , Rehabilitación de Accidente Cerebrovascular/instrumentación , Masculino , Femenino , Persona de Mediana Edad , Robótica/instrumentación , Fuerza de la Mano/fisiología , Hemiplejía/rehabilitación , Hemiplejía/fisiopatología , Hemiplejía/etiología , Anciano , Método Simple Ciego , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/fisiopatología , Dedos/fisiología , Dedos/fisiopatología , Mano/fisiopatología , Adulto , Retroalimentación Sensorial/fisiología , Resultado del Tratamiento , Recuperación de la Función
5.
iScience ; 27(5): 109772, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38711440

RESUMEN

Animal behavior analysis plays a crucial role in contemporary neuroscience research. However, the performance of the frame-by-frame approach may degrade in scenarios with occlusions or motion blur. In this study, we propose a spatiotemporal network model based on YOLOv8 to enhance the accuracy of key-point detection in mouse behavioral experimental videos. This model integrates a time-domain tracking strategy comprising two components: the first part utilizes key-point detection results from the previous frame to detect potential target locations in the subsequent frame; the second part employs Kalman filtering to analyze key-point changes prior to detection, allowing for the estimation of missing key-points. In the comparison of pose estimation results between our approach, YOLOv8, DeepLabCut and SLEAP on videos of three mouse behavioral experiments, our approach demonstrated significantly superior performance. This suggests that our method offers a new and effective means of accurately tracking and estimating pose in mice through spatiotemporal processing.

6.
Br J Pharmacol ; 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38715438

RESUMEN

BACKGROUND AND PURPOSE: Chemotherapy-induced peripheral neuropathy (CIPN) commonly causes neuropathic pain, but its pathogenesis remains unclear, and effective therapies are lacking. Naringenin, a natural dihydroflavonoid compound, has anti-inflammatory, anti-nociceptive and anti-tumour activities. However, the effects of naringenin on chemotherapy-induced pain and chemotherapy effectiveness remain unexplored. EXPERIMENTAL APPROACH: Female and male mouse models of chemotherapy-induced pain were established using paclitaxel. Effects of naringenin were assessed on pain induced by paclitaxel or calcitonin gene-related peptide (CGRP) and on CGRP expression in dorsal root ganglia (DRG) and spinal cord tissue. Additionally, we examined peripheral macrophage infiltration, glial activation, c-fos expression, DRG neuron excitability, microglial M1/M2 polarization, and phosphorylation of spinal NF-κB. Furthermore, we investigated the synergic effect and related mechanisms of naringenin and paclitaxel on cell survival of cancer cells in vitro. KEY RESULTS: Systemic administration of naringenin attenuated paclitaxel-induced pain in both sexes. Naringenin reduced paclitaxel-enhanced CGRP expression in DRGs and the spinal cord, and alleviated CGRP-induced pain in naïve mice of both sexes. Naringenin mitigated macrophage infiltration and reversed paclitaxel-elevated c-fos expression and DRG neuron excitability. Naringenin decreased spinal glial activation and NF-κB phosphorylation in both sexes but influenced microglial M1/M2 polarization only in females. Co-administration of naringenin with paclitaxel enhanced paclitaxel's anti-tumour effect, impeded by an apoptosis inhibitor. CONCLUSION AND IMPLICATIONS: Naringenin's anti-nociceptive mechanism involves CGRP signalling and neuroimmunoregulation. Furthermore, naringenin facilitates paclitaxel's anti-tumour action, possibly involving apoptosis. This study demonstrates naringenin's potential as a supplementary treatment in cancer therapy by mitigating side effects and potentiating efficacy of chemotherapy.

7.
Food Chem ; 451: 139440, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38692245

RESUMEN

The preservation of fresh-cut fruits and vegetables has attracted attention to the shelf-life reduction caused by high humidity. Herein, alginate/copper ions cross-linking, in-situ growth and self-assembly techniques of metal-organic frameworks (MOFs) were utilized to prepare a moisture responsive hydrogel bead (HKUST-1@ALG). As the multistage porous structure formation, tea tree essential oil (TTO) load capacity in hydrogel bead (TTO-HKUST-1@ALG) was increased from 6.1% to 21.6%. TTO-HKUST-1@ALG had excellent moisture response performance, and the release rates of TTO increased from 33.89% to 70.98% with moisture increasing from 45% to 95%. Besides, TTO-HKUST-1@ALG exhibited excellent antimicrobial, antioxidant capacity, and biocompatibility. During storage, TTO-HKUST-1@ALG effectively improved the cell membrane integrity by maintaining the balance of reactive oxygen species metabolism. The degradation of cell wall structure and tissue softening were delayed by inhibiting the cell wall-degrading enzymes activity. Briefly, TTO-HKUST-1@ALG improved the storage quality and extended shelf-life of fresh-cut pineapple, which was a promising preservative.

8.
Clin Transl Oncol ; 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38563846

RESUMEN

BACKGROUND: Neoadjuvant immunotherapy has evolved as an effective option to treat non-small cell lung cancer (NSCLC). B cells play essential roles in the immune system as well as cancer progression. However, the repertoire of B cells and its association with clinical outcomes remains unclear in NSCLC patients receiving neoadjuvant immunotherapy. METHODS: Single-cell RNA sequencing (scRNA-seq) and bulk RNA sequencing data for LUAD samples were accessed from the TCGA and GEO databases. LUAD-related B cell marker genes were confirmed based on comprehensive analysis of scRNA-seq data. We then constructed the B cell marker gene signature (BCMGS) and validated it. In addition, we evaluated the association of BCGMS with tumor immune microenvironment (TIME) characteristics. Furthermore, we validated the efficacy of BCGMS in a cohort of NSCLC patients receiving neoadjuvant immunotherapy. RESULTS: A BCMGS was constructed based on the TCGA cohort and further validated in three independent GSE cohorts. In addition, the BCMGS was proven to be significantly associated with TIME characteristics. Moreover, a relatively higher risk score indicated poor clinical outcomes and a worse immune response among NSCLC patients receiving neoadjuvant immunotherapy. CONCLUSIONS: We constructed an 18-gene prognostic signature derived from B cell marker genes based on scRNA-seq data, which had the potential to predict the prognosis and immune response of NSCLC patients receiving neoadjuvant immunotherapy.

10.
Thorac Cancer ; 15(14): 1138-1148, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38572774

RESUMEN

BACKGROUND: In China, real-world data on surgical challenges and postoperative complications after neoadjuvant immunotherapy of lung cancer are limited. METHODS: Patients were retrospectively enrolled from January 2018 to January 2023, and their clinical and pathological characters were subsequently analyzed. Surgical difficulty was categorized into a binary classification according to surgical duration: challenging or routine. Postoperative complications were graded using Clavien-Dindo grades. Logistic regression was used to identify risk factors affecting the duration of surgery and postoperative complications greater than Clavien-Dindo grade 2. RESULTS: In total, 261 patients were included. Of these, stage III patients accounted for 62.5% (163/261) at initial diagnosis, with 25.3% (66/261) at stage IIIB. Central-type non-small-cell lung cancer accounted for 61.7% (161/261). One hundred and forty patients underwent video-assisted thoracoscopic surgery and lobectomy accounted for 53.3% (139/261) of patients. Surgical time over average duration was defined as challenging surgeries, accounting for 43.7%. The postoperative complications rate of 261 patients was only 22.2%. Smoking history (odds ratio [OR] = 9.96, 95% [CI] 1.15-86.01, p = 0.03), chemoimmunotherapy (OR = 2.89, 95% CI 1.22-6.86, p = 0.02), and conversion to open surgery (OR = 11.3, 95% CI 1.38-92.9, p = 0.02) were identified as independent risk factors for challenging surgeries, while pneumonectomy (OR = 0.36, 95% CI 0.15-0.86, p= 0.02) was a protective factor. Meanwhile, pneumonectomy (OR = 7.51, 95% CI 2.40-23.51, p < 0.01) and challenging surgeries (OR = 5.53, 95% CI 1.50-20.62, p = 0.01) were found to be risk factors for postoperative complications greater than Clavien-Dindo grade 2. CONCLUSIONS: Compared to immunotherapy alone or in combination with apatinib, neoadjuvant chemoimmunotherapy could increase the difficulty of surgery while the incidence of postoperative complications remained acceptable. The conversion to open surgery and pneumonectomy after neoadjuvant immunotherapy should be reduced.


Asunto(s)
Inmunoterapia , Neoplasias Pulmonares , Terapia Neoadyuvante , Complicaciones Posoperatorias , Humanos , Masculino , Neoplasias Pulmonares/cirugía , Neoplasias Pulmonares/patología , Femenino , Complicaciones Posoperatorias/epidemiología , Complicaciones Posoperatorias/etiología , Persona de Mediana Edad , Terapia Neoadyuvante/métodos , Inmunoterapia/métodos , Inmunoterapia/efectos adversos , Estudios Retrospectivos , Anciano , Neumonectomía/efectos adversos , Neumonectomía/métodos , Adulto
11.
Proc Natl Acad Sci U S A ; 121(19): e2322164121, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38687799

RESUMEN

Proteins carrying a signal peptide and/or a transmembrane domain enter the intracellular secretory pathway at the endoplasmic reticulum (ER) and are transported to the Golgi apparatus via COPII vesicles or tubules. SAR1 initiates COPII coat assembly by recruiting other coat proteins to the ER membrane. Mammalian genomes encode two SAR1 paralogs, SAR1A and SAR1B. While these paralogs exhibit ~90% amino acid sequence identity, it is unknown whether they perform distinct or overlapping functions in vivo. We now report that genetic inactivation of Sar1a in mice results in lethality during midembryogenesis. We also confirm previous reports that complete deficiency of murine Sar1b results in perinatal lethality. In contrast, we demonstrate that deletion of Sar1b restricted to hepatocytes is compatible with survival, though resulting in hypocholesterolemia that can be rescued by adenovirus-mediated overexpression of either SAR1A or SAR1B. To further examine the in vivo function of these two paralogs, we genetically engineered mice with the Sar1a coding sequence replacing that of Sar1b at the endogenous Sar1b locus. Mice homozygous for this allele survive to adulthood and are phenotypically normal, demonstrating complete or near-complete overlap in function between the two SAR1 protein paralogs in mice. These data also suggest upregulation of SAR1A gene expression as a potential approach for the treatment of SAR1B deficiency (chylomicron retention disease) in humans.


Asunto(s)
Proteínas de Unión al GTP Monoméricas , Animales , Humanos , Ratones , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Vesículas Cubiertas por Proteínas de Revestimiento/genética , Retículo Endoplásmico/metabolismo , Hepatocitos/metabolismo , Ratones Noqueados , Proteínas de Unión al GTP Monoméricas/metabolismo , Proteínas de Unión al GTP Monoméricas/genética
12.
Sci Prog ; 107(2): 368504241242278, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38629201

RESUMEN

Treacher Collins syndrome (TCS) is a rare congenital craniofacial disorder, typically inherited as an autosomal dominant condition. Here, we report on a family in which germline mosaicism for TCS was likely present. The proband was diagnosed with TCS based on the typical clinical features and a pathogenic variant TCOF1 (c.4369_4373delAAGAA, p.K1457Efs*12). The mutation was not detected in his parents' peripheral blood DNA samples, suggesting a de novo mutation had occurred in the proband. However, a year later, the proband's mother became pregnant, and the amniotic fluid puncture revealed that the fetus carried the same mutation as the proband. Prenatal ultrasound also indicated a maxillofacial dysplasia with unilateral microtia. The mother then disclosed a previous birth history in which a baby had died of respiratory distress shortly after birth, displaying a TCS-like phenotype. Around the same time, the proband's father was diagnosed with mild bilateral conductive hearing loss. Based on array data, we concluded that the father may have had germline mosaicism for TCOF1 mutation. Our findings highlight the importance of considering germline mosaicism in sporadic de novo TCOF1 mutations when providing genetic consulting, and prenatal diagnosis is important when the proband's parents become pregnant again.


Asunto(s)
Disostosis Mandibulofacial , Mosaicismo , Humanos , Linaje , Disostosis Mandibulofacial/diagnóstico , Disostosis Mandibulofacial/genética , Mutación , Células Germinativas
13.
Brain Inj ; : 1-11, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38661324

RESUMEN

OBJECTIVE: This study aimed to establish a permanent middle cerebral artery occlusion (pMCAO) model in rats to simulate the pathological process of stroke patients with no reperfusion. And screen highly sensitive items that could be used to detect long-term behavioral abilities in rat of intraluminal suture models. METHOD: Established the pMCAO model then tested the rats for the bilateral asymmetry, modified neurological severity score, grid-walking, cylinder, rotating, and water maze test from week 1 to week 16. RESULTS: The infarct volume of the model rats was stable (26.72% ±1.86%). The sensorimotor test of bilateral asymmetry, grid-walking, cylinder, and mNSS test showed significant differences from week 1 to week 16 after injury. The water maze test at week 16 showed significant differences in spatial exploration and learning ability between the two groups. We confirmed that there was no significant difference between MRI and TTC staining in detecting the degree of brain injury, which facilitated the diversity of subsequent detection methods. We also confirmed that at multiple time points, grid, cylinder and water maze test were significantly positively correlated with rat brain infarct volume. CONCLUSION: They are suitable for the long-term observation of behaviors in the sequela stage of stroke in rat.

14.
Angew Chem Int Ed Engl ; : e202406845, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38687326

RESUMEN

Consecutive photoinduced electron transfer (ConPET) is a powerful and atom-economical protocol to overcome the limitations of the intrinsic redox potential of visible light-absorbing photosensitizers, thereby considerably improving the substrate and reaction types. Likely because such an exothermic single-electron transfer (SET) process usually does not require the aid of chiral catalysts, resulting in an inevitable racemic background reaction, notably, no enantioselective manifolds have been reported. Herein, we report on the viability of cooperative ConPET and chiral hydrogen-bonding catalysis for the [3 + 2] photocycloaddition of cyclopropyl ketones with vinylazaarenes. In addition to enabling the first use of olefins that preferentially interact with chiral catalysts, this catalysis platform paves the way for the efficient synthesis of pharmaceutically and synthetically important cyclopentyl ketones functionalized by azaarenes with high yields, ees and dr. The robust capacity of the method can be further highlighted by the low loading of the chiral catalyst (1.0 mol%), the good compatibility of both 2-azaarene and 3-pyridine-based olefins, and the successful concurrent construction of three stereocenters on cyclpentane rings involving an elusive but important all-carbon quaternary.

15.
bioRxiv ; 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38463989

RESUMEN

Proteins carrying a signal peptide and/or a transmembrane domain enter the intracellular secretory pathway at the endoplasmic reticulum (ER) and are transported to the Golgi apparatus via COPII vesicles or tubules. SAR1 initiates COPII coat assembly by recruiting other coat proteins to the ER membrane. Mammalian genomes encode two SAR1 paralogs, SAR1A and SAR1B. While these paralogs exhibit ~90% amino acid sequence identity, it is unknown whether they perform distinct or overlapping functions in vivo. We now report that genetic inactivation of Sar1a in mice results in lethality during mid-embryogenesis. We also confirm previous reports that complete deficiency of murine Sar1b results in perinatal lethality. In contrast, we demonstrate that deletion of Sar1b restricted to hepatocytes is compatible with survival, though resulting in hypocholesterolemia that can be rescued by adenovirus-mediated overexpression of either SAR1A or SAR1B. To further examine the in vivo function of these 2 paralogs, we genetically engineered mice with the Sar1a coding sequence replacing that of Sar1b at the endogenous Sar1b locus. Mice homozygous for this allele survive to adulthood and are phenotypically normal, demonstrating complete or near-complete overlap in function between the two SAR1 protein paralogs in mice. These data also suggest upregulation of SAR1A gene expression as a potential approach for the treatment of SAR1B deficiency (chylomicron retention disease) in humans.

17.
J Am Chem Soc ; 146(15): 10432-10442, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38498436

RESUMEN

As an efficient and clean energy carrier, hydrogen is expected to play a key role in future energy systems. However, hydrogen-storage technology must be safe with a high hydrogen-storage density, which is difficult to achieve. MgH2 is a promising solid-state hydrogen-storage material owing to its large hydrogen-storage capacity (7.6 wt %) and excellent reversibility, but its large-scale utilization is restricted by slow hydrogen-desorption kinetics. Although catalysts can improve the hydrogen-storage kinetics of MgH2, they reduce the hydrogen-storage capacity. Single-atom catalysts maximize the atom utilization ratio and the number of interfacial sites to boost the catalytic activity, while easy aggregation at high temperatures limits further application. Herein, we designed a single-atom Ni-loaded TiO2 catalyst with superior thermal stability and catalytic activity. The optimized 15wt%-Ni0.034@TiO2 catalyst reduced the onset dehydrogenation temperature of MgH2 to 200 °C. At 300 °C, the H2 released and absorbed 4.6 wt % within 5 min and 6.53 wt % within 10 s, respectively. The apparent activation energies of MgH2 dehydrogenation and hydrogenation were reduced to 64.35 and 35.17 kJ/mol of H2, respectively. Even after 100 cycles of hydrogenation and dehydrogenation, there was still a capacity retention rate of 97.26%. The superior catalytic effect is attributed to the highly synergistic catalytic activity of single-atom Ni, numerous oxygen vacancies, and multivalent Tix+ in the TiO2 support, in which the single-atom Ni plays the dominant role, accelerating electron transfer between Mg2+ and H- and weakening the Mg-H bonds. This work paves the way for superior hydrogen-storage materials for practical unitization and also extends the application of single-atom catalysis in high-temperature solid-state reactions.

18.
Redox Biol ; 71: 103126, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38503217

RESUMEN

Hydrogen peroxide (H2O2) functions as a signaling molecule in diverse cellular processes. While cells have evolved the capability to detect and manage changes in H2O2 levels, the mechanisms regulating key H2O2-producing enzymes to maintain optimal levels, especially in pancreatic beta cells with notably weak antioxidative defense, remain unclear. We found that the protein EI24 responds to changes in H2O2 concentration and regulates the production of H2O2 by controlling the translation of NOX4, an enzyme that is constitutively active, achieved by recruiting an RNA-binding protein, RTRAF, to the 3'-UTR of Nox4. Depleting EI24 results in RTRAF relocating into the nucleus, releasing the brake on NOX4 translation. The excessive production of H2O2 by liberated NOX4 further suppresses the translation of the key transcription factor MafA, ultimately preventing its binding to the Ins2 gene promoter and subsequent transcription of insulin. Treatment with a specific NOX4 inhibitor or the antioxidant NAC reversed these effects and alleviated the diabetic symptoms in beta-cell specific Ei24-KO mice. This study revealed a new mechanism through which cells regulate oxidative stress at the translational level, involving an ER-tethered RNA-binding protein that controls the expression of the key H2O2-producing enzyme NOX4.


Asunto(s)
Peróxido de Hidrógeno , NADPH Oxidasas , Ratones , Animales , NADPH Oxidasas/genética , NADPH Oxidasas/metabolismo , Peróxido de Hidrógeno/metabolismo , NADPH Oxidasa 4/genética , NADPH Oxidasa 4/metabolismo , Estrés Oxidativo , Transducción de Señal , Antioxidantes/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
19.
Hum Reprod ; 39(5): 1023-1041, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38511208

RESUMEN

STUDY QUESTION: How does ovarian stimulation (OS), which is used to mature multiple oocytes for ART procedures, impact the principal cellular compartments and transcriptome of the human endometrium in the periovulatory and mid-secretory phases? SUMMARY ANSWER: During the mid-secretory window of implantation, OS alters the abundance of endometrial immune cells, whereas during the periovulatory period, OS substantially changes the endometrial transcriptome and impacts both endometrial glandular and immune cells. WHAT IS KNOWN ALREADY: Pregnancies conceived in an OS cycle are at risk of complications reflective of abnormal placentation and placental function. OS can alter endometrial gene expression and immune cell populations. How OS impacts the glandular, stromal, immune, and vascular compartments of the endometrium, in the periovulatory period as compared to the window of implantation, is unknown. STUDY DESIGN, SIZE, DURATION: This prospective cohort study carried out between 2020 and 2022 included 25 subjects undergoing OS and 25 subjects in natural menstrual cycles. Endometrial biopsies were performed in the proliferative, periovulatory, and mid-secretory phases. PARTICIPANTS/MATERIALS, SETTING, METHODS: Blood samples were processed to determine serum estradiol and progesterone levels. Both the endometrial transcriptome and the principal cellular compartments of the endometrium, including glands, stroma, immune, and vasculature, were evaluated by examining endometrial dating, differential gene expression, protein expression, cell populations, and the three-dimensional structure in endometrial tissue. Mann-Whitney U tests, unpaired t-tests or one-way ANOVA and pairwise multiple comparison tests were used to statistically evaluate differences. MAIN RESULTS AND THE ROLE OF CHANCE: In the periovulatory period, OS induced high levels of differential gene expression, glandular-stromal dyssynchrony, and an increase in both glandular epithelial volume and the frequency of endometrial monocytes/macrophages. In the window of implantation during the mid-secretory phase, OS induced changes in endometrial immune cells, with a greater frequency of B cells and a lower frequency of CD4 effector T cells. LARGE SCALE DATA: The data underlying this article have been uploaded to the Genome Expression Omnibus/National Center for Biotechnology Information with accession number GSE220044. LIMITATIONS, REASONS FOR CAUTION: A limited number of subjects were included in this study, although the subjects within each group, natural cycle or OS, were homogenous in their clinical characteristics. The number of subjects utilized was sufficient to identify significant differences; however, with a larger number of subjects and additional power, we may detect additional differences. Another limitation of the study is that proliferative phase biopsies were collected in natural cycles, but not in OS cycles. Given that the OS cycle subjects did not have known endometrial factor infertility, and the comparisons involved subjects who had a similar and robust response to stimulation, the findings are generalizable to women with a normal response to OS. WIDER IMPLICATIONS OF THE FINDINGS: OS substantially altered the periovulatory phase endometrium, with fewer transcriptomic and cell type-specific changes in the mid-secretory phase. Our findings show that after OS, the endometrial microenvironment in the window of implantation possesses many more similarities to that of a natural cycle than does the periovulatory endometrium. Further investigation of the immune compartment and the functional significance of this cellular compartment under OS conditions is warranted. STUDY FUNDING/COMPETING INTERESTS: Research reported in this publication was supported by the National Institute of Allergy and Infectious Diseases (R01AI148695 to A.M.B. and N.C.D.), Eunice Kennedy Shriver National Institute of Child Health and Human Development (R01HD109152 to R.A.), and the March of Dimes (5-FY20-209 to R.A.). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health or March of Dimes. All authors declare no conflict of interest.


Asunto(s)
Endometrio , Inducción de la Ovulación , Transcriptoma , Humanos , Femenino , Endometrio/metabolismo , Adulto , Microambiente Celular , Estudios Prospectivos , Estradiol/sangre , Implantación del Embrión/fisiología , Progesterona/sangre , Progesterona/metabolismo , Embarazo , Ciclo Menstrual
20.
CEN Case Rep ; 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38528249

RESUMEN

Recombinant human erythropoietin (rHuEPO) is commonly used to treat anemia associated with chronic kidney disease (CKD). EPO-induced Pure Red Cell Aplasia (PRCA) is a rare condition of profound anemia with EPO treatment. Upon finding the development of EPO-induced PRCA, the treatment requires immediate withdrawal of EPO therapy and initiate new treatments with immunosuppression or renal transplantation. Anti-EPO antibody assay is not always positive in EPO-induced PRCA. Here, we report a case on the sudden development of PRCA in a hemodialysis patient receiving EPO and how we treated the condition successfully with cyclosporine and subsequently maintained the hemoglobin with Roxadustat, a hypoxia-inducible factor prolyl hydroxylase inhibitor (HIF-PHI). Even though the anti-EPO antibody was negative by Enzyme Linked Immunosorbent Assay (ELISA) in our case, the clinical course, the markedly reduced reticulocyte count < 10,000/µL, the bone marrow (BM) biopsy revealing reduced erythroblasts, and its subsequent response to cyclosporine, were similar to EPO-induced PRCA. The clinical picture of EPO-induced PRCA, the limitation of the EPO-neutralizing antibody (Ab) assay, and treatment strategies were discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...