Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 161
Filtrar
1.
Sci Total Environ ; 926: 172001, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38552987

RESUMEN

The intestinal mucosal barrier-comprising microbial, mechanical, chemical, and immunological barriers-is critical to protection against pathogens and maintenance of host health; however, it remains unclear whether it is affected by environmental contaminants. Therefore, the present study assessed whether exposure to ambient concentrations of nanopolystyrene (NP) and chrysene (CHR)-two ubiquitous environmental pollutants in the aquatic environment-affect the intestinal mucosal barrier in juvenile Siniperca chuatsi. After exposure for 21 days, S. chuatsi exhibited intestinal oxidative stress and imbalance of intestinal microbial homeostasis. NP and/or CHR exposure also disrupted the intestinal mechanical barrier, as evidenced by the altered intestinal epithelial cell morphology, disrupted structure of intercellular tight junctions, and decreased expression of tight junction proteins. Damage to the intestinal chemical barrier manifested as thinning of the mucus layer owing to the loss and damage of goblet cells. Furthermore, the intestinal immunological barrier was impaired as indicated by the loss of intestinal intraepithelial lymphocytes and increase in pro-inflammatory cytokines, chemokines, and immunoglobulins. These findings collectively suggest that the intestinal mucosal barrier was damaged. This study is, to the best of our knowledge, the first to report that exposure to NP and/or CHR at environmentally relevant concentrations disrupts the intestinal mucosal barrier in organisms and highlight the significance of nanoplastic/CHR pollution for intestinal health.


Asunto(s)
Contaminantes Ambientales , Contaminantes Ambientales/metabolismo , Crisenos/metabolismo , Mucosa Intestinal/metabolismo , Intestinos
2.
Sci Total Environ ; 922: 171125, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38382600

RESUMEN

Nanopolystyrene (NP) and chrysene (CHR) are ubiquitous contaminants in the natural environment; however, research on their hepatotoxicity and associated adverse effects remains relatively inadequate. The present study aimed to investigate the hepatotoxic effects of NP and/or CHR at environmentally relevant concentrations, as well as the underlying molecular mechanisms, in juvenile Siniperca chuatsi (mandarin fish). After a 21-day exposure period, the livers of exposed S. chuatsi exhibited macrostructural and microstructural damage accompanied by oxidative stress. Importantly, our study provides the first evidence that NP exposure leads to the development of nonalcoholic fatty liver disease (NAFLD) and hepatitis in S. chuatsi. Similarly, CHR exposure has also been found, for the first time, to cause hepatic sinusoidal dilatation (HSD) and hepatitis. Exposure to the combination of NP and CHR alleviated the symptoms of NAFLD, HSD, and hepatitis. Furthermore, our comprehensive multi-omic analysis revealed that the pathogenesis of NP-induced NAFLD was mainly due to induction of the triglyceride synthesis pathway and inhibition of the very-low-density lipoprotein secretion process. CHR induced HSD primarily through a reduction in vasoprotective ability and smooth muscle contractility. Hepatitis was induced by activation of the JAK-STAT/NF-kappa B signaling pathways, which upregulated the expression of inflammation-specific genes. Collectively, results of this study offer novel insight into the multiple hepatotoxicity endpoints of NP and/or CHR exposure at environmentally relevant concentrations in organisms, and highlight the importance of nanoplastic/CHR pollution for liver health.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Hepatitis , Enfermedad del Hígado Graso no Alcohólico , Animales , Enfermedad del Hígado Graso no Alcohólico/inducido químicamente , Microplásticos , Crisenos , Peces/genética , Hígado
3.
Environ Pollut ; 341: 122894, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-37944890

RESUMEN

Nanopolystyrene (NP) and diclofenac (DCF) are common environmental contaminants in the aquatic ecosystem; therefore, the present study aimed to investigate the hepatotoxicity of NP and/or DCF exposure on aquatic organisms and the underlying mechanisms. Juvenile Mylopharyngodon piceus were used as a model organism to study the effects of NP and/or DCF exposure at environmentally relevant concentrations for 21 days. Subchronic exposure to NP and/or DCF resulted in liver histological damage. In the NP group, the presence of large lipid droplets was observed, whereas the DCF group exhibited marked hepatic sinusoidal dilatation accompanied by inflammation. Additionally, this exposure induced liver oxidative stress, as evidenced by the changes in several physiological parameters, including catalase (CAT), glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), total antioxidant capacity (T-AOC), reactive oxygen species (ROS), and malondialdehyde (MDA). Integrated transcriptomic and metabolomic analysis was performed to further investigate the molecular mechanism underlying hepatotoxicity. Multi-omics analysis demonstrated, for the first time to our knowledge, that NP induced hepatic steatosis mainly through activating the glycerol-3-phosphate pathway and inhibiting VLDL assembly by targeting several key enzyme genes including GPAT, DGAT, ACSL, APOB, and MTTP. Furthermore, NP exposure disrupted arachidonic acid metabolism, which induced the release of inflammatory factors and inhibited the release of anti-inflammatory factors, ultimately causing liver inflammation in M. piceus. In contrast, DCF induced interleukin production and downregulated KLF2, causing hepatic sinusoidal dilatation with inflammation in juvenile M. piceus, which is consistent with the finding of JAK-STAT signaling pathway activation. In addition, the upregulated AMPK signaling pathway in the DCF group suggested perturbation of energy metabolism. Collectively, these findings provide novel insights into the molecular mechanism of the multiple hepatotoxicity endpoints of NP and/or DCF exposure in aquatic organisms.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Cipriniformes , Animales , Diclofenaco/toxicidad , Diclofenaco/metabolismo , Ecosistema , Multiómica , Estrés Oxidativo , Antioxidantes/metabolismo , Hígado/metabolismo , Cipriniformes/metabolismo , Inflamación/metabolismo
4.
Gene ; 897: 148058, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38043835

RESUMEN

Carapace color plays an important role in the communication, reproduction, and self-defense of crustaceans, which is also related to their economic value. Chinese mitten crab (Eriocheir sinensis) is an important aquaculture species in China, and there are different strains with heritable carapace colors, i.e. Green, White, and Red. However, there is a lack of research on the formation mechanism of carapace color of this species. This study was conducted to compare the histology and transcriptome in the inner membrane of three carapace color strains of E. sinensis. Histological comparisons revealed that the inner membrane of green and red carapace crabs contained more melanin, appearing in clusters, and had a higher presence of yellow or orange pigments. In contrast, the inner membrane of white carapace crabs had smaller and fewer melanin particles, as well as a lower presence of yellow or orange pigments. Observation under an electron microscope showed that the inner membrane of E. sinensis contained a large number of collagen fibers and various types of cells, including fibroblasts, melanocytes, and other tissue cells, which exhibited different levels of activity. Transcriptome analysis showed that the Green, Red, and White strains of E. sinensis had approximately 80.3 K, 81.6 K and 80.3 K expressed unigenes in their inner membranes, respectively. When comparing Green and Red crabs, there were 2, 850 upregulated genes and 2, 240 downregulated genes. In the comparison between Red and White crabs, there were 2, 853 upregulated genes and 2, 583 downregulated genes. Furthermore, there were 2, 336 upregulated genes and 2, 738 downregulated genes in the inner membranes between White and Green crabs. Among these genes, some members of the solute carriers family, which are involved in carotenoid transportation, showed differential expression among the three carapace color strains. Additionally, significant differences were observed in the expression of genes related to melanin synthesis, including wingless/integrate, tyrosinase, guanine nucleotide-binding protein inhibitory subunit, cell adhesion molecule, adenylyl cyclase, and creb-binding protein. there were no differences in the gene expression levels of the crustacyanin family. In conclusion, this study identified several candidate genes associated with carapace color in the inner membrane of E. sinensis, suggesting a close relationship between the heritable carapace colors and the transport of the carotenoids as well as the synthesis of melanin.


Asunto(s)
Braquiuros , Transcriptoma , Animales , Transcriptoma/genética , Braquiuros/genética , Exoesqueleto , Melaninas/genética , Perfilación de la Expresión Génica
5.
Int J Biol Macromol ; 257(Pt 1): 128475, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38029894

RESUMEN

Carotenoid cleavage oxygenase (CCO) plays a pivotal role in various biological activities, including antioxidant and immune functions in animals. This paper investigates the evolution and expression of CCO genes based on three chordates and 27 arthropods. Aquatic animals exhibit a higher abundance of CCO genes. Despite this, research on CCO in crustaceans has been notably limited, with a complete absence of any previous studies on the CCO genes for the Chinese mitten crab (Eriocheir sinensis). In this study, six CCO genes were identified in the E. sinensis genome database. Results reveal that the evolution of the CCO gene family in Crustacea is primarily characterized by purifying selection, with a preference for employing similar codons. EsCCO1 and EsCCO3 were mainly expressed in the epidermal layer, and EsCCO4 was mainly expressed in the hindgut. Meanwhile, EsCCO5 and EsCCO6 were mainly expressed in the hepatopancreas and endometrium. A notable detail that different EsCCO genes demonstrate distinct expression patterns within various tissues of E. sinensis. The findings of this study offer fundamental insights that could serve as a basis for further exploration into the functions and regulatory mechanisms of CCO genes in crustacean species.


Asunto(s)
Braquiuros , Carotenoides , Animales , Femenino , Braquiuros/genética
6.
iScience ; 26(11): 108284, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-38026183

RESUMEN

We identified that the genes heat shock transcription factor 5 (hsf5) and ring finger protein 43 (rnf43) happened fusion in Nile tilapia (Oreochromis niloticus), called hsf5-rnf43, and provided the characteristic and functional analysis of hsf5-rnf43 gene in fish for the first time. Analysis of spatiotemporal expression showed that hsf5-rnf43 was specifically expressed in the testis and located in primary spermatocytes of adult Nile tilapia and gradually increased during testis development from 5 to 180 days after hatching. We also found DNA methylation regulated sex-biased expression of hsf5-rnf43 in the early development of Nile tilapia, and was affected by high temperature during the thermosensitive period of Nile tilapia sex differentiation. Therefore, we first reported that the fusion gene hsf5-rnf43 was sex-biased expressed in the testis regulated by DNA methylation and affected by high temperature, which may be involved in the maintenance of testis function and sex differentiation of Nile tilapia.

7.
IEEE Trans Image Process ; 32: 5664-5677, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37773905

RESUMEN

Existing salient object detection methods often adopt deeper and wider networks for better performance, resulting in heavy computational burden and slow inference speed. This inspires us to rethink saliency detection to achieve a favorable balance between efficiency and accuracy. To this end, we design a lightweight framework while maintaining satisfying competitive accuracy. Specifically, we propose a novel trilateral decoder framework by decoupling the U-shape structure into three complementary branches, which are devised to confront the dilution of semantic context, loss of spatial structure and absence of boundary detail, respectively. Along with the fusion of three branches, the coarse segmentation results are gradually refined in structure details and boundary quality. Without adding additional learnable parameters, we further propose Scale-Adaptive Pooling Module to obtain multi-scale receptive field. In particular, on the premise of inheriting this framework, we rethink the relationship among accuracy, parameters and speed via network depth-width tradeoff. With these insightful considerations, we comprehensively design shallower and narrower models to explore the maximum potential of lightweight SOD. Our models are proposed for different application environments: 1) a tiny version CTD-S (1.7M, 125FPS) for resource constrained devices, 2) a fast version CTD-M (12.6M, 158FPS) for speed-demanding scenarios, 3) a standard version CTD-L (26.5M, 84FPS) for high-performance platforms. Extensive experiments validate the superiority of our method, which achieves better efficiency-accuracy balance across five benchmarks.

8.
Artículo en Inglés | MEDLINE | ID: mdl-37625236

RESUMEN

The carapace coloration is important for the environmental adaptation and reproductive behaviors of crustaceans. We selected red, green and white three carapace color strains of Chinese mitten crab (Eriocheir sinensis) strains. These three carapace colors have stable heritability, but the mechanism for their coloration remains unclear.Through histological observations, we have found significant differences in the composition of pigment cells and pigments within the inner membrane of the three color strains, which may be one of the reasons for the color variation. The levels of various carotenoids in both the shell and inner membrane tissues of red and green strains were significantly higher than those of the white strain, while there was no significant difference between the red and green strains. Proteomics studies have identified 2, 034 and 947 different proteins in the shell and inner membrane, respectively. In the shell, there were 18, 13 and 43 differential proteins between red and white strains, green and white strains and green and red strains, respectively. In the inner membrane, there were 44, 24 and 16 differential proteins between red and white strains, green and white strains and green and red strains, respectively. It is clear that the deposited quantity of carotenoids affects the shell formation of three color strains. Some members of the hemocyanin family showed significant variation among different strains. The study yielded two crustacyanin proteins, which were extracted from both the shell and membrane. Of the two proteins, only Crustacyanin-A1 expression showed a difference between the red and green shells strains. In conclusion, these results indicated that the carapace color formation of E. sinensis may be accomplished through pigment binding proteins (PBPs) and pigment cells, which enhance the understanding of color formation mechanism for crustacean.


Asunto(s)
Exoesqueleto , Braquiuros , Animales , Proteómica , Carotenoides , Braquiuros/genética
9.
Chemosphere ; 340: 139830, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37597625

RESUMEN

Health risks caused by widespread environmental pollutants such as nanopolystyrene (NP) and chrysene (CHR) in aquatic ecosystems have aroused considerable concern. The present study established juvenile Mandarin fish (Siniperca chuatsi) models of NP and/or CHR exposure at ambient concentrations for 21 days to systematically investigate the underlying neurotoxicity mechanisms. The results showed that single and combined exposure to NP and CHR not only reduced the density of small neuronal cells in the grey matter layer of the optic tectum, but also induced brain oxidative stress according to physiological parameters including CAT, GSH-Px, SOD, T-AOC, and MDA. The co-exposure alleviated the histopathological damage, compared to NP and CHR single exposure group. These results indicate that NP and/or CHR causes neurotoxicity in S. chuatsi, in accordance with decreased acetylcholinesterase activity and altered expression of several marker genes of nervous system functions and development including c-fos, shha, elavl3, and mbpa. Transcriptomics analysis was performed to further investigate the potential molecular mechanisms of neurotoxicity. We propose that single NP and co-exposure induced oxidative stress activates MMP, which degrades tight junction proteins according to decreased expression of claudin, JAM, caveolin and TJP, ultimately damaging the integrity of the blood-brain barrier in S. chuatsi. Remarkably, the co-exposure exacerbated the blood-brain barrier disruption. More importantly, single NP and co-exposure induced neuronal apoptosis mainly activates the expression of apoptosis-related genes through the death receptor apoptosis pathway, while CHR acted through both death receptor apoptosis and endoplasmic reticulum apoptosis pathways. Additionally, subchronic CHR exposure caused neuroinflammation, supported by activation of TNF/NF-κB and JAK-STAT signaling pathways via targeting-related genes, while the co-exposure greatly alleviated the neuroinflammation. Collectively, our findings illuminate the underlying neurotoxicity molecular mechanisms of NP and/or CHR exposure on aquatic organisms.


Asunto(s)
Acetilcolinesterasa , Crisenos , Animales , Ecosistema , Enfermedades Neuroinflamatorias , Peces , Receptores de Muerte Celular
10.
Artículo en Inglés | MEDLINE | ID: mdl-37516099

RESUMEN

Mandarin fish (Siniperca chuatsi) is a carnivorous freshwater fish and an economically important species. The digestive system (liver, stomach, intestine, pyloric caecum, esophagus, and gallbladder) is an important site for studying fish domestication. In our previous study, we found that mandarin fish undergoes adaptive changes in histological morphology and gene expression levels of the digestive system when subjected to artificial diet domestication. However, we are not clear which hub genes are highly associated with domestication. In this study, we performed WGCNA on the transcriptomes of 17 tissues and 9 developmental stages and combined differentially expressed genes analysis in the digestive system to identify the hub genes that may play important functions in the adaptation of mandarin fish to bait conversion. A total of 31,657 genes in 26 samples were classified into 23 color modules via WGCNA. The modules midnightblue, darkred, lightyellow, and darkgreen highly associated with the liver, stomach, esophagus, and gallbladder were extracted, respectively. Tan module was highly related to both intestine and pyloric caecum. The hub genes in liver were cp, vtgc, c1in, c9, lect2, and klkb1. The hub genes in stomach were ghrl, atp4a, gjb3, muc5ac, duox2, and chia2. The hub genes in esophagus were mybpc1, myl2, and tpm3. The hub genes in gallbladder were dyst, npy2r, slc13a1, and slc39a4. The hub genes in the intestine and pyloric caecum were slc15a1, cdhr5, btn3a1, anpep, slc34a2, cdhr2, and ace2. Through pathway analysis, modules highly related to the digestive system were mainly enriched in digestion and absorption, metabolism, and immune-related pathways. After domestication, the hub genes vtgc and lect2 were significantly upregulated in the liver. Chia2 was significantly downregulated in the stomach. Slc15a1, anpep, and slc34a2 were significantly upregulated in the intestine. This study identified the hub genes that may play an important role in the adaptation of the digestive system to artificial diet, which provided novel evidence and ideas for further research on the domestication of mandarin fish from molecular level.


Asunto(s)
Peces , Perciformes , Animales , Peces/genética , Perfilación de la Expresión Génica , Transcriptoma , Dieta , Hígado , Perciformes/genética
11.
Front Oncol ; 13: 1174848, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37361599

RESUMEN

Background and aim: Gastric cancer (GC) is a prevalent malignancy worldwide. Pulsatilla decoction (PD), a traditional Chinese medicine formula, can treat inflammatory bowel disease and cancers. In this study, we explored the bioactive components, potential targets, and molecular mechanisms of PD in the treatment of GC. Methods: We conducted a thorough search of online databases to gather gene data, active components, and potential target genes associated with the development of GC. Subsequently, we conducted bioinformatics analysis utilizing protein-protein interaction (PPI), network construction, and Kyoto Encyclopedia of Genes and Genomes (KEGG) to identify potential anticancer components and therapeutic targets of PD. Finally, the efficacy of PD in treating GC was further validated through in vitro experiments. Results: Network pharmacological analysis identified 346 compounds and 180 potential target genes associated with the impact of PD on GC. The inhibitory effect of PD on GC may be mediated through modulation of key targets such as PI3K, AKT, NF-κB, FOS, NFKBIA, and others. KEGG analysis showed that PD mainly exerted its effect on GC through the PI3K-AKT, IL-17, and TNF signaling pathways. Cell viability and cell cycle experiments showed that PD could significantly inhibit proliferation and kill GC cells. Moreover, PD primarily induces apoptosis in GC cells. Western blotting analysis confirmed that the PI3K-AKT, IL-17, and TNF signaling pathways are the main mechanisms by which PD exerts its cytotoxic effects on GC cells. Conclusion: We have validated the molecular mechanism and potential therapeutic targets of PD in treating GC through network pharmacological analysis, thereby demonstrating its anticancer efficacy against GC.

12.
Artículo en Inglés | MEDLINE | ID: mdl-37018243

RESUMEN

Salient Object Detection has boomed in recent years and achieved impressive performance on regular-scale targets. However, existing methods encounter performance bottlenecks in processing objects with scale variation, especially extremely large- or small-scale objects with asymmetric segmentation requirements, since they are inefficient in obtaining more comprehensive receptive fields. With this issue in mind, this paper proposes a framework named BBRF for Boosting Broader Receptive Fields, which includes a Bilateral Extreme Stripping (BES) encoder, a Dynamic Complementary Attention Module (DCAM) and a Switch-Path Decoder (SPD) with a new boosting loss under the guidance of Loop Compensation Strategy (LCS). Specifically, we rethink the characteristics of the bilateral networks, and construct a BES encoder that separates semantics and details in an extreme way so as to get the broader receptive fields and obtain the ability to perceive extreme large- or small-scale objects. Then, the bilateral features generated by the proposed BES encoder can be dynamically filtered by the newly proposed DCAM. This module interactively provides spacial-wise and channel-wise dynamic attention weights for the semantic and detail branches of our BES encoder. Furthermore, we subsequently propose a Loop Compensation Strategy to boost the scale-specific features of multiple decision paths in SPD. These decision paths form a feature loop chain, which creates mutually compensating features under the supervision of boosting loss. Experiments on five benchmark datasets demonstrate that the proposed BBRF has a great advantage to cope with scale variation and can reduce the Mean Absolute Error over 20% compared with the state-of-the-art methods.

13.
Cell Death Dis ; 13(11): 918, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36319626

RESUMEN

The Pringle maneuver (PM) is widely used during hepatocellular carcinoma (HCC) resection. However, it inevitably leads to ischemia and hypoxia, which promotes tumor metastasis. In this study, immunohistochemical staining of specimens from 130 HCC patients revealed that long-time PM significantly affected the prognosis of patients with high expression of suppressor of cytokine signaling 5 (SOCS5), but did not affect the prognosis of patients with low expression of SOCS5. The TCGA database showed that patients with high expression of SOCS5 had higher hypoxia scores, and it was proved that SOCS5 could promote the expression of hypoxia-inducible factor 1 subunit alpha (HIF-1α) protein by clinical tissue samples, cell experiments, lung metastases, and subcutaneous tumorigenesis experiments. Then, we used CoCl2 to construct a hypoxia model, and confirmed that SOCS5 knockdown resisted hypoxia-induced mitochondrial damage by inhibiting the expression of HIF-1α, thereby inhibiting the invasion and migration of HCC cells by immunofluorescence, electron microscopy, migration, invasion, and other experiments. We performed rescue experiments using LY294002 and rapamycin and confirmed that the knockdown of SOCS5-inhibited HCC cell invasion and migration by inhibiting the PI3K/Akt/mTOR/HIF-1α signaling axis. More importantly, we obtained consistent conclusions from clinical, cellular, and animal studies that the hypoxia-induced invasion and migration ability of SOCS5-inhibited HCC were weaker than that of normal HCC. In conclusion, we identified a novel role for SOCS5 in regulating HIF-1α-dependent mitochondrial damage and metastasis through the PI3K/Akt/mTOR pathway. The development of a SOCS5-specific inhibitor, an indirect inhibitor of HIF-1α, might be effective at controlling PM-induced tumor micrometastases during HCC resection.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Regulación Neoplásica de la Expresión Génica , Movimiento Celular , Línea Celular Tumoral , Serina-Treonina Quinasas TOR/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Hipoxia
14.
Mitochondrial DNA B Resour ; 7(7): 1350-1351, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35911471

RESUMEN

We report the complete mitochondrial genome of Cuora mccordi. The complete genome is a closed circular molecule of 16,551 bp, with an overall base composition of 34.06% for A, 26.73% for T, 12.84% for G, and 26.37% for C. The A + T content is 60.79%. The full length consists of 13 protein-coding genes, 22 tRNA genes, two rRNA genes, and one control region (D-loop). Phylogenetic analysis results showed that the mitogenome of Cuora mccordi was the closest to Cuora pani. The complete mitochondrial genome of Cuora mccordi (GenBank accession number: OM327796) can aid in understanding evolutionary relationships within Cuora.

15.
J Oncol ; 2022: 8326940, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35874635

RESUMEN

Aims: As one of the most prevalent malignant diseases in the world, the mechanisms of metastasis in colon cancer are poorly understood. The aim of this study was to investigate the role of the HGF/c-MET axis in the proliferation and metastasis in colon cancer. Methods: The effect of MACC1 on cell proliferation and metastasis was analyzed through a series of in vitro experiments. The role of MACC1 in cancer cells was demonstrated by overexpression and silencing of MACC1 in gain or loss function experiments. To investigate the relationship between MACC1 and c-MET/HGF, we detected c-MET protein expression by disrupting with or overexpressing MACC1. The bioinformatics analysis was used to investigate the correlation between MACC1 and c-MET, and the c-MET expression after the interference of HGF with MACC1 was determined. Subsequently, the function of c-MET was verified in colon cancer cells by a series of experiments. The mouse tumor transplantation model experiment is most suitable in vivo. Results: The results indicated that the overexpression of MACC1 could accelerate proliferation and facilitate metastasis in colon cancer cell lines. Furthermore, c-MET was determined to be the downstream regulator of MACC1. The addition of HGF could stimulate the expression of MACC1. With further exploration, we proved that c-MET is downstream of MACC1 in colon cancer and that overexpression of c-MET in colon cancer enhances cell proliferation and migration capability. At last, MACC1 expression level negatively correlates with the infiltration levels and several immune checkpoint biomarkers. High MACC1 expression has a lower response rate with ICIs in COAD. Conclusions: We found that, under the regulation of the MACC1/HGF/c-MET axis, the proliferation and metastasis of colorectal cancer are increased by MACC1, which can be a novel biomarker for predicting ICIs response in colorectal cancer. Our findings provide a new idea for the targeted treatment of colorectal cancer.

16.
Pancreas ; 51(4): 388-393, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35695791

RESUMEN

OBJECTIVES: We sought to evaluate whether combining body mass index (BMI) and fasting blood glucose (FBG) can refine the predictive value of new-onset prediabetes/diabetes after acute pancreatitis (NODAP). METHODS: In this retrospective cohort study, we used Kaplan-Meier analysis to compare differences in the NODAP rate among 492 patients with different BMI or FBG levels, or with the combination of these 2 factors mentioned above. RESULTS: In all, 153 of 492 (31.1%) eligible patients finally developed NODAP. According to univariate and multivariate analyses, BMI (hazard ratio, 2.075; 95% confidence interval, 1.408-3.060; P < 0.001) and FBG (hazard ratio, 2.544; 95% confidence interval, 1.748-3.710; P < 0.001) were important predictors of the incidence of NODAP. Subsequently, we divided 492 eligible patients into 3 groups according to the median BMI and FBG values, and found that the NODAP rate in the high-risk group was significantly higher than that in the medium-risk group ( P = 0.018) or the low-risk group ( P < 0.001). CONCLUSIONS: Body mass index and FBG are independent predictors of NODAP. The combination of BMI and FBG can refine the prediction of NODAP and identify candidates for clinical prevention.


Asunto(s)
Diabetes Mellitus , Pancreatitis , Estado Prediabético , Enfermedad Aguda , Glucemia/análisis , Índice de Masa Corporal , Diabetes Mellitus/diagnóstico , Diabetes Mellitus/epidemiología , Ayuno , Humanos , Pancreatitis/diagnóstico , Estado Prediabético/diagnóstico , Estudios Retrospectivos
17.
Front Oncol ; 11: 731993, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34760694

RESUMEN

Alternative splicing (AS) event is a novel biomarker of tumor tumorigenesis and progression. However, the comprehensive analysis of hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC) is lacking. Differentially expressed analysis was used to identify the differentially expressed alternative splicing (DEAS) events between HCC or ICC tissues and their normal tissues. The correlation between DEAS events and functional analyses or immune features was evaluated. The cluster analysis based on DEAS can accurately reflect the differences in the immune microenvironment between HCC and ICC. Forty-five immune checkpoints and 23 immune features were considered statistically significant in HCC, while only seven immune checkpoints and one immune feature in ICC. Then, the prognostic value of DEAS events was studied, and two transcripts with different basic cell functions (proliferation, cell cycle, invasion, and migration) were produced by ADHFE1 through alternative splicing. Moreover, four nomograms were established in conjunction with relevant clinicopathological factors. Finally, we found two most significant splicing factors and further showed their protein crystal structure. The joint analysis of the AS events in HCC and ICC revealed novel insights into immune features and clinical prognosis, which might provide positive implications in HCC and ICC treatment.

18.
IEEE Trans Image Process ; 30: 9470-9481, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34780327

RESUMEN

Fine-grained visual recognition is to classify objects with visually similar appearances into subcategories, which has made great progress with the development of deep CNNs. However, handling subtle differences between different subcategories still remains a challenge. In this paper, we propose to solve this issue in one unified framework from two aspects, i.e., constructing feature-level interrelationships, and capturing part-level discriminative features. This framework, namely PArt-guided Relational Transformers (PART), is proposed to learn the discriminative part features with an automatic part discovery module, and to explore the intrinsic correlations with a feature transformation module by adapting the Transformer models from the field of natural language processing. The part discovery module efficiently discovers the discriminative regions which are highly-corresponded to the gradient descent procedure. Then the second feature transformation module builds correlations within the global embedding and multiple part embedding, enhancing spatial interactions among semantic pixels. Moreover, our proposed approach does not rely on additional part branches in the inference time and reaches state-of-the-art performance on 3 widely-used fine-grained object recognition benchmarks. Experimental results and explainable visualizations demonstrate the effectiveness of our proposed approach.

19.
IEEE Trans Image Process ; 30: 7717-7731, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34478368

RESUMEN

Conventional RGB-D salient object detection methods aim to leverage depth as complementary information to find the salient regions in both modalities. However, the salient object detection results heavily rely on the quality of captured depth data which sometimes are unavailable. In this work, we make the first attempt to solve the RGB-D salient object detection problem with a novel depth-awareness framework. This framework only relies on RGB data in the testing phase, utilizing captured depth data as supervision for representation learning. To construct our framework as well as achieving accurate salient detection results, we propose a Ubiquitous Target Awareness (UTA) network to solve three important challenges in RGB-D SOD task: 1) a depth awareness module to excavate depth information and to mine ambiguous regions via adaptive depth-error weights, 2) a spatial-aware cross-modal interaction and a channel-aware cross-level interaction, exploiting the low-level boundary cues and amplifying high-level salient channels, and 3) a gated multi-scale predictor module to perceive the object saliency in different contextual scales. Besides its high performance, our proposed UTA network is depth-free for inference and runs in real-time with 43 FPS. Experimental evidence demonstrates that our proposed network not only surpasses the state-of-the-art methods on five public RGB-D SOD benchmarks by a large margin, but also verifies its extensibility on five public RGB SOD benchmarks.

20.
J Fish Biol ; 99(5): 1755-1760, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34310718

RESUMEN

The mandarin fish (Siniperca chuatsi) DNA methyltransferase gene 1 (dnmt1) was highly expressed in the mesonephros, head kidney and gonad, whereas dnmt2 was expressed in most tissues. dnmt3a was highly expressed in the brain and spleen, but dnmt3b was mainly expressed in the brain and head kidney. The genes dnmt1 and dnmt2 were highly expressed in the early stages of embryonic development, and dnmt3a and dnmt3b were expressed later. These genes also showed certain changes after artificial diet acclimation, salinity adaptation and immune stress.


Asunto(s)
Perciformes , Animales , ADN , Perfilación de la Expresión Génica , Metiltransferasas , Perciformes/genética , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...