Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
J Nutr Biochem ; 126: 109584, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38242178

RESUMEN

Hyperlipidemia (HLP) is a prevalent metabolic disorder and a significant risk factor for cardiovascular disease. According to recent discoveries, super-enhancers (SEs) play a role in the increased expression of genes that encode important regulators of both cellular identity and the progression of diseases. However, the underlying function of SEs in the development of HLP is still unknown. We performed an integrative analysis of data on H3K27ac ChIP-seq and RNA sequencing obtained from liver tissues of mice under a low-fat diet (LFD) and high-fat diet (HFD) from GEO database. The rank ordering of super enhancers algorithm was employed for the computation and identification of SEs. A total of 1,877 and 1,847 SEs were identified in the LFD and HFD groups, respectively. The SE inhibitor JQ1 was able to potently reverse lipid deposition and the increased intracellular triglyceride and total cholesterol induced by oleic acid, indicating that SEs are involved in regulating lipid accumulation. Two hundred seventy-eight were considered as HFD-specific SEs (HSEs). GO and KEGG pathway enrichment analysis of the upregulated HSEs-associated genes revealed that they were mainly involved in lipid metabolic pathway. Four hub genes, namely Cd36, Pex11a, Ech1, and Cidec, were identified in the HSEs-associated protein-protein interaction network, and validated with two other datasets. Finally, we constructed a HSEs-specific regulatory network with Cidec and Cd36 as the core through the prediction and verification of transcription factors. Our study constructed a HSEs-associated regulatory network in the pathogenesis of HLP, providing new ideas for the underlying mechanisms and therapeutic targets of HLP.


Asunto(s)
Hiperlipidemias , Ratones , Animales , Hiperlipidemias/genética , Dieta Alta en Grasa/efectos adversos , Hígado/metabolismo , Triglicéridos/metabolismo , Factores de Transcripción/metabolismo
3.
Small ; 20(21): e2310330, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38185740

RESUMEN

Biological systems perceive and respond to mechanical forces, generating mechanical cues to regulate life processes. Analyzing biomechanical forces has profound significance for understanding biological functions. Therefore, a series of molecular mechanical techniques have been developed, mainly including single-molecule force spectroscopy, traction force microscopy, and molecular tension sensor systems, which provide indispensable tools for advancing the field of mechanobiology. DNA molecules with a programmable structure and well-defined mechanical characteristics have attached much attention to molecular tension sensors as sensing elements, and are designed for the study of biomechanical forces to present biomechanical information with high sensitivity and resolution. In this work, a comprehensive overview of molecular mechanical technology is presented, with a particular focus on molecular tension sensor systems, specifically those based on DNA. Finally, the future development and challenges of DNA-based molecular tension sensor systems are looked upon.


Asunto(s)
Técnicas Biosensibles , ADN , ADN/química , Fenómenos Biomecánicos , Técnicas Biosensibles/métodos , Microscopía de Fuerza Atómica
4.
Chemphyschem ; 25(1): e202300647, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-37840017

RESUMEN

The hardness of metal-organic frameworks (MOFs) is an important mechanical property metric measuring their resistance to the permanent plastic deformation. The hardness of most MOFs measured from nanoindentation experiments usually exhibits the similar unique indentation depth dependence feature, the mechanism of which still remains unclear. In order to explain the effect of the indentation depth on the hardness of MOFs, we conducted nanoindentation simulations on HKUST-1 by using reactive molecular dynamics simulations. Our simulations reveal that the HKUST-1 material near the indenter can transform from the parent crystalline phase to a new amorphous phase due to the high pressure generated, while its counterpart far from the indenter remains in the crystalline phase. By considering the crystalline-amorphous interface in the energy analysis of MOFs, we derived an analytical expression of the hardness at different indentation depths. It is found that the interface effect can greatly increase the hardness of MOFs, as observed in nanoindentation simulations. Moreover, the proposed analytical expression can well explain the indentation depth-dependent hardness of many MOF crystals measured in nanoindentation experiments. Overall, this work can provide a better understanding of the indentation depth dependence of the hardness of MOFs.

5.
ACS Appl Mater Interfaces ; 15(47): 54692-54701, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-37972999

RESUMEN

The compressive properties of metal-organic framework (MOF) crystals are not only crucial for their densification process but also key in determining their performance in many applications. We herein investigated the mechanical responses of a classic crystalline MOF, HKUST-1, using in situ compression tests. A serrated flow accompanied by the unique strain avalanches was found in individual and contacting crystals before their final flattening or fracture with splitting cracks. The plastic flow with serrations is ascribed to the dynamic phase mixing due to the progressive and irreversible local phase transition in HKUST-1 crystals, as revealed by molecular dynamics and finite element simulations. Such pressure-induced phase coexistence in HKUST-1 crystals also induces a significant loading-history dependence of their Young's modulus. The observation of plastic avalanches in HKUST-1 crystals here not only expands our current understanding of the plasticity of MOF crystals but also unveils a novel mechanism for the avalanches and plastic flow in crystal plasticity.

6.
Antonie Van Leeuwenhoek ; 116(12): 1407-1419, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37847451

RESUMEN

A novel Streptomyces strain, designated 3_2T, was isolated from soil under the black Gobi rock sample of Northwest China. The taxonomic position of this strain was revealed by a polyphasic approach. Comparative analysis of the 16S rRNA gene sequences indicated that 3_2T was closely related to the members of the genus Streptomyces, with the highest similarity to Streptomyces rimosus subsp. rimosus CGMCC 4.1438 (99.17%), Streptomyces sioyaensis DSM 40032 (98.97%). Strain 3_2T can grow in media up to 13% NaCl. The genomic DNA G + C content of strain 3_2T was 69.9%. We obtained the genomes of 22 Streptomyces strains similar to strain 3_2T, compared the average nucleotide similarity, dDDH and average amino acid identity, and found that the genomic similarity of the new isolate 3_2T to all strains was below the threshold for interspecies classification. Chemotaxonomic data revealed that strain 3_2T possessed MK-9 (H6) and MK-9 (H8) as the major menaquinones. The cell wall contained LL-diaminopimelic acid (LL-DAP) and the whole-cell sugars were ribose and glucose. The major fatty acid methyl esters were iso-C16:0 (23.6%) and anteiso-C15:0 (10.4%). The fermentation products of strain 3_2T were inhibitory to Staphylococcus aureus and Bacillus thuringiensi. The genome of 3_2T was further predicted using anti-smash and the strain was found to encode the production of 41 secondary metabolites, and these gene clusters may be key to the good inhibitory activity exhibited by the strain. Genomic analysis revealed that strain 3_2T can encode genes that produce a variety of genes in response to environmental stresses, including cold shock, detoxification, heat shock, osmotic stress, oxidative stress, and these genes may play a key role in the harsh environment in which the strain can survive. Therefore, this strain represents a novel Streptomyces species, for which the name Streptomyces halobius sp. nov. is proposed. The type strain is 3_2T (= JCM 34935T = GDMCC 4.217T).


Asunto(s)
Antiinfecciosos , Streptomyces , ARN Ribosómico 16S/genética , Suelo , Ácidos Grasos/análisis , Genómica , Análisis de Secuencia de ADN , Filogenia , ADN Bacteriano/genética , Fosfolípidos/análisis , Técnicas de Tipificación Bacteriana
7.
Int J Mol Sci ; 24(19)2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37834111

RESUMEN

Lung adenocarcinoma (LUAD) is a prevalent type of thoracic cancer with a poor prognosis and high mortality rate. However, the exact pathogenesis of this cancer is still not fully understood. One potential factor that can contribute to the development of lung adenocarcinoma is DNA methylation, which can cause changes in chromosome structure and potentially lead to the formation of tumors. The baculoviral IAP repeat containing the 5 (BIRC5) gene encodes the Survivin protein, which is a multifunctional gene involved in cell proliferation, migration, and invasion of tumor cells. This gene is elevated in various solid tumors, but its specific role and mechanism in lung adenocarcinoma are not well-known. To identify the potential biomarkers associated with lung adenocarcinoma, we screened the methylation-regulated differentially expressed genes (MeDEGs) of LUAD via bioinformatics analysis. Gene ontology (GO) process and the Kyoto Encyclopedia of Genes and Genomes (KEGG) were applied to investigate the biological function and pathway of MeDEGs. A protein-protein interaction (PPI) network was employed to explore the key module and screen hub genes. We screened out eight hub genes whose products are aberrantly expressed, and whose DNA methylation modification level is significantly changed in lung adenocarcinoma. BIRC5 is a bona fide marker which was remarkably up-regulated in tumor tissues. Flow cytometry analysis, lactate dehydrogenase release (LDH) assay and Micro-PET imaging were performed in A549 cells and a mouse xenograft tumor to explore the function of BIRC5 in cell death of lung adenocarcinoma. We found that BIRC5 was up-regulated and related to a high mortality rate in lung adenocarcinoma patients. Mechanically, the knockdown of BIRC5 inhibited the proliferation of A549 cells and induced pyroptosis via caspase3/GSDME signaling. Our findings have unraveled that BIRC5 holds promise as a novel biomarker and therapeutic target for lung adenocarcinoma. Additionally, we have discovered a novel pathway in which BIRC5 inhibition can induce pyroptosis through the caspase3-GSDME pathway in lung adenocarcinoma cells.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Humanos , Animales , Ratones , Piroptosis , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/metabolismo , Mapas de Interacción de Proteínas/genética , Transducción de Señal , Neoplasias Pulmonares/metabolismo , Regulación Neoplásica de la Expresión Génica , Survivin/genética , Survivin/metabolismo
8.
J Phys Chem Lett ; 14(42): 9464-9471, 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37830915

RESUMEN

The loading rate dependence of the mechanical properties of metal-organic framework (MOF) crystals is key in determining their performance in many engineering applications, which, however, remains almost unexplored. Here, in situ nanoindentation experiments were conducted to investigate the impact of loading rate on mechanical properties of HKUST-1, a classic MOF. The Young's modulus and hardness of crystalline HKUST-1 are found to stay stable or decline with decreasing loading rate by creeping when the loading rate is below a particular speed, but they significantly decrease as the loading rate grows when it has higher magnitudes. Our molecular dynamics simulations indicate that the anomalous loading rate dependence of mechanical properties is attributed to the competition between the release and transfer of latent heat from the pressure-induced amorphous HKUST-1 because the increase in local temperature at large loading rates could induce the softening of HKUST-1 and the increase in the volume of transformed materials.

9.
Entropy (Basel) ; 25(9)2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37761593

RESUMEN

Implicit discourse relation recognition (IDRR) has long been considered a challenging problem in shallow discourse parsing. The absence of connectives makes such relations implicit and requires much more effort to understand the semantics of the text. Thus, it is important to preserve the semantic completeness before any attempt to predict the discourse relation. However, word level embedding, widely used in existing works, may lead to a loss of semantics by splitting some phrases that should be treated as complete semantic units. In this article, we proposed three methods to segment a sentence into complete semantic units: a corpus-based method to serve as the baseline, a constituent parsing tree-based method, and a dependency parsing tree-based method to provide a more flexible and automatic way to divide the sentence. The segmented sentence will then be embedded at the level of semantic units so the embeddings could be fed into the IDRR networks and play the same role as word embeddings. We implemented our methods into one of the recent IDRR models to compare the performance with the original version using word level embeddings. Results show that proper embedding level better conserves the semantic information in the sentence and helps to enhance the performance of IDRR models.

10.
Nat Commun ; 14(1): 1827, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-37005419

RESUMEN

Several groups of bacteria have complex life cycles involving cellular differentiation and multicellular structures. For example, actinobacteria of the genus Streptomyces form multicellular vegetative hyphae, aerial hyphae, and spores. However, similar life cycles have not yet been described for archaea. Here, we show that several haloarchaea of the family Halobacteriaceae display a life cycle resembling that of Streptomyces bacteria. Strain YIM 93972 (isolated from a salt marsh) undergoes cellular differentiation into mycelia and spores. Other closely related strains are also able to form mycelia, and comparative genomic analyses point to gene signatures (apparent gain or loss of certain genes) that are shared by members of this clade within the Halobacteriaceae. Genomic, transcriptomic and proteomic analyses of non-differentiating mutants suggest that a Cdc48-family ATPase might be involved in cellular differentiation in strain YIM 93972. Additionally, a gene encoding a putative oligopeptide transporter from YIM 93972 can restore the ability to form hyphae in a Streptomyces coelicolor mutant that carries a deletion in a homologous gene cluster (bldKA-bldKE), suggesting functional equivalence. We propose strain YIM 93972 as representative of a new species in a new genus within the family Halobacteriaceae, for which the name Actinoarchaeum halophilum gen. nov., sp. nov. is herewith proposed. Our demonstration of a complex life cycle in a group of haloarchaea adds a new dimension to our understanding of the biological diversity and environmental adaptation of archaea.


Asunto(s)
Halobacteriaceae , Streptomyces , Hifa/genética , Proteómica , Filogenia , ARN Ribosómico 16S/genética , Streptomyces/genética , Halobacteriaceae/genética , Esporas , Diferenciación Celular , Análisis de Secuencia de ADN , China
11.
Neural Regen Res ; 18(9): 1968-1975, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36926721

RESUMEN

Patients with age-related hearing loss face hearing difficulties in daily life. The causes of age-related hearing loss are complex and include changes in peripheral hearing, central processing, and cognitive-related abilities. Furthermore, the factors by which aging relates to hearing loss via changes in auditory processing ability are still unclear. In this cross-sectional study, we evaluated 27 older adults (over 60 years old) with age-related hearing loss, 21 older adults (over 60 years old) with normal hearing, and 30 younger subjects (18-30 years old) with normal hearing. We used the outcome of the upper-threshold test, including the time-compressed threshold and the speech recognition threshold in noisy conditions, as a behavioral indicator of auditory processing ability. We also used electroencephalography to identify presbycusis-related abnormalities in the brain while the participants were in a spontaneous resting state. The time-compressed threshold and speech recognition threshold data indicated significant differences among the groups. In patients with age-related hearing loss, information masking (babble noise) had a greater effect than energy masking (speech-shaped noise) on processing difficulties. In terms of resting-state electroencephalography signals, we observed enhanced frontal lobe (Brodmann's area, BA11) activation in the older adults with normal hearing compared with the younger participants with normal hearing, and greater activation in the parietal (BA7) and occipital (BA19) lobes in the individuals with age-related hearing loss compared with the younger adults. Our functional connection analysis suggested that compared with younger people, the older adults with normal hearing exhibited enhanced connections among networks, including the default mode network, sensorimotor network, cingulo-opercular network, occipital network, and frontoparietal network. These results suggest that both normal aging and the development of age-related hearing loss have a negative effect on advanced auditory processing capabilities and that hearing loss accelerates the decline in speech comprehension, especially in speech competition situations. Older adults with normal hearing may have increased compensatory attentional resource recruitment represented by the top-down active listening mechanism, while those with age-related hearing loss exhibit decompensation of network connections involving multisensory integration.

12.
Microb Cell Fact ; 22(1): 5, 2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36609255

RESUMEN

BACKGROUND: New antibiotics are urgently needed in clinical treatment of superdrug-resistant bacteria. Nonribosomal peptides (NRPs) are a major source of antibiotics because they exhibit structural diversity, and unique antibacterial mechanisms and resistance. Analysis of gene clusters of S. agglomeratus 5-1-3 showed that Clusters 3, 6, 12, 21, and 28 were used to synthesize NRPs. Here, we examined secondary metabolites of S. agglomeratus 5-1-3 isolated from soils in the Qinghai-Tibet Plateau, China, for NRPs with antibacterial activity. RESULTS: We isolated a total of 36 Streptomyces strains with distinct colony morphological characteristics from 7 soil samples. We screened 8 Streptomyces strains resistant to methicillin-resistant Staphylococcus aureus (MRSA). We then selected S. agglomeratus 5-1-3 for further study based on results of an antibacterial activity test. Here, we isolated three compounds from S. agglomeratus 5-1-3 and characterized their properties. The crude extract was extracted with ethyl acetate and purified with column chromatography and semipreparative high-performance liquid chromatography (HPLC). We characterized the three compounds using NMR analyses as echinomycin (1), 5,7,4'-trihydroxy-3.3',5'-trimethoxy flavone (2), and 2,6,2', 6'-tetramethoxy-4,4-bis(2,3-epoxy-1-hydroxypropyl)-biphenyl (3). We tested the antibacterial activity of pure compounds from strain 5-1-3 with the Oxford cup method. NRP echinomycin (1) showed excellent anti-MRSA activity with a minimum inhibitory concentration (MIC) of 2.0 µg/mL. Meanwhile, MIC of compound 2 and 3 was 128.0 µg/mL for both. In addition, 203 mg of echinomycin was isolated from 10 L of the crude extract broth of strain 5-1-3. CONCLUSION: In this study, S. agglomeratus 5-1-3 with strong resistance to MRSA was isolated from the soils in the Qinghai-Tibet Plateau. Strain 5-1-3 had a high yield of echinomycin (1) an NRP with a MIC of 2 µg/mL against MRSA. We propose that echinomycin derived from S. agglomeratus 5-1-3 may be a potent antibacterial agent for pharmaceutical use.


Asunto(s)
Equinomicina , Staphylococcus aureus Resistente a Meticilina , Streptomyces , Tibet , Antibacterianos/química , Streptomyces/química , Pruebas de Sensibilidad Microbiana , Mezclas Complejas , Suelo
13.
Protein Pept Lett ; 30(2): 154-161, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36503386

RESUMEN

BACKGROUND: Cytoskeletal elements play key roles in cell morphology, cell division, cell mobility, and DNA partitioning in all domains of life. The IF-like protein FilP was discovered in Streptomyces coelicolor, and it was found to perform a structurally important cytoskeletal role by providing direct mechanical support for the cells. OBJECTIVE: This work investigated the factors influencing FilP polymerization under a variety of conditions. METHODS: DLS technique was applied to real-time monitor the in vitro assembly process of Streptomyces coelicolor FilP. RESULTS: The presence of small amounts of divalent cations, such as CaCl2 or MgCl2, enhanced the polymerization of FilP, while higher amounts suppressed its polymerization. Moreover, high concentrations of NaCl, KCl, NH4Cl, and KNO3 both suppressed the polymerization of FilP. EDTA was found to have a very prohibitive effect on FilP polymerization, and even the following addition of Ca2+ could not initiate the assembly of FilP. FilP polymerized under a range of pHs ranging from pH 6 to pH 8, while the polymerization degree was sensitive to pH. FilP formed network-like, striated filaments at neutral pH, while the filaments became more disordered or loosely packed at pH 8 and pH 6, respectively. CONCLUSION: FilP assembly is calcium-mediated. Ca2+ is not only required for FilP polymerization, but also required for FilP to maintain the higher-order polymer structure. The accelerative effect of Ca2+ and the suppressive effect of Na+ persisted under a wide range of conditions, suggesting that FilP might use calcium and sodium ions as a general mechanism to mediate its polymerization process.


Asunto(s)
Filamentos Intermedios , Streptomyces coelicolor , Filamentos Intermedios/metabolismo , Calcio/metabolismo , Sodio/metabolismo , Proteínas Bacterianas/química , Citoesqueleto/metabolismo , Streptomyces coelicolor/genética , Streptomyces coelicolor/metabolismo
14.
Arch Microbiol ; 204(9): 588, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-36048304

RESUMEN

Pseudarthrobacter sulfonivorans strain Ar51 can degrade crude oil and multi-substituted benzene compounds efficiently at low temperatures. However, it cannot degrade hydroquinone, which is a key intermediate in the degradation of several other compounds of environmental importance, such as 4-nitrophenol, g-hexachlorocyclohexane, 4-hydroxyacetophenone and 4-aminophenol. Here we co-expressed the two subunits of hydroquinone dioxygenase from Sphingomonas sp. strain TTNP3 with different promoters in the strain Ar51. The strain with 2 hdnO promoters exhibited the strongest hydroquinone catabolic activity. However, in the absence of antibiotic selection this ability to degrade hydroquinone was lost due to plasmid instability. Consequently, we constructed a hisD knockout strain, which was unable to synthesise histidine. By introducing the hisD gene onto the plasmid, the ability to degrade hydroquinone in the absence of antibiotic selection was stabilised. In addition, to make the strain more stable for industrial applications, we knocked out the recA gene and integrated the hydroquinone dioxygenase genes at this chromosomal locus. This strain exhibited the strongest activity in catabolizing hydroquinone, up to 470 mg/L in 16 h without antibiotic selection. In addition, this activity was shown to be stable when the strain has cultured in medium without antibiotic selection after 20 passages.


Asunto(s)
Dioxigenasas , Sphingomonas , Antibacterianos/metabolismo , Biodegradación Ambiental , Dioxigenasas/genética , Dioxigenasas/metabolismo , Hidroquinonas/metabolismo , Micrococcaceae , Sphingomonas/genética , Sphingomonas/metabolismo
15.
Cell Death Discov ; 8(1): 399, 2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-36163116

RESUMEN

Ischemia-reperfusion (I/R), a leading risk factor of acute kidney injury (AKI), is associated with high mortality and risk of progression to chronic kidney disease. However, the molecular mechanism of I/R-AKI remains not fully understood, which hinders its efficient clinical treatment. In this study, we observed that LIGHT deficiency remarkably attenuated I/R-AKI, as evidenced by rescued renal function, ameliorated tubular cell apoptosis, and alleviated inflammatory responses. Consistently, blocking LIGHT signaling with its soluble receptor fusion proteins (HVEM-IgG-Fc or LTßR-IgG-Fc) improved I/R renal dysfunction. RNA-sequencing and corresponding results indicated that LIGHT promoted oxidative stress and inflammation triggered by ischemic injury. Moreover, LIGHT signaling augmented ischemic stress-induced mitochondrial dysfunction characterized by an imbalance in mitochondrial fission and fusion, decreased mtDNA copies, impaired mitophagy, and increased mitochondrial membrane potential (ΔΨm). Mechanistically, LIGHT promoted mitochondrial fission by enhancing Drp1 phosphorylation (Ser616) and its translocation to the mitochondria. In conclusion, these results suggest that LIGHT-HVEM/LTßR signaling is critical for the I/R-AKI pathogenesis and it is further confirmed to be related to the increase in I/R-induced oxidative stress and mitochondria dysfunction, which may be the underlying mechanism of LIGHT signaling-mediated I/R-AKI.

16.
Med Sci Monit ; 28: e937112, 2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-35999775

RESUMEN

BACKGROUND To investigate the incidence, risk factors, pathogen distribution, and drug resistance patterns in continuous ambulatory peritoneal dialysis-associated peritonitis (CAPDP). MATERIAL AND METHODS Clinical data for 248 patients who underwent continuous ambulatory peritoneal dialysis (CAPD) treatment in a single center in China from March 2018 to January 2021 were retrospectively collected. The patients were divided into the CAPDP group (n=40) and the non-CAPDP group (n=208) according to whether peritonitis occurred. The incidence rate, risk factors, bacterial distribution, and drug sensitivity of CAPDP were analyzed. RESULTS The incidence of CAPDP was 16.13%, and 87.5% of patients with CAPDP continued CAPDP treatment after anti-infection treatment. Patients with and without CAPDP were clearly distinguished, on the basis of their clinical characteristics, by using principal component analysis (PCA) methods. Logistic regression analysis found that body mass index (BMI; P=0.0095), albumin (P=0.016), albumin/globulin ratio (P=0.018), C-reactive protein (P=0.0001), and rapid transport (P=0.034) were independent risk factors for CAPDP. The main pathogens causing the CAPDP were Staphylococcus epidermidis (50.00%), Staphylococcus capitis (13.33%), and Escherichia coli (10.00%). Among the pathogenic bacteria, the main drugs to which gram-negative cocci were sensitive were imipenem, meropenem, piperacillin/tazobactam, cefoperazone/sulbactam, ceftazidime, and tigecycline. The main drugs to which gram-positive cocci were sensitive were vancomycin, teicoplanin, and linezolid. The drug resistance rate of pathogenic bacteria to penicillin G, ampicillin, compound trimethoprim, cefepime, ceftriaxone, and amoxicillin-clavulanic acid drugs was 36.26-100%. CONCLUSIONS BMI, albumin, albumin/globulin ratio, C-reactive protein, and rapid transport are independent risk factors for CAPDP. Gram-positive bacteria are the main pathogens of CAPDP and are sensitive to vancomycin, teicoplanin, and linezolid.


Asunto(s)
Globulinas , Diálisis Peritoneal Ambulatoria Continua , Peritonitis , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Bacterias , Proteína C-Reactiva , Farmacorresistencia Bacteriana , Humanos , Linezolid , Pruebas de Sensibilidad Microbiana , Diálisis Peritoneal Ambulatoria Continua/efectos adversos , Peritonitis/tratamiento farmacológico , Estudios Retrospectivos , Factores de Riesgo , Teicoplanina , Vancomicina
17.
Nucleic Acids Res ; 50(12): 7084-7096, 2022 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-35699212

RESUMEN

We report the discovery and functional characterization of a new bacterial tRNA species. The tRNA-Asp-AUC, from a fast-growing desert streptomycete, decodes GAU codons. In the absence of queuosine tRNA anticodon modification in streptomycetes, the new tRNA circumvents inefficient wobble base-pairing during translation. The tRNA, which is constitutively expressed, greatly enhances synthesis of 4 different antibiotics in the model mesophilic species Streptomyces coelicolor, including the product of a so-called cryptic pathway, and increases yields of medically-important antibiotics in other species. This can be rationalised due to increased expression of both pleiotropic and pathway-specific transcriptional activators of antibiotic biosynthesis whose genes generally possess one or more GAT codons; the frequency of this codon in these gene sets is significantly higher than the average for streptomycete genes. In addition, the tRNA enhances production of cobalamin, a precursor of S-adenosyl methionine, itself an essential cofactor for synthesis of many antibiotics. The results establish a new paradigm of inefficient wobble base-pairing involving GAU codons as an evolved strategy to regulate gene expression and, in particular, antibiotic biosynthesis. Circumventing this by expression of the new cognate tRNA offers a generic strategy to increase antibiotic yields and to expand the repertoire of much-needed new bioactive metabolites produced by these valuable bacteria.


Asunto(s)
Streptomyces , Streptomyces/genética , Antibacterianos , ARN de Transferencia/genética
18.
Appl Bionics Biomech ; 2022: 8382247, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35592868

RESUMEN

Based on consumer survey data in the post-pandemic era of COVID-19, a binary Logit model was used to analyze the consumers' consumption behavior and the influencing factors of ecological agricultural products in the post-pandemic era. The results showed that: family size, average annual household income, gender, and education level would not affect the consumers' behavior in purchasing ecological agricultural products after the pandemic; age and whether consumers have purchased agricultural products before had a significant negative impact on consumption behavior; the degree of consumers' skepticism about agricultural products in the market after the pandemic had a significant positive impact on their purchase behavior. According to the analysis results, it is proposed that: we should vigorously develop the connection between agricultural socialized service industry and large supermarkets, improve the online and offline sales model of ecological agricultural products, establish an ecological agricultural product service platform, and enhance the scientific and technological researches and their application to ecological agricultural products.

19.
Artículo en Inglés | MEDLINE | ID: mdl-34831514

RESUMEN

The application of traceability technology is an important way to solve food safety problems. Different traceability technologies bring different effects to consumers. Existing studies have not explored consumers' preferences in regards to product traceability technology applications, and they have not analyzed their willingness to pay. Therefore, this study focused on organic rice, an ecological agricultural product. The study was based on a survey from Jiangxi Province, China. It used a selective experiment method in order to analyze consumer preferences and the willingness to pay for ecological agricultural product traceability technology. The results show that consumer preferences are as follows: blockchain technology application attributes, traditional traceability-technology-application attributes, high credit-supervision attributes, and international-certification attributes. In terms of willingness to pay, consumers have the highest willingness to pay for the application of blockchain technology, which they are willing to pay CNY 21.902 more per kg for this attribute. At the same time, consumers are also willing to make additional payments for traditional traceability-technology-application attributes, high credit-supervision attributes, and international-certification attributes. Their willingness to pay is CNY 20.426, CNY 17.115 yuan, and CNY 11.049, respectively.


Asunto(s)
Cadena de Bloques , Comportamiento del Consumidor , Agricultura , Inocuidad de los Alimentos , Tecnología
20.
PLoS One ; 16(7): e0253845, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34310612

RESUMEN

The Economic Fitness Index describes industrial completeness and comprehensively reflects product diversification with competitiveness and product complexity in production globalization. The Fitness-Complexity Algorithm offers a scientific approach to predicting GDP and obtains fruitful results. As a recursion algorithm, the non-linear iteration processes give novel insights into product complexity and country fitness without noise data. However, the Country-Product Matrix and Revealed Comparative Advantage data have abnormal noises which contradict the relative stability of product diversity and the transformation of global production. The data noise entering the iteration algorithm, combined with positively related Fitness and Complexity, will be amplified in each recursion step. We introduce the Shortest Duration Constrained Hidden Markov Model (SDC-HMM) to denoise the Country-Product Matrix for the first time. After the country-product matrix test, the country case test, the noise estimation test and the panel regression test of national economic fitness indicators to predict GDP growth, we show that the SDC-HMM could reduce abnormal noise by about 25% and identify change points. This article provides intra-sample predictions that theoretically confirm that the SDC-HMM can improve the effectiveness of economic fitness indicators in interpreting economic growth.


Asunto(s)
Industrias/estadística & datos numéricos , Internacionalidad , Cadenas de Markov , Algoritmos , Predicción , Humanos , Industrias/economía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...