Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Pharmacol ; 15: 1354806, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38601461

RESUMEN

Lung injury leads to respiratory dysfunction, low quality of life, and even life-threatening conditions. Circular RNAs (circRNAs) are endogenous RNAs produced by selective RNA splicing. Studies have reported their involvement in the progression of lung injury. Understanding the roles of circRNAs in lung injury may aid in elucidating the underlying mechanisms and provide new therapeutic targets. Thus, in this review, we aimed to summarize and discuss the characteristics and biological functions of circRNAs, and their roles in lung injury from existing research, to provide a theoretical basis for the use of circRNAs as a diagnostic and therapeutic target for lung injury.

2.
Front Pharmacol ; 12: 615882, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33776764

RESUMEN

The kidney is vital in maintaining fluid, electrolyte, and acid-base balance. Kidney-related diseases, which are an increasing public health issue, can happen to people of any age and at any time. Circular RNAs (circRNAs) are endogenous RNA that are produced by selective RNA splicing and are involved in progression of various diseases. Studies have shown that various kidney diseases, including renal cell carcinoma, acute kidney injury, and chronic kidney disease, are linked to circRNAs. This review outlines the characteristics and biological functions of circRNAs and discusses specific studies that provide insights into the function and potential of circRNAs for application in the diagnosis and treatment of kidney-related diseases.

3.
Chemosphere ; 216: 75-83, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30359919

RESUMEN

Due to their specific properties, ion-adsorption rare earth mine sites may be a threat for adjacent environments. This work was undertaken to assess whether former mining operations on ion-adsorption rare earth mine sites have a significant impact on water bodies and soils of the surrounding environments. Tailing soil materials, stream waters and sediments, and farmland soils were collected from one of the largest ion-adsorption rare earth mine sites worldwide (Southern China). Total concentrations of rare earth elements (REEs), Fe, Al, etc., and pH were measured. Results revealed high concentrations of REEs in tailing soils (392 mg kg-1), stream waters (4460 µg L-1), sediments (462 mg kg-1) and farmland soils (928 mg kg-1) in comparison with control sites. In the tailing profiles, light REEs (LREEs) were preferentially leached compared to middle REEs (MREEs) and heavy REEs (HREEs). Anomalies in tailings and stream water indicated strong soil weathering (Eu) and leaching activities (Ce) within the tailings. The MREE enriched pattern in stream water was more related to water parameters such as Al and Fe oxides, and ligands, than to the source of REEs. Anomalies also indicated that REEs contamination in the farmland soils was mainly originated from the stream water contaminated by the leaching from the tailings. In conclusion, a heavy REEs pollution was recorded in the surrounding environment of ion-adsorption rare earth mine. REEs fractionation, Ce and Eu anomalies provided an insight to the understanding of REEs leaching and soil weathering processes, and REEs environmental fate in rare earth mining area.


Asunto(s)
Monitoreo del Ambiente/métodos , Metales de Tierras Raras/análisis , Minería , Adsorción , Agricultura , China , Contaminación Ambiental/análisis , Ríos , Contaminantes del Suelo/análisis , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA