Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(3): 552-558, 2024 May 20.
Artículo en Chino | MEDLINE | ID: mdl-38948281

RESUMEN

Objective: This study aims to systematically evaluate the protective role of quercetin (QCT), a naturally occurring flavonoid, against oxidative damage in human endometrial stromal cells (HESCs) induced by hydrogen peroxide (H2O2). Oxidative stress, such as that induced by H2O2, is known to contribute significantly to cellular damage and has been implicated in various reproductive health issues. The study is focused on investigating how QCT interacts with specific molecular pathways to mitigate this damage. Special attention was given to the p38 MAPK/NOX4 signaling pathway, which is crucial to the regulation of oxidative stress responses in cellular systems. By elucidating these mechanisms, the study seeks to confirm the potential of QCT not only as a protective agent against oxidative stress but also as a therapeutic agent that could be integrated in treatments of conditions characterized by heightened oxidative stress in endometrial cells. Methods: I n vitro cultures of HESCs were treated with QCT at different concentrations (0, 10, 20, and 40 µmol/L) for 24 h to verify the non-toxic effects of QCT on normal endometrial cells. Subsequently, 250 µmol/L H2O2 was used to incubate the cells for 12 h to establish an H2O2-induced HESCs injury model. HESCs were pretreated with QCT for 24 h, which was followed by stimulation with H2O2. Then, CCK-8 assay was performed to examine the cell viability and to screen for the effective intervention concentration. HESCs were divided into 3 groups, the control group, the H2O2 model group, and the H2O2+QCT group. Intracellular levels of reactive oxygen species (ROS) were precisely quantified using the DCFH-DA fluorescence assay, a method known for its accuracy in detecting and quantifying oxidative changes within the cell. The mitochondrial membrane potential was determined by JC-1 staining. Annexin Ⅴ/PI double staining and flow cytometry were performed to determine the effect of QCT on H2O2-induced apoptosis of HESCs. Furthermore, to delve deeper into the cellular mechanisms underlying the observed effects, Western blot analysis was conducted to measure the expression levels of the critical proteins involved in oxidative stress response, including NADPH oxidase 4 (NOX4), p38 mitogen-activated protein kinase (p38 MAPK), and phosphorylated p38 MAPK (p-p38 MAPK). This analysis helps increase understanding of the specific intracellular signaling pathways affected by QCT treatment, giving special attention to its potential for modulation of the p38 MAPK/NOX4 pathway, which plays a significant role in cellular defense mechanisms against oxidative stress. Results: In this study, we started off by assessing the toxicity of QCT on normal endometrial cells. Our findings revealed that QCT at various concentrations (0, 10, 20, and 40 µmol/L) did not exhibit any cytotoxic effects, which laid the foundation for further investigation into its protective roles. In the H2O2-induced HESCs injury model, a significant reduction in cell viability was observed, which was linked to the generation of ROS and the resultant oxidative damage. However, pretreatment with QCT (10 µmol/L and 20 µmol/L) significantly enhanced cell viability after 24 h (P<0.05), with the 20 µmol/L concentration showing the most substantial effect. This suggests that QCT can effectively reverse the cellular damage caused by H2O2. Furthermore, the apoptosis assays demonstrated a significant increase in the apoptosis rates in the H2O2 model group compared to those in the control group (P<0.01). However, co-treatment with QCT significantly reversed this trend (P<0.05), indicating QCT's potential protective role in mitigating cell apoptosis. ROS assays showed that, compared to that in the control group, the average fluorescence intensity of ROS in the H2O2 model group significantly increased (P<0.01). QCT treatment significantly reduced the ROS fluorescence intensity in the H2O2+QCT group compared to the that in the H2O2 model group, suggesting an effective alleviation of oxidative damage (P<0.05). JC-1 staining for mitochondrial membrane potential changes revealed that compared to that in the control, the proportion of cells with decreased mitochondrial membrane potential significantly increased in the H2O2 model group (P<0.01). However, this proportion was significantly reduced in the QCT-treated group compared to that of the H2O2 model group (P<0.05). Finally, Western blot analysis indicated that the expression levels of NOX4 and p-p38 MAPK proteins were elevated in the H2O2 model group compared to those of the control group (P<0.05). Following QCT treatment, these protein levels significantly decreased compared to those of the H2O2 model group (P<0.05). These results suggest that QCT may exert its protective effects against oxidative stress by modulating the p38 MAPK/NOX4 signaling pathway. Conclusion: QCT has demonstrated significant protective effects against H2O2-induced oxidative damage in HESCs. This protection is primarily achieved through the effective reduction of ROS accumulation and the inhibition of critical signaling pathways involved in the oxidative stress response, notably the p38 MAPK/NOX4 pathway. The results of this study reveal that QCT's ability to modulate these pathways plays a key role in alleviating cellular damage associated with oxidative stress conditions. This indicates not only its potential as a protective agent against cellular oxidative stress, but also highlights its potential for therapeutic applications in treating conditions characterized by increased oxidative stress in the endometrium, thereby offering the prospect of enhancing reproductive health. Future studies should explore the long-term effects of QCT and its clinical efficacy in vivo, thereby providing a clear path toward its integration into therapeutic protocols.


Asunto(s)
Endometrio , Peróxido de Hidrógeno , NADPH Oxidasa 4 , Estrés Oxidativo , Quercetina , Transducción de Señal , Células del Estroma , Proteínas Quinasas p38 Activadas por Mitógenos , Humanos , Peróxido de Hidrógeno/toxicidad , Estrés Oxidativo/efectos de los fármacos , Femenino , NADPH Oxidasa 4/metabolismo , Quercetina/farmacología , Endometrio/citología , Endometrio/efectos de los fármacos , Endometrio/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Células del Estroma/efectos de los fármacos , Células del Estroma/metabolismo , Transducción de Señal/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Apoptosis/efectos de los fármacos , Células Cultivadas
2.
J Phys Condens Matter ; 36(25)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38484393

RESUMEN

The van der Waals (vdW) heterostructures of Z-scheme PbI2/g-C3N4with an indirect bandgap have gained much attention in recent years due to their unique properties and potential applications in various fields. However, the optoelectronic characteristics and strain-modulated effects are not yet fully understood. By considering this, six stacking models of PbI2/g-C3N4are proposed and the stablest structure is selected for further investigation. The uniaxial and biaxial strains (-10%-10%) regulated band arrangement, charge distribution, optical absorption in the framework of density functional theory are systematically explored. The compressive uniaxial strain of -8.55% changes the band type from II→I, and the biaxial strains of -7.12%, -5.25%, 8.91% change the band type in a way of II→I→II→I, acting like the 'band-pass filter'. The uniaxial strains except -10% compressive strain, and the -6%, -4%, 2%, 4%, 10% biaxial strains will enhance the light absorption of PbI2/g-C3N4. The exerted strains on PbI2/g-C3N4generate different power conversion efficiency (ηPCE) values ranging from 3.64% to 25.61%, and the maximumηPCEis generated by -6% biaxial strain. The results of this study will pave the way for the development of new electronic and optoelectronic materials with customized properties in photocatalytic field and optoelectronic devices.

3.
ACS Omega ; 4(25): 21018-21026, 2019 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-31867493

RESUMEN

Chitosan/poly[N-(3-(dimethylamino)propyl)methacrylamide]/poly(acrylic acid) (CS/PDMAPMA/PAA) composite nanogels (CPACNGs) were fabricated in the solution of chitosan by surfactant-free emulsion polymerization. N-(3-(Dimethylamino)propyl)methacrylamide (DMAPMA) and acrylic acid (AA) were initiated by 2,2'-azobis-2-methyl-propanimidamide to graft from the backbone of chitosan. Nanogels were formed by noncovalent forces, including of hydrogen bonds, hydrophobic, and electrostatic interaction. Nanogels were characterized by transmission electron microscopy, scanning electron microscope dynamic light scattering, X-ray photoelectron spectroscopy, Fourier transform infrared spectrometer spectra, and 1H NMR. Spherical nanoparticles were observed in the latex system. Nanogels exhibited an excellent CO2 responsivity and CO2/N2 reversible response and switchability and had a faster response rate. The morphological shape transformation of nanogels was modulated by bubbling with CO2 and N2. The responsive mechanism was explored by determining the pH and electrical conductivity. In addition, nanogels were successfully emulsified by bubbling with CO2, and then a phase transition was achieved by bubbling with N2 in the organic solvent/water mixture.

4.
Glob Chall ; 3(9): 1900030, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31565399

RESUMEN

Soy protein isolate (SPI) protein/polymer composite hydrogels (PPCGs) are fabricated in a urea solution of SPI using acrylic acid as monomer, ammonium persulphate (APS) as initiator, and N,N-methylenebisacrylamide (BIS) and glutaraldehyde (GA) as cross-linking agents. The scanning electron microscope (SEM) results show that SPI/polyacrylic (PAA) composite hydrogels formed network structure. In particular, in the absence of cross-linking agent (GA), the network structure of composite hydrogels is also formed by BIS cross-linking chains of PAA and the hydrophobic interactions between peptides from SPI and chain of PAA. In addition, composite hydrogels have good water absorption and present excellent pH sensitivity. Composite hydrogels adsorb bovine serum albumin (BSA) with higher adsorption capacity. BSA is the control released in pH 7.4 buffers and the accumulative release ratio achieved is 90%. It will be expected that these protein/polymer composite hydrogels could be applied for drug sustained release materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...