Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Langmuir ; 40(10): 5326-5337, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38408337

RESUMEN

Capacitors with zinc ions, with excellent stabilities, low cost, and high energy density, are expected to be promising energy storage devices. However, the development of zinc-ion capacitors is quietly restricted by low specific capacity and cycling stability. Herein, to overcome these limitations, honeycomb-structured S, N-codoped carbon (SNPC) is constructed by one-pot calcination of waste corn bracts and thiourea. The honeycomb structure of SNPC is demonstrated to provide abundant active sites that can enhance the extron/ion transport, conductivity for high power export, and ion adsorption capacity in energy storage applications, leading to a higher electrochemical performance achieved. The electrolytes of zinc salt have also been studied. It reveals that the SNPC electrode presents the best electrochemical performance in a 2 M ZnSO4 and 0.5 M ZnCl2 electrolyte mixture because in the electrolyte mixture, Cl- can replace the existing bound water in the solvation structure to form an anion-type water-free solvation structure ZnCl42-. The SNPC-800 electrode with a highly improved surface area (∼909.0 m2 g-1) is proved to be more suitable as the electrode than other materials. Aqueous zinc-ion capacitors (ZICs) have been assembled by the honeycomb-structured SNPC-800 as the cathode, which can achieve a relatively wide working voltage range of 0.1-1.8 V. The SNPC-800 ZICs exhibit a superior specific capacity of 179.1 mA h g-1 at 0.1 A g-1. The energy density of SNPC-800 ZICs reaches an impressive value of 89.6 Wh kg-1 at 53.8 W kg-1, and it sustains 28.3 Wh kg-1 at 1997.6 W kg-1. In addition, there is 99.8% capacity retention in the SNPC-800 ZICs over 5000 cycles. The absorption energy in SPNC is much higher than that in undoped CPC, as confirmed by density functional theory, which reveals that introducing of heteroatoms (S, N) has a comparatively active advantage at increasing the Zn-ion storage capacity. This work proposes a practical strategy for the effective recycling of waste biomass materials into honeycomb carbon electrode materials. Moreover, the honeycomb carbon-based ZICs with excellent electrochemical performance and long-term cycling stability possess great potential to be a superior cathode in practical applications.

2.
Int J Mol Sci ; 24(21)2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37958853

RESUMEN

Centromeric chromatin is thought to play a critical role in ensuring the faithful segregation of chromosomes during mitosis. However, our understanding of this role is presently limited by our poor understanding of the structure and composition of this unique chromatin. The nucleosomal variant, CENP-A, localizes to narrow regions within the centromere, where it plays a major role in centromeric function, effectively serving as a platform on which the kinetochore is assembled. Previous work found that, within a given cell, the number of microtubules within kinetochores is essentially unchanged between CENP-A-localized regions of different physical sizes. However, it is unknown if the amount of CENP-A is also unchanged between these regions of different sizes, which would reflect a strict structural correspondence between these two key characteristics of the centromere/kinetochore assembly. Here, we used super-resolution optical microscopy to image and quantify the amount of CENP-A and DNA within human centromere chromatin. We found that the amount of CENP-A within CENP-A domains of different physical sizes is indeed the same. Further, our measurements suggest that the ratio of CENP-A- to H3-containing nucleosomes within these domains is between 8:1 and 11:1. Thus, our results not only identify an unexpectedly strict relationship between CENP-A and microtubules stoichiometries but also that the CENP-A centromeric domain is almost exclusively composed of CENP-A nucleosomes.


Asunto(s)
Microscopía , Nucleosomas , Humanos , Proteína A Centromérica/genética , Proteínas Cromosómicas no Histona/metabolismo , Centrómero/metabolismo , Cromatina , Cinetocoros/metabolismo , Autoantígenos/química
3.
ACS Omega ; 8(38): 35024-35033, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37779983

RESUMEN

As the discharge amount of dye wastewater increases with the development of the textile printing and dyeing industries, the treatment of the dyes in the wastewater becomes more complex. The adsorption method is a commonly used method for treating dye wastewater. The adsorbent is the key factor affecting the adsorption performance. To develop a high-performance adsorbent, a porous carbon material prepared from potassium citrate by the calcination method was applied in the adsorption of dye-containing water in this study. The morphology and pore structure of the porous carbon materials were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and N2 adsorption/desorption isotherm. The porous carbon material with a specific surface area of 1436 m2 g-1, PC-900, was used as an adsorbent for the adsorption of methyl orange (MO) and methylene blue (MB). The results showed that the maximum adsorption capacity of PC-900 for MO and MB reached 927 and 1853.6 mg g-1, respectively. Studies on adsorption kinetics and adsorption isotherms showed that the pseudo-second-order kinetic model and the Langmuir isotherm model were more appropriate to describe the adsorption process of MO and MB by PC-900. In addition, the results of the mixed adsorption experiment of MO and MB dyes showed that PC-900 had selective adsorption for MB.

4.
Molecules ; 28(20)2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37894618

RESUMEN

The drug development process suffers from low success rates and requires expensive and time-consuming procedures. The traditional one drug-one target paradigm is often inadequate to treat multifactorial diseases. Multitarget drugs may potentially address problems such as adverse reactions to drugs. With the aim to discover a multitarget potential inhibitor for B-cell lymphoma treatment, herein, we developed a general pipeline combining machine learning, the interpretable model SHapley Additive exPlanation (SHAP), and molecular dynamics simulations to predict active compounds and fragments. Bruton's tyrosine kinase (BTK) and Janus kinase 3 (JAK3) are popular synergistic targets for B-cell lymphoma. We used this pipeline approach to identify prospective potential dual inhibitors from a natural product database and screened three candidate inhibitors with acceptable drug absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties. Ultimately, the compound CNP0266747 with specialized binding conformations that exhibited potential binding free energy against BTK and JAK3 was selected as the optimum choice. Furthermore, we also identified key residues and fingerprint features of this dual-target inhibitor of BTK and JAK3.


Asunto(s)
Janus Quinasa 3 , Linfoma de Células B , Humanos , Agammaglobulinemia Tirosina Quinasa , Flujo de Trabajo , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química
5.
Methods Appl Fluoresc ; 11(4)2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37647910

RESUMEN

The stoichiometry of molecular components within supramolecular biological complexes is often an important property to understand their biological functioning, particularly within their native environment. While there are well established methods to determine stoichiometryin vitro, it is presently challenging to precisely quantify this propertyin vivo,especially with single molecule resolution that is needed for the characterization stoichiometry heterogeneity. Previous work has shown that optical microscopy can provide some information to this end, but it can be challenging to obtain highly precise measurements at higher densities of fluorophores. Here we provide a simple approach using already established procedures in single-molecule localization microscopy (SMLM) to enable precise quantification of stoichiometry within individual complexes regardless of the density of fluorophores. We show that by focusing on the number of fluorophore detections accumulated during the quasi equilibrium-state of this process, this method yields a 50-fold improvement in precision over values obtained from images with higher densities of active fluorophores. Further, we show that our method yields more correct estimates of stoichiometry with nuclear pore complexes and is easily adaptable to quantify the DNA content with nanodomains of chromatin within individual chromosomes inside cells. Thus, we envision that this straightforward method may become a common approach by which SMLM can be routinely employed for the accurate quantification of subunit stoichiometry within individual complexes within cells.


Asunto(s)
Microscopía , Imagen Individual de Molécula , Cromatina , Colorantes Fluorescentes , Ionóforos
6.
Molecules ; 28(13)2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37446693

RESUMEN

The most prominent and highly visible advantage attributed to supercapacitors of any type and application, beyond their most notable feature of high current capability, is their high stability in terms of lifetime, number of possible charge/discharge cycles or other stability-related properties. Unfortunately, actual devices show more or less pronounced deterioration of performance parameters during time and use. Causes for this in the material and component levels, as well as on the device level, have only been addressed and discussed infrequently in published reports. The present review attempts a complete coverage on these levels; it adds in modelling approaches and provides suggestions for slowing down ag(e)ing and degradation.


Asunto(s)
Líquidos Corporales , Antígenos del Grupo Sanguíneo de Lewis
7.
J Antibiot (Tokyo) ; 76(7): 406-415, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37185582

RESUMEN

This study aims to explore the potential targets of bithionol in Staphylococcus aureus.The four bithionol biotinylated probes Bio-A2-1, Bio-A2-2, Bio-A2-3, and Bio-A2-4 were synthesized, the minimal inhibitory concentrations (MICs) of these probes against S. aureus were determined. The bithionol binding proteins in S. aureus were identified through immunoprecipitation and LC-MS/MS with bithionol biotinylated probe. The biotinylated bithionol probes Bio-A2-1 and Bio-A2-3 displayed antibacterial activities against S. aureus. The Bio-A2-1 showed lower MICs than Bio-A2-3, and both with the MIC50/MIC90 at 12.5/12.5 µM against S. aureus clinical isolates. The inhibition rates of bithionol biotinylated probes Bio-A2-1 and Bio-A2-3 on the biofilm formation of S. aureus were comparable to that of bithionol, and were stronger than that of Bio-A2-2 and Bio-A2-4. The biofilm formation of 10 out of 12S. aureus clinical isolates could be inhibited by Bio-A2-1 (at 1/4×, or 1/2× MICs). There are three proteins identified in S. aureus through immunoprecipitation and LC-MS/MS with bithionol biotinylated probe Bio-A2-1: Protein translocase subunit SecA 1 (secA1), Alanine--tRNA ligase (alaS) and DNA gyrase subunit A (gyrA), and in which the SecA1 protein the highest coverage and the most unique peptides. The LYS112, GLN143, ASP213, GLY496 and ASP498 of SecA1 protein act as hydrogen acceptors to form 6 hydrogen bonds with bithionol biotinylated probe Bio-A2-1 by molecular docking analysis. In conclusion, the bithionol biotinylated probe Bio-A2-1 has antibacterial and anti-biofilm activities against S. aureus, and SecA1 was probably one of the potential targets of bithionol in S. aureus.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Humanos , Staphylococcus aureus/genética , Bitionol , Simulación del Acoplamiento Molecular , Cromatografía Liquida , Espectrometría de Masas en Tándem , Antibacterianos/farmacología , Antibacterianos/química , Infecciones Estafilocócicas/microbiología , Pruebas de Sensibilidad Microbiana , Biopelículas
8.
Sci Rep ; 12(1): 15683, 2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-36127387

RESUMEN

Electrochemical exfoliation of nonconductive boron to few-layered borophene is reported. This unique effect is achieved via the incorporation of bulk boron into metal mesh inducing electrical conductivity and opening a venue for borophene fabrication via this feasible strategy. The experiments were conducted in various electrolytes providing a powerful tool to fabricate borophene flakes with a thickness of ~ 3-6 nm with different phases. The mechanism of electrochemical exfoliation of boron is also revealed and discussed. Therefore, the proposed methodology can serve as a new tool for bulk scale fabrication of few-layered borophene and speed up the development of borophene-related research and its potential application.

10.
ACS Nano ; 16(5): 8030-8039, 2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-35485433

RESUMEN

The folding of interphase chromatin into highly compact mitotic chromosomes is one of the most recognizable changes during the cell cycle. However, the structural organization underlying this drastic compaction remains elusive. Here, we combine several super resolution methods, including structured illumination microscopy (SIM), binding-activated localization microscopy (BALM), and atomic force microscopy (AFM), to examine the structural details of the DNA within the mitotic chromosome, both in the native state and after up to 30-fold extension using single-molecule micromanipulation. Images of native chromosomes reveal widespread ∼125 nm compact granules (CGs) throughout the metaphase chromosome. However, at maximal extensions, we find exclusively ∼90 nm domains (mitotic nanodomains, MNDs) that are unexpectedly resistant to extensive forces of tens of nanonewtons. The DNA content of the MNDs is estimated to be predominantly ∼80 kb, which is comparable to the size of the inner loops predicted by a recent nested loop model of the mitotic chromosome. With this DNA content, the total volume expected of the human genome assuming closely packed MNDs is nearly identical to what is observed. Thus, altogether, these results suggest that these mechanically stable MNDs, and their higher-order assembly into CGs, are the dominant higher-level structures that underlie the compaction of chromatin from interphase to metaphase.


Asunto(s)
Cromatina , Cromosomas , Humanos , Cromosomas/metabolismo , Metafase , ADN/metabolismo , Micromanipulación
11.
Sci Total Environ ; 815: 152900, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-34998743

RESUMEN

Tin dioxides (SnO2) inserted into carbons to serve as anodes for rechargeable lithium-ion batteries are known to improve their cycling stability. However, studies on diverse-shaped SnO2 nanoparticles within a porous carbon matrix for super stable lithium-ion storage are rare. Herein, a hollow carbon sphere/porous carbon flake (HCS/PCF) framework is fabricated through template carbonization of plastic waste. By changing the doping mechanism and tuning the loading content, nano SnO2 spheres and cubes as well as bulk SnO2 flakes and blocks are in-situ grown within the HCS/PCF. Then, the as-prepared hybrids with built-in various morphological SnO2 nanoparticles serve as anodes towards advanced lithium-ion batteries. Notably, HCS/PCF embedded with nano SnO2 spheres and cubes anodes possess superb long-term cycling stability (~0.048% and ~0.05% average capacitance decay per cycle at 1 A/g over 400 cycles) with high reversible specific capacities of 0.45 and 0.498 Ah/g after 1000 cycles at 5 A/g. The ultra-stabilized Li+ storage is attributed to the effective mitigation of nano SnO2 spheres/cubes volume expansion, originating from the compact SnO2 yolk-HCS/PCF shell construction. This study paves a general strategy for disposing of polymeric waste to produce SnO2 core-carbon shell anodes for super stable lithium-ion storage.

12.
J Colloid Interface Sci ; 613: 35-46, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35032775

RESUMEN

Heteroatom-doped three-dimensional (3D) porous carbons possess great potential as promising electrodes for high-performance supercapacitors. Inspired by the inherent features of intumescent flame retardants (IFRs) with universal availability, rich heteroatoms and easy thermal-carbonization to form porous carbons, herein we proposed a self-assembling and template self-activation strategy to produce N/P dual-doped 3D porous carbons by nano-CaCO3 template-assistant carbonization of IFRs. The IFRs-derived carbon exhibited large specific surface area, well-balanced hierarchical porosity, high N/P contents and interconnected 3D skeleton. Benefitting from these predominant characteristics on structure and composition, the assembled supercapacitive electrodes exhibited outstanding electrochemical performances. In three-electrode 6 M KOH system, it delivered high specific capacitances of 407 F g-1 at 0.5 A g-1, and good rate capability of 61.2% capacitance retention at 20 A g-1. In two-electrode organic EMIMBF4/PC system, its displayed high energy density of 62.8 Wh kg-1 at a power density of 748.4 W kg-1, meanwhile it had excellent cycling stability with 84.7% capacitance retention after 10,000 cycles. To our best knowledge, it is the first example to synthesize porous carbon from IFRs precursor. Thus, the current work paved a novel and low-cost way for the production of high-valued carbon material, and expanded its application for high-performance energy storage devices.


Asunto(s)
Retardadores de Llama , Carbono , Capacidad Eléctrica , Electrodos , Porosidad
13.
Genomics Proteomics Bioinformatics ; 20(1): 101-109, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-33631432

RESUMEN

Recent studies have characterized the genomic structures of many eukaryotic cells, often focusing on their relation to gene expression. However, these studies have largely investigated cells grown in 2D cultures, although the transcriptomes of 3D-cultured cells are generally closer to their in vivo phenotypes. To examine the effects of spatial constraints on chromosome conformation, we investigated the genomic architecture of mouse hepatocytes grown in 2D and 3D cultures using in situ Hi-C. Our results reveal significant differences in higher-order genomic interactions, notably in compartment identity and strength as well as in topologically associating domain (TAD)-TAD interactions, but only minor differences are found at the TAD level. Our RNA-seq analysis reveals an up-regulated expression of genes involved in physiological hepatocyte functions in the 3D-cultured cells. These genes are associated with a subset of structural changes, suggesting that differences in genomic structure are critically important for transcriptional regulation. However, there are also many structural differences that are not directly associated with changes in gene expression, whose cause remains to be determined. Overall, our results indicate that growth in 3D significantly alters higher-order genomic interactions, which may be consequential for a subset of genes that are important for the physiological functioning of the cell.


Asunto(s)
Genoma , Genómica , Animales , Línea Celular , Cromatina , Células Epiteliales , Regulación de la Expresión Génica , Ratones
14.
Materials (Basel) ; 14(22)2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34832303

RESUMEN

Here, we report that mesoporous hollow carbon spheres (HCS) can be simultaneously functionalized: (i) endohedrally by iron oxide nanoparticle and (ii) egzohedrally by manganese oxide nanorods (FexOy/MnO2/HCS). Detailed analysis reveals a high degree of graphitization of HCS structures. The mesoporous nature of carbon is further confirmed by N2 sorption/desorption and transmission electron microscopy (TEM) studies. The fabricated molecular heterostructure was tested as the anode material of a lithium-ion battery (LIB). For both metal oxides under study, their mixture stored in HCS yielded a significant increase in electrochemical performance. Its electrochemical response was compared to the HCS decorated with a single component of the respective metal oxide applied as a LIB electrode. The discharge capacity of FexOy/MnO2/HCS is 1091 mAhg-1 at 5 Ag-1, and the corresponding coulombic efficiency (CE) is as high as 98%. Therefore, the addition of MnO2 in the form of nanorods allows for boosting the nanocomposite electrochemical performance with respect to the spherical nanoparticles due to better reversible capacity and cycling performance. Thus, the structure has great potential application in the LIB field.

15.
J Org Chem ; 86(21): 14485-14492, 2021 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-34661400

RESUMEN

An efficient method to assemble diverse benzoxazoles/benzothiazoles in good yields was developed via oxidative cyclization with 2-aminothiophenols or 2-iodoanilines as raw materials. In this protocol, elemental sulfur was used as the effective oxidant and C atoms on the C═C double bond were introduced as a one-carbon donator.

16.
Bioorg Med Chem Lett ; 40: 127968, 2021 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-33753264

RESUMEN

A series of 5-phenyloxazole-2-carboxylic acid derivatives were synthesized, and their structure-activity relationships (SARs) were studied. N,5-diphenyloxazole-2-carboxamides 6, 7, and 9, which mimicked ABT751, showed improved cytotoxicity compared with ABT751. Compound 9 exhibited the highest antiproliferative activities against Hela A549, and HepG2 cancer cell lines, with IC50 values of 0.78, 1.08, and 1.27 µM, respectively. Furthermore, compound 9 showed selectivity for human cancer cells over normal cells, and this selectivity was greater than those of ABT751 and colchicine. Preliminary mechanism studies suggested that compound 9 inhibited tubulin polymerization and led to cell cycle arrest at G2/M phase. Molecular docking studies indicated that compound 9 bound to the colchicine binding site of tubulin. Our findings provided insights into useful SARs for further structural modification of inhibitors of tubulin polymerization.


Asunto(s)
Antineoplásicos/farmacología , Oxazoles/farmacología , Moduladores de Tubulina/farmacología , Tubulina (Proteína)/metabolismo , Antineoplásicos/síntesis química , Antineoplásicos/metabolismo , Sitios de Unión , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Humanos , Simulación del Acoplamiento Molecular , Estructura Molecular , Oxazoles/síntesis química , Oxazoles/metabolismo , Polimerizacion/efectos de los fármacos , Unión Proteica , Relación Estructura-Actividad , Tubulina (Proteína)/química , Moduladores de Tubulina/síntesis química , Moduladores de Tubulina/metabolismo
17.
Materials (Basel) ; 13(18)2020 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-32899787

RESUMEN

This study reveals a simple approach to recycle wasted coffee grounds into highly valuable carbon material with superior electrochemical performance. Activated carbon prepared from wasted coffee grounds has been formed via hydrothermal acidic hydrolysis followed by a KOH chemical activation at 800 ∘C. To understand the electrochemical properties of the sample, a set of characterization tools has been utilized: N2 and CO2 adsorption-desorption isotherms, thermal gravimetric analysis, Fourier transform infrared spectroscopy, Raman spectroscopy and scanning electron microscopy. The specific surface area obtained from a Brunner-Emmett-Teller (BET) analysis reached 2906±19m2g-1. Prepared sample (designated as ACG-800KOH) was tested as electrode material in an electric double layer capacitor (EDLC) device with ionic liquid PYR13-TFSI as an electrolyte. The EDLC test was conducted at temperatures ranging from 20 to 120 ∘C. The specific material capacitance reached 178 Fg-1 measured at 20 ∘C and 50 A g-1 and was in the range 182 to 285 Fg-1 at the 20 to 120 ∘C temperature range.

18.
Sci Rep ; 10(1): 14631, 2020 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-32884107

RESUMEN

Carbon-based supercapacitors have aroused ever-increasing attention in the energy storage field due to high conductivity, chemical stability, and large surface area of the investigated carbon active materials. Herein, eucalyptus-derived nitrogen/oxygen doped hierarchical porous carbons (NHPCs) are prepared by the synergistic action of the ZnCl2 activation and the NH4Cl blowing. They feature superiorities such as high specific surface area, rational porosity, and sufficient N/O doping. These excellent physicochemical characteristics endow them excellent electrochemical performances in supercapacitors: 359 F g-1 at 0.5 A g-1 in a three-electrode system and 234 F g-1 at 0.5 A g-1 in a two-electrode system, and a high energy density of 48 Wh kg-1 at a power density of 750 W kg-1 accompanied by high durability of 92% capacitance retention through 10,000 cycles test at a high current density of 10 A g-1 in an organic electrolyte. This low-cost and facile strategy provides a novel route to transform biomass into high value-added electrode materials in energy storage fields.

19.
Chem Commun (Camb) ; 56(64): 9142-9145, 2020 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-32657311

RESUMEN

Due to the ever-increasing plastic waste causing serious environmental problems, it is highly desirable to recycle it into high-value-added products, such as carbon nanomaterials. However, the traditional catalytic carbonization of hydrocarbon polymers is severely prohibited by the complexity of real-world plastic waste due to the existence of halogen-containing polymers. In this study, through a universal combined template based on magnesium oxide and iron(iii) acetylacetonate (Fe(acac)3), a three-dimensional hollow carbon sphere/porous carbon flake hybrid nanostructure is prepared from carbonization of plastic waste with high yields (>70 wt%). This approach is not only suitable for hydrocarbon polymers, but also for halogen-containing polymers. Interestingly, the obtained advanced carbon framework exhibits excellent performance in lithium-ion batteries (802 mA h g-1 after 500 cycles at 0.5 A g-1). The present research paves a new avenue to upcycle plastic waste into a high value-added product.

20.
Chemistry ; 26(69): 16328-16337, 2020 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-32663344

RESUMEN

Carbon materials derived from zeolitic imidazolate framework-8 (ZIF-8) and composites thereof have been intensively investigated in supercapacitors. The particle size of the used ZIF-8 ranges from dozens of nanometers to several microns. However, the influence of the particle size of ZIF-8 on the capacitive performances is still not clear. A series of ZIF-8 with different particle sizes (from 25 to 296 nm) has been synthesized and carbonized for supercapacitors. Based on TEM, EDX mapping, XRD, Raman, nitrogen adsorption-desorption, XPS, and the results of electrochemical tests, the optimal particle size (≈70 nm) for superior supercapacitor performances in both acidic and alkaline electrolytes has been obtained. This important result provides a significant reference to guide future ZIF-8 related research to achieve the best electrochemical performance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...