Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 62(45): e202312894, 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37743666

RESUMEN

Nuclear accidents and the improper disposal of nuclear wastes have led to serious environmental radioactive pollutions. The rational design of adsorbents for the highly efficient separation of strontium(II) is essential in treating nuclear waste and recovering radioactive strontium resources. Metal-organic frameworks (MOFs) are potential materials for the separation of aqueous metal ions owing to their designable structure and tunable functionality. Herein, a novel 3D MOF material MOF-18Cr6, in which 1D channels are formed using 18-crown-6-ether-containing ligands as channel walls, is fabricated for strontium(II) separation. In contrast to traditional MOFs designed by grafting functional groups in the framework pores, MOF-18Cr6 possesses regular 18-crown-6-ether cavities on the channel walls, which not only can transport and intake strontium(II) via the channels, but also prevent blockage of the channels after the binding of strontium(II). Consequently, the functional sites are fully utilized to achieve a high strontium(II) removal rate of 99.73 % in simulated nuclear wastewater. This study fabricates a highly promising adsorbent for the separation of aqueous radioactive strontium(II), and more importantly, can provide a new strategy for the rational design of high-performance MOF adsorbents for separating target substances from complex aqueous environments.

2.
J Leukoc Biol ; 114(4): 335-346, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37479674

RESUMEN

CD8+ invariant natural killer T (iNKT) cells are functionally different from other iNKT cells and are enriched in human but not in mouse. To date, their developmental pathway and molecular basis for fate decision remain unclear. Here, we report enrichment of CD8+ iNKT cells in neonatal mice due to their more rapid maturation kinetics than CD8- iNKT cells. Along developmental trajectories, CD8+ and CD8- iNKT cells separate at stage 0, following stage 0 double-positive iNKT cells, and differ in HIVEP3 expression. HIVEP3 is lowly expressed in stage 0 CD8+ iNKT cells and negatively controls their development, whereas it is highly expressed in stage 0 CD8- iNKT cells and positively controls their development. Despite no effect on IFN-γ, HIVEP3 inhibits granzyme B but promotes interleukin-4 production in CD8+ iNKT cells. Together, we reveal that, as a negative regulator for CD8+ iNKT fate decision, low expression of HIVEP3 in stage 0 CD8+ iNKT cells favors their development and T helper 1-biased cytokine responses as well as high cytotoxicity.

3.
STAR Protoc ; 4(2): 102238, 2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37083322

RESUMEN

Detection of radioactive iodide ions (I-) is important for protecting human beings from the hazards of radioactive pollution. Herein, we present a protocol for detecting I- using a zirconium(IV)-enhanced strategy. We describe steps for optimizing the I- detection approach, establishing standard curves, and finally applying the approach. The use of zirconium(IV) greatly improves the detection performance and endows this approach with an ultralow detection limit of 0.176 nM together with wide applicability in various aqueous environments. For complete details on the use and execution of this protocol, please refer to Feng et al. (2022).1.

4.
Front Immunol ; 13: 1051045, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36741382

RESUMEN

Activation of mTORC1 is essential for anti-tumor function of iNKT cells. The mechanisms underlying impaired mTORC1 activation in intratumoral iNKT cells remain unclear. Via generating Vam6+/- mice and using flow cytometry, image approach, and RNA sequencing, we studied the role of Vam6 in controlling mTORC1 activation and intratumoral iNKT cell functions. Here, we find that increased Vam6 expression in intratumoral iNKT cells leads to impaired mTORC1 activation and IFN-γ production. Mechanistically, Vam6 in iNKT cells is essential for Rab7a-Vam6-AMPK complex formation and thus for recruitment of AMPK to lysosome to activate AMPK, a negative regulator of mTORC1. Additionally, Vam6 relieves inhibitory effect of VDAC1 on Rab7a-Vam6-AMPK complex formation at mitochondria-lysosome contact site. Moreover, we report that lactic acid produced by tumor cells increases Vam6 expression in iNKT cells. Given the key roles of increased Vam6 in promoting AMPK activation in intratumoral iNKT cells, reducing Vam6 expression signifificantly enhances the mTORC1 activation in intratumoral iNKT cells as well as their anti-tumor effificacy. Together, we propose Vam6 as a target for iNKT cell-based immunotherapy.


Asunto(s)
Células T Asesinas Naturales , Neoplasias , Proteínas de Transporte Vesicular , Animales , Ratones , Proteínas Quinasas Activadas por AMP/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Células T Asesinas Naturales/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo
5.
J Am Chem Soc ; 142(14): 6690-6697, 2020 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-32188239

RESUMEN

Light-up luminescence sensors have been employed in real-time in situ visual detection of target molecules including volatile organic compounds (VOCs). However, currently employed light-up sensors, which are generally based on the aggregation-induced emission (AIE) or solvent-induced energy transfer effect, exhibit limited sensitivity for light-up detection and poor recycling performances thereby significantly hindering their industrial applications. Inspired by the low-temperature enhanced luminescence phenomenon, we herein propose and show that a guest-lock-induced luminescence enhancement mechanism can be used to realize the ultrafast light-up detection of target VOCs. Through introduction of chlorinated hydrocarbons to lock the molecular vibrations within a designed [Cu4I4]-based metal-organic framework (MOF), luminescence intensity could be enhanced significantly at room temperature. This guest-lock-induced luminescence enhancement is brought about by weak supramolecular interactions between the host framework and the guest molecules, allowing highly sensitive and specific detection of the guest vapor with ultrafast response time (<1 s). Single-crystal X-ray diffraction (SCXRD) analysis of guest molecules-loaded MOFs and density functional theory (DFT) calculations were employed to investigate the host-guest interactions involved in this phenomenon. Moreover, the above MOF sensor successfully achieved real-time detection of a toxic chloroaromatic molecule, chlorobenzene. The guest-lock-induced light-up mechanism opens up a route to discovering high-performance ultrafast light-up luminescent sensors for real-time detection applications.

6.
Chem Commun (Camb) ; 56(25): 3649-3652, 2020 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-32108217

RESUMEN

A novel ligand-stabilized Ag12 nanocluster was synthesized as a model cluster to investigate the solvent-induced isomerization of Ag12 clusters. Another two novel Ag12 clusters as well as their related symmetry transformations were also successfully obtained through the above solvent-induced isomerization process.

7.
Inorg Chem ; 59(2): 1038-1045, 2020 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-31917557

RESUMEN

Hydrogen will be an important energy vector of the future, and improved efficiency in electrohydrolysis will accelerate this transition. In a fundamental study, we have prepared Co(II) and Ni(II) complexes of a new PNN type ligand N-((diphenylphosphanyl)methyl)-2-amino-1,10-phenanthroline (dppmaphen) incorporating the photoactive 1,10-phenanthroline group and the strongly coordinating diphenylphosphine to obtain photoelectrochemical (PEC) catalysts [Co(dppmaphen)2(NO3)2] (1) and [Ni(dppmaphen)2Cl]Cl (2) which catalyzed the hydrogen evolution reaction (HER) in alkaline media (1 M KOH). Overpotentials (η10) of 430 (1) and 364 mV (2) could be reduced to 345 (1) and 284 mV (2) under Xe light irradiation. This irradiation generated photocurrent responses of 528 (1) and 357 uA/cm2 (2). Density function theory (DFT) calculation on the frontier orbitals of 1 and 2 were useful in understanding these differences in catalytic performance.

8.
Dalton Trans ; 48(24): 8546-8550, 2019 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-31134265

RESUMEN

A cationic two-dimensional coordination polymer sustained by a [Ag12S12] cluster secondary building unit has been prepared from a stepwise solid-state reaction. This coordination polymer is capable of associating the anionic dye Congo Red, yielding a composite material that exhibits improved photocurrent and dielectric responses as compared to the pristine polymer.

9.
Dalton Trans ; 47(16): 5780-5788, 2018 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-29644361

RESUMEN

We herein report the preparation of unique heteroatom-doped and carbon-based AuAg alloy nanoparticles (NPs) via the pyrolysis of a structurally defined octanuclear heterometallic Au(i)-Ag(i) cluster [Au4Ag4(Dppy)4(Tab)4(MeCN)4](PF6)8 (2, Dppy = diphenylphosphine-2-pyridine and Tab = 4-(trimethylammonio)benzenethiolate). This cluster-precursor approach exerts a fine control over the spatial arrangement, size and uniformity of the AuAg alloy NPs as well as the doped heteroatoms (P, N, F and S). The optimized material prepared at 450 °C efficiently catalyzes the oxidative coupling of anilines to yield azobenzenes under mild conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...