Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 202
Filtrar
1.
J Ethnopharmacol ; 337(Pt 1): 118840, 2024 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-39313140

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Alcoholic liver disease (ALD) is a growing public health concern caused by excessive alcohol consumption, but effective treatments are limited. Ge-Zhi-Jie-Jiu decoction (JJY) is a modified traditional Chinese herbal remedy that aims to alleviate ALD. This formula contains various components such as Ge Hua, Ge Gen, Zhi Ju Zi, and other medicinal-food herbs. However, the specific pharmacotherapeutic compounds of JJY and its pharmacological mechanisms remain unclear. AIM OF THE STUDY: This study aimed to elucidate the molecular mechanism and pharmacodynamic basis of JJY in treating ALD. MATERIALS AND METHODS: UPLC-Q-Orbitrap HRMS, HPLC fingerprinting, and LC-MS techniques were used for the composition identification and quality control of JJY. The pharmacological components and molecular mechanisms of JJY in anti-ALD were then predicted using network pharmacology and molecular docking approaches. Ultimately, an acute alcoholic liver injury mouse model was developed, and the potential mechanisms were verified by hematoxylin-eosin (H&E), Oil Red O, and TUNEL staining, real-time fluorescence quantitative PCR (RT-qPCR), Western blot (WB) and molecular docking analysis. RESULTS: The results showed that the main components of JJY are organic acids, flavonoids, and isoflavonoids, in which puerarin, daidzein, glycitein, ononin, quercetin, and tectorigenin can be used as the indicator components of JJY. In addition, JJY might ameliorate ALD through several pathways, including potentially promoting alcohol metabolism via alcohol-metabolizing enzymes, and possibly inhibiting oxidative stress, inflammation and apoptosis via the Nrf2/Keap1/HO-1 and MAPK signaling pathways. Furthermore, JJY may also alleviated hepatic lipid accumulation through the PPARα signaling pathway. CONCLUSIONS: JJY has significant anti-ALD efficacy with multiple mechanisms. This study offers a solid experimental foundation for JJY's development as a medicine with anti-ALD characteristics and elucidates its probable active components.

2.
Mol Plant Pathol ; 25(9): e70000, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39254175

RESUMEN

Plants produce reactive oxygen species (ROS) upon infection, which typically trigger defence mechanisms and impede pathogen proliferation. Root-knot nematodes (RKNs, Meloidogyne spp.) represent highly detrimental pathogens capable of parasitizing a broad spectrum of crops, resulting in substantial annual agricultural losses. The involvement of ROS in RKN parasitism is well acknowledged. In this study, we identified a novel effector from Meloidogyne incognita, named CATLe, that contains a conserved catalase domain, exhibiting potential functions in regulating host ROS levels. Phylogenetic analysis revealed that CATLe is conserved across RKNs. Temporal and spatial expression assays showed that the CATLe gene was specifically up-regulated at the early infection stages and accumulated in the subventral oesophageal gland cells of M. incognita. Immunolocalization demonstrated that CATLe was secreted into the giant cells of the host plant during M. incognita parasitism. Transient expression of CATLe significantly dampened the flg22-induced ROS production in Nicotiana benthamiana. In planta assays confirmed that M. incognita can exploit CATLe to manipulate host ROS levels by directly degrading H2O2. Additionally, interfering with expression of the CATLe gene through double-stranded RNA soaking and host-induced gene silencing significantly attenuated M. incognita parasitism, highlighting the important role of CATLe. Taken together, our results suggest that RKNs can directly degrade ROS products using a functional catalase, thereby manipulating host ROS levels and facilitating parasitism.


Asunto(s)
Catalasa , Peróxido de Hidrógeno , Nicotiana , Especies Reactivas de Oxígeno , Tylenchoidea , Animales , Peróxido de Hidrógeno/metabolismo , Tylenchoidea/fisiología , Especies Reactivas de Oxígeno/metabolismo , Nicotiana/parasitología , Catalasa/metabolismo , Catalasa/genética , Enfermedades de las Plantas/parasitología , Raíces de Plantas/parasitología , Filogenia , Proteínas del Helminto/metabolismo , Proteínas del Helminto/genética , Interacciones Huésped-Parásitos
3.
Sensors (Basel) ; 24(17)2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39275538

RESUMEN

Wearable sensors for sweat trace metal monitoring have the challenges of effective sweat collection and the real-time recording of detection signals. The existing detection technologies are implemented by generating enough sweat through exercise, which makes detecting trace metals in sweat cumbersome. Generally, it takes around 20 min to obtain enough sweat, resulting in dallied and prolonged detection signals that cannot reflect the endogenous fluctuations of the body. To solve these problems, we prepared a multifunctional hydrogel as an electrolyte and combined it with a flexible patch electrode to realize real-time monitoring of sweat Zn2+. Such hydrogel has magnetic and porous properties, and the porous structure of hydrogel enables a fast absorption of sweat, and the magnetic property of the addition of fabricated Fe3O4 NPs not only improves the conductivity but also ensures the adjustable internal structures of the hydrogel. Such a sensing platform for sweat Zn2+ monitoring shows a satisfied linear relationship in the concentration range of 0.16-16 µg/mL via differential pulsed anodic striping voltammetry (DPASV) and successfully detects the sweat Zn2+ of four volunteers during exercise and resting, displaying a promising path for commercial application.


Asunto(s)
Hidrogeles , Sudor , Dispositivos Electrónicos Vestibles , Zinc , Sudor/química , Humanos , Magnetismo , Zinc/análisis , Óxido Ferrosoférrico/química , Técnicas Biosensibles
4.
Toxics ; 12(9)2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39330611

RESUMEN

This study assessed the presence of potentially toxic elements (PTEs) in China's northeastern black soil belt, an area with limited prior research. We collected 304 soil samples (0-20 cm) from Gonghe Town, Hailun City, and analyzed the PTE contamination degree using the single-factor pollution index and Nemerow pollution index. The results demonstrated that the mean concentrations of arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg), nickel (Ni), lead (Pb), and zinc (Zn) were 11.16, 0.11, 65.29, 22.56, 0.03, 27.07, 26.09, and 66.01 mg/kg, respectively. Source apportionment was conducted via correlation analysis, principal component analysis, and positive matrix factorization, identifying four main sources: natural (33.2%), irrigation (29.5%), fuel (23.4%), and fertilizer (13.2%). The ecological risk index indicated a slight ecological risk, while the human health risk showed that non-carcinogenic risks were negligible and carcinogenic risks were acceptable. Our findings emphasize the need to prioritize controlling PTEs from fertilizer, particularly cadmium, and to a lesser extent, irrigation and fuel sources, focusing on As, Pband Hg. This research provides critical insights for policymakers aiming to manage PTE contamination in black soils.

5.
Cancer Control ; 31: 10732748241270582, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39109953

RESUMEN

SIGNIFICANCE: This study on the relationship between early life high BMI and the development of CRC reveals the role of high BMI during childhood and adolescence in the occurrence and progression of CRC. It suggests the importance of restoring normal weight or reducing weight in individuals with high BMI early in life for the prevention of colorectal cancer.


Asunto(s)
Índice de Masa Corporal , Neoplasias Colorrectales , Humanos , Neoplasias Colorrectales/prevención & control , Neoplasias Colorrectales/patología , Femenino , Masculino , Adolescente , Adulto , Niño , Factores de Riesgo , Persona de Mediana Edad , Adulto Joven
6.
J Ethnopharmacol ; 334: 118544, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39013542

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: WenTongGanPi Decoction (WTGPD) is a representative medical practice of the Fuyang School of Traditional Chinese Medicine (TCM), which originated from the classical Lu's Guizhi method. WTGPD places emphasis on the balance and functionality of yang qi, and is effective in treating TCM symptoms related to liver qi stagnation and spleen yang deficiency. In TCM, diarrhea-predominant irritable bowel syndrome (IBS-D) is often diagnosed as liver depression and spleen deficiency, and the use of WTGPD has shown significant therapeutic effect. However, the underlying mechanism of WTGPD treating IBS-D remains unclear. AIM OF THE STUDY: To explore the effect and mechanism of WTGPD in the treatment of IBS-D. MATERIALS AND METHODS: An IBS-D model with liver depression and spleen deficiency was constructed by chronic immobilization stress stimulation and sennae folium aqueous gavage. The impact of WTGPD on IBS-D rats was evaluated through measurements of body weight, fecal water content, and abdominal withdrawal reflex (AWR). Intestinal permeability was assessed using hematoxylin-eosin (HE), alcian blue-periodic acid schiff (AB-PAS), immunofluorescence (IF) staining, and quantitative real-time PCR (qRT-PCR). The components of WTGPD were analyzed using UPLC-Q-TOF-MS. The underlying mechanisms were investigated through network pharmacology, transcriptomics sequencing, western blot (WB), molecular docking, and 16S rRNA sequencing. RESULTS: WTGPD treatment effectively alleviated diarrhea and abnormal pain in IBS-D rats (P < 0.05). It enhanced the intestinal barrier function by improving colonic structure and increasing the expression of tight junction proteins (P < 0.05). A total of 155 components were identified in WTGPD. Both network pharmacology and transcriptomics sequencing analysis highlighted MAPK as the key signaling pathway in WTGPD's anti-IBS-D effect. The WB results showed a significant decrease in p-p38, p-ERK and p-JNK expression after WTGPD treatment (P < 0.0001). Guanosine, adenosine and hesperetin in WTGPD may be involved in regulating the phosphorylation of p38, ERK and JNK. Additionally, WTGPD significantly enhanced microbial diversity and increased the production of colonic valeric acid in IBS-D rats (P < 0.01). CONCLUSION: In conclusion, our findings suggest that WTGPD can effectively alleviate IBS-D and improve intestinal barrier likely via inhibiting MAPK signal pathway and improving micobial dysbiosis.


Asunto(s)
Diarrea , Medicamentos Herbarios Chinos , Mucosa Intestinal , Síndrome del Colon Irritable , Ratas Sprague-Dawley , Síndrome del Colon Irritable/tratamiento farmacológico , Animales , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Masculino , Diarrea/tratamiento farmacológico , Ratas , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Modelos Animales de Enfermedad , Permeabilidad , Simulación del Acoplamiento Molecular
7.
Materials (Basel) ; 17(14)2024 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-39063890

RESUMEN

Friction and wear are the main failure sources of face seals. When the surfaces of sealing rings exhibit greater roughness, the level of friction might increase and lead to sealing failure. Therefore, in this paper, based on the elastic contact hypothesis of rough and wavy surfaces and the influence of temperature on the elastic modulus of materials, a thermoelastic contact lubrication model of a gas-lubricated end seal is established. The novelty and advantage of this study is that it takes the effect of surface roughness into consideration during thermoelastic analysis of gas-lubricated seals. The film pressure, temperature, contact force and deformation of a gas spiral groove-faced seal are numerically determined. The influence of surface roughness on the contact distribution, deformation and temperature of the end-face seal at different speeds and pressures is analyzed. The film thickness increases as the rotational speed increases from 1 rpm to 2000 rpm, while the contact pressure sharply decreases from 0.25 kPa to 0. The analysis shows that the roughness contact mainly happens on the inner side of the rings due to convergent distortion of the seal faces, which easily causes partial wear of the seal faces. Moreover, it can also be found that the spiral grooves on the sealing surface can produce obvious hydrodynamic pressure effect due to the function of shear speed when the speed increases to 2000 rpm, while the film temperature increases from 293.3 K to about 306 K. The greater surface roughness results in a larger temperature rise under low-rotational-speed and lower-seal-pressure conditions, which further increases the risk of severe wear or even failure of the seal faces.

8.
Plants (Basel) ; 13(11)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38891365

RESUMEN

The plant hormone jasmonic acid plays an important role in plant growth and development, participating in many physiological processes, such as plant disease resistance, stress resistance, organ development, root growth, and flowering. With the improvement in living standards, people have higher requirements regarding the quality of vegetables. However, during the growth process of vegetables, they are often attacked by pests and diseases and undergo abiotic stresses, resulting in their growth restriction and decreases in their yield and quality. Therefore, people have found many ways to regulate the growth and quality of vegetable crops. In recent years, in addition to the role that JA plays in stress response and resistance, it has been found to have a regulatory effect on crop quality. Therefore, this study aims to review the jasmonic acid accumulation patterns during various physiological processes and its potential role in vegetable development and quality formation, as well as the underlying molecular mechanisms. The information provided in this manuscript sheds new light on the improvements in vegetable yield and quality.

9.
Phytomedicine ; 132: 155812, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38905845

RESUMEN

BACKGROUND: Inflammatory bowel disease (IBD) represents a significant global health challenge, and there is an urgent need to explore novel therapeutic interventions. Natural products have demonstrated highly promising effectiveness in the treatment of IBD. PURPOSE: This study systematically reviews the latest research advancements in leveraging natural products for IBD treatment. METHODS: This manuscript strictly adheres to the PRISMA guidelines. Relevant literature on the effects of natural products on IBD was retrieved from the PubMed, Web of Science and Cochrane Library databases using the search terms "natural product," "inflammatory bowel disease," "colitis," "metagenomics", "target identification", "drug delivery systems", "polyphenols," "alkaloids," "terpenoids," and so on. The retrieved data were then systematically summarized and reviewed. RESULTS: This review assessed the different effects of various natural products, such as polyphenols, alkaloids, terpenoids, quinones, and others, in the treatment of IBD. While these natural products offer promising avenues for IBD management, they also face challenges in terms of clinical translation and drug discovery. The advent of metagenomics, single-cell sequencing, target identification techniques, drug delivery systems, and other cutting-edge technologies heralds a new era in overcoming these challenges. CONCLUSION: This paper provides an overview of current research progress in utilizing natural products for the treatment of IBD, exploring how contemporary technological innovations can aid in discovering and harnessing bioactive natural products for the treatment of IBD.


Asunto(s)
Productos Biológicos , Enfermedades Inflamatorias del Intestino , Humanos , Productos Biológicos/uso terapéutico , Productos Biológicos/farmacología , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Alcaloides/uso terapéutico , Alcaloides/farmacología , Polifenoles/farmacología , Polifenoles/uso terapéutico , Sistemas de Liberación de Medicamentos , Terpenos/uso terapéutico , Animales , Fitoterapia , Descubrimiento de Drogas , Quinonas/uso terapéutico , Quinonas/farmacología
10.
J Colloid Interface Sci ; 673: 275-283, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38875793

RESUMEN

It has been widely accepted that the generation of reactive oxygen species such as superoxide radical, hydroxyl radical, and hydrogen peroxide during photocatalysis is responsible for the degradation of azo dyes. However, it is unclear which reactive oxygen species primarily contributes to the degradation efficiency of azo dyes. Here, we demonstrate that the directional regulation of reactive oxygen species in titanium dioxide (TiO2) to form superoxide radicals by ethylenediaminetetraacetic acid disodium salt (EDTA-2Na) can significantly improve the degradation performance of methyl orange. The optimized addition of EDTA-2Na can completely degrade azo dyes such as methyl orange, acid orange and alkaline orange at a concentration of 10 mg/L in about 20 min, which is not only higher than that achieved by pristine TiO2 under Xe lamp light but also far superior to the reported degradation efficiency of modified TiO2. Even under natural sunlight, this strategy can also effectively decompose azo dyes, demonstrating the great potential for practical water treatment using low-cost TiO2 photocatalysts.

11.
J Colloid Interface Sci ; 671: 344-353, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38815371

RESUMEN

In view of a catalyst layer (CL) with low-Pt causing higher local transport resistance of O2 (Rlocal), we propose a multi-study methodology that combines CO poisoning, the limiting current density method, and electrochemical impedance spectroscopy to reveal how real CL interfaces dominate Rlocal. Experimental results indicate that the ionomer is not evenly distributed on the catalyst surface, and the uniformity of ionomer distribution does not show a positive correlation with the ionomer content. When the ionomer coverage on the supported catalyst surface is below 20 %, the ECSA is only 10 m2·g-1, and the ionomer coverage on the supported catalyst surface reaches 60 %, the ECSA is close to 40 m2·g-1. The ECSA has a positive correlation with ionomer coverage. Because the ECSA is measured by CO poisoning, it can be inferred that the platinum contacted with ionomer can generate effective active sites. Furthermore, a more uniform distribution of ionomer can create additional proton transport channels and reduce the distance for oxygen transport from the catalyst layer bulk to the active sites. A higher ECSA and a shorter distance for oxygen transport will reduce the Rlocal, leading to better performance.

12.
Eur J Med Chem ; 271: 116437, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38701712

RESUMEN

As a cytosolic enzyme involved in the purine salvage pathway metabolism, purine nucleoside phosphorylase (PNP) plays an important role in a variety of cellular functions but also in immune system, including cell growth, apoptosis and cancer development and progression. Based on its T-cell targeting profile, PNP is a potential target for the treatment of some malignant T-cell proliferative cancers including lymphoma and leukemia, and some specific immunological diseases. Numerous small-molecule PNP inhibitors have been developed so far. However, only Peldesine, Forodesine and Ulodesine have entered clinical trials and exhibited some potential for the treatment of T-cell leukemia and gout. The most recent direction in PNP inhibitor development has been focused on PNP small-molecule inhibitors with better potency, selectivity, and pharmacokinetic property. In this perspective, considering the structure, biological functions, and disease relevance of PNP, we highlight the recent research progress in PNP small-molecule inhibitor development and discuss prospective strategies for designing additional PNP therapeutic agents.


Asunto(s)
Inhibidores Enzimáticos , Purina-Nucleósido Fosforilasa , Bibliotecas de Moléculas Pequeñas , Purina-Nucleósido Fosforilasa/antagonistas & inhibidores , Purina-Nucleósido Fosforilasa/metabolismo , Humanos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/síntesis química , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Estructura Molecular , Animales , Antineoplásicos/farmacología , Antineoplásicos/química , Relación Estructura-Actividad , Desarrollo de Medicamentos
13.
Lett Appl Microbiol ; 77(7)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38719546

RESUMEN

Aeromonas dhakensis is reported as an emerging pathogenic species within the genus Aeromonas and is widely distributed in tropical coastal areas. This study provided a detailed description and characterization of a strain of A. dhakensis (202108B1) isolated from diseased Ancherythroculter nigrocauda in an inland region of China. Biochemical tests identified the isolate at the genus level, and the further molecular analysis of concatenated housekeeping gene sequences revealed that the strain belonged to the species A. dhakensis. The isolated A. dhakensis strain was resistant to five antibiotics, namely, penicillin, ampicillin, clindamycin, cephalexin, and imipenem, while it was susceptible to or showed intermediate resistance to most of the other 15 tested antibiotics. The isolated strain of A. dhakensis caused acute hemorrhagic septicemia and tissue damage in artificially infected A. nigrocauda, with a median lethal dose of 7.76 × 104 CFU/fish. The genome size of strain 202108B1 was 5 043 286 bp, including 1 chromosome and 4 plasmids. This is the first detailed report of the occurrence of infection caused by an A. dhakensis strain causing infection in an aquaculture system in inland China, providing important epidemiological data on this potential pathogenic species.


Asunto(s)
Aeromonas , Antibacterianos , Enfermedades de los Peces , Infecciones por Bacterias Gramnegativas , China , Aeromonas/genética , Aeromonas/aislamiento & purificación , Aeromonas/clasificación , Aeromonas/efectos de los fármacos , Aeromonas/patogenicidad , Animales , Antibacterianos/farmacología , Enfermedades de los Peces/microbiología , Infecciones por Bacterias Gramnegativas/microbiología , Infecciones por Bacterias Gramnegativas/veterinaria , Peces/microbiología , Filogenia , Pruebas de Sensibilidad Microbiana , Acuicultura , Genoma Bacteriano , ARN Ribosómico 16S/genética , Plásmidos/genética
14.
ACS Appl Mater Interfaces ; 16(19): 24840-24850, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38700749

RESUMEN

Gel polymer electrolytes are an indispensable part of flexible supercapacitors, since their various characteristics determine the device performance. Here, a composite gel electrolyte (FLPS) mainly consisting of polyvinyl alcohol (PVA), sodium alginate (SA), K3Fe(CN)6/K4Fe(CN)6, and LiCl is rationally designed, in which PVA and SA form a robust three-dimensional network, the redox pair of K3Fe(CN)6/K4Fe(CN)6 serves as a cross-linking agent with SA and even donates the oxidation-reduction reaction from the Fe3+/Fe2+ couple with additional capacitance for the device, and LiCl functions as an ion carrier and a water-retaining salt to improve the long-term stability of FLPS. Thus, the FLPS-based supercapacitor exhibits superior electrochemical characteristics, displaying impressive pseudocapacitance across all current densities and excellent cycling stability (∼99.07% of capacitance retention after 10,000 cycles). Moreover, the FLPS-based supercapacitor demonstrates great low-temperature working ability and pressure responsiveness, suggesting its freeze-resistance, flexibility, and pressure sensing potential. This work provides a promising strategy for preparing tough gel polymer electrolytes with both ion transfer and charge storage ability.

15.
Artículo en Inglés | MEDLINE | ID: mdl-38716540

RESUMEN

Bone cancer pain (BCP), due to cancer bone metastasis and bone destruction, is a common symptom of tumors, including breast, prostate, and lung tumors. Patients often experience severe pain without effective treatment. Here, using a mouse model of bone cancer, we report that MOTS-c, a novel mitochondrial-derived peptide, confers remarkable protection against cancer pain and bone destruction. Briefly, we find that the plasma level of endogenous MOTS-c is significantly lower in the BCP group than in the sham group. Accordingly, intraperitoneal administration of MOTS-c robustly attenuates bone cancer-induced pain. These effects are blocked by compound C, an AMPK inhibitor. Furthermore, MOTS-c treatment significantly enhances AMPKα 1/2 phosphorylation. Interestingly, mechanical studies indicate that at the spinal cord level, MOTS-c relieves pain by restoring mitochondrial biogenesis, suppressing microglial activation, and decreasing the production of inflammatory factors, which directly contribute to neuronal modulation. However, in the periphery, MOTS-c protects against local bone destruction by modulating osteoclast and immune cell function in the tumor microenvironment, providing long-term relief from cancer pain. Additionally, we find that chronic administration of MOTS-c has little effect on liver, renal, lipid or cardiac function in mice. In conclusion, MOTS-c improves BCP through peripheral and central synergistic effects on nociceptors, immune cells, and osteoclasts, providing a pharmacological and biological rationale for the development of mitochondrial peptide-based therapeutic agents for cancer-induced pain.

16.
Heliyon ; 10(9): e30456, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38720716

RESUMEN

Potatoes, as a high-nitrogen (N)-demand crop, are strongly influenced by both the quantity and form of N supply. Previous studies have demonstrated that applying nitrate N prior to tuber formation and ammonium N post-tuber formation can substantially enhance potato yields and improve N fertilizer use efficiency. However, the ammonium N introduced into the soil undergoes nitrification, creating challenges in aligning the N supply form with the needs of potatoes. This study explored novel N regulation strategies aimed at augmenting potato yields and improving N fertilizer use efficiency. Two field experiments were conducted from 2020 to 2022. Experiment 1 involved four N gradients, namely no N, 150 kg N ha-1, 300 kg N ha-1, and 450 kg N ha-1. Soil samples were collected regularly to determine the transformation patterns of soil ammonium N during potato growth. Experiment 2 included three N management practices: farmer practice (Con), "nitrate followed by ammonium" with nitrification inhibitor (N-NI), and optimization (the soil ammonium N transformation-based split application of N fertilizer, Opt). The potato yield and N fertilizer use efficiency were compared to assess the performance of the optimized strategy. The results showed that 90 % of the ammonium N transformed 20 days after the basal dressing of N. When N fertilizer was applied as top dressing during the tuber formation and bulking stages, more than 90 % of ammonium N was transformed after 10 days. The optimized strategy resulted in a 20 % increase in potato yield, a 20 % increase in N fertilizer partial factor productivity, and a 12-20 % reduction in residual inorganic N in the 0-60 cm soil layer. This suggests that ammonium N applied as base fertilizer exhibits a relatively slow transformation rate, while applying ammonium N as top dressing during the tuber formation and bulking stages accelerates the transformation rate. The split application of ammonium N based on soil ammonium N transformation patterns can improve the alignment between the N supply form with the specific demands of potatoes.

17.
Angew Chem Int Ed Engl ; 63(25): e202403949, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38613188

RESUMEN

Quasi-solid polymer electrolyte (QPE) lithium (Li)-metal battery holds significant promise in the application of high-energy-density batteries, yet it suffers from low ionic conductivity and poor oxidation stability. Herein, a novel self-built electric field (SBEF) strategy is proposed to enhance Li+ transportation and accelerate the degradation dynamics of carbon-fluorine bond cleavage in LiTFSI by optimizing the termination of MXene. Among them, the SBEF induced by dielectric Nb4C3F2 MXene effectively constructs highly conductive LiF-enriched SEI and CEI stable interfaces, moreover, enhances the electrochemical performance of the QPE. The related Li-ion transfer mechanism and dual-reinforced stable interface are thoroughly investigated using ab initio molecular dynamics, COMSOL, XPS depth profiling, and ToF-SIMS. This comprehensive approach results in a high conductivity of 1.34 mS cm-1, leading to a small polarization of approximately 25 mV for Li//Li symmetric cell after 6000 h. Furthermore, it enables a prolonged cycle life at a high voltage of up to 4.6 V. Overall, this work not only broadens the application of MXene for QPE but also inspires the great potential of the self-built electric field in QPE-based high-voltage batteries.

18.
Medicine (Baltimore) ; 103(16): e37796, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38640283

RESUMEN

BACKGROUND: Asthma ranks among the most prevalent non-communicable diseases worldwide. Previous studies have elucidated the significant role of the immune system in its pathophysiology. Nevertheless, the immune-related mechanisms underlying asthma are complex and still inadequately understood. Thus, our objective was to investigate novel key biomarkers and immune infiltration characteristics associated with asthma by employing integrated bioinformatics tools. METHODS: In this study, we conducted a weighted gene co-expression network analysis (WGCNA) to identify key modules and genes potentially implicated in asthma. Functional annotation of these key modules and genes was carried out through gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Additionally, we constructed a protein-protein interaction (PPI) network using the STRING database to identify 10 hub genes. Furthermore, we evaluated the relative proportion of immune cells in bronchial epithelial cell samples from 20 healthy individuals and 88 asthmatic patients using CIBERSORT. Finally, we validated the hub genes and explored their correlation with immune infiltration. RESULTS: Furthermore, 20 gene expression modules and 10 hub genes were identified herein. Among them, complement component 3 (C3), prostaglandin I2 receptor (PTGIR), parathyroid hormone-like hormone (PTHLH), and C-X3-C motif chemokine ligand 1 (CX3CL1) were closely correlated with the infiltration of immune cells. They may be novel candidate biomarkers or therapeutic targets for asthma. Furthermore, B cells memory, and plasma cells might play an important role in immune cell infiltration after asthma. CONCLUSIONS: C3, PTGIR, CX3CL1, and PTHLH have important clinical diagnostic values and are correlated with infiltration of multiple immune cell types in asthma. These hub genes, B cells memory, and plasma cells may become important biological targets for therapeutic asthma drug screening and drug design.


Asunto(s)
Asma , Células Epiteliales , Humanos , Asma/genética , Biomarcadores , Biología Computacional , Bases de Datos Factuales , Redes Reguladoras de Genes
19.
Adv Sci (Weinh) ; 11(19): e2308584, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38483019

RESUMEN

Mechanical metamaterials are often designed with particular properties for specific load-bearing functions. Alternatively, this study aims to create a class of active lattice metamaterials, dubbed self-activated solids, that can learn desired stiffness tensors from the elastic deformations they experienced, a crucial feature to improve the performance, efficiency, and functionality of materials. Artificial adaptive matters that combine sensory, control, and actuation elements can offer appealing solutions. However, challenges still remain: The designs will rely on accurate off-line and global computations, as well as intricate coordination among individual elements. Here, a simple online and local learning strategy is initiated based on contrastive Hebbian learning to gradually guide self-activated solids to possess sought-after stiffness tensors autonomously and reversibly. During learning, the bond stiffness of the active lattice varies depending only on its local strain. The numerical tests show that the self-activated solid can not only achieve the desired bulk, shear, and coupling moduli but also manifest uni-mode and bi-mode extremal materials by itself after experiencing the corresponding elastic deformations. Further, the self-activated solid can also achieve the desired time-varying moduli when exposed to temporally different loads. The design is applicable to any lattice geometries and is resistant to damage and instabilities. The material design approach and the physical learning strategy suggested can benefit the design of autonomous materials, physical learning machines, and adaptive robots.

20.
Front Plant Sci ; 15: 1305768, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38434435

RESUMEN

Plant species loss, driven by global changes and human activities, can have cascading effects on other trophic levels, such as arthropods, and alter the multitrophic structure of ecosystems. While the relationship between plant diversity and arthropod communities has been well-documented, few studies have explored the effects of species composition variation or plant functional groups. In this study, we conducted a long-term plant removal experiment to investigate the impact of plant functional group loss (specifically targeting tall grasses and sedges, as well as tall or short forbs) on arthropod diversity and their functional groups. Our findings revealed that the removal of plant functional groups resulted in increased arthropod richness, abundance and the exponential of Shannon entropy, contrary to the commonly observed positive correlation between plant diversity and consumer diversity. Furthermore, the removal of different plant groups had varying impacts on arthropod trophic levels. The removal of forbs had a more pronounced impact on herbivores compared to graminoids, but this impact did not consistently cascade to higher-trophic arthropods. Notably, the removal of short forbs had a more significant impact on predators, as evidenced by the increased richness, abundance, the exponential of Shannon entropy, inverse Simpson index and inverse Berger-Parker index of carnivores and abundance of omnivores, likely attributable to distinct underlying mechanisms. Our results highlight the importance of plant species identity in shaping arthropod communities in alpine grasslands. This study emphasizes the crucial role of high plant species diversity in controlling arthropods in natural grasslands, particularly in the context of plant diversity loss caused by global changes and human activities.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA