Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
Eur J Med Chem ; 272: 116460, 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38704943

RESUMEN

It has been reported that 4,5-dihydropyrazole and thiazole derivatives have many biological functions, especially in the aspect of anti-inflammation. According to the strategy of pharmacophore combination, we introduced thiazolinone and dihydropyrazole moiety into steroid skeleton to design and synthesize a novel series of D-ring substituted steroidal 4,5-dihydropyrazole thiazolinone derivatives, and assessed their in vitro anti-inflammatory profiles against Lipopolysaccharide (LPS)-induced inflammation in RAW 264.7 macrophage cells. The anti-inflammatory activities assay demonstrated that compound 12e was considered as the most effective anti-inflammatory drug, which suppressed the expression of pro-inflammatory mediators including nitric oxide (NO), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α), it also dose-dependently inhibited the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in LPS-induced RAW 264.7 macrophage cells. Furthermore, the results of the Western blot analysis showed a correlation between the inhibition of the Nuclear factor-kappa B (NF-κB) and Mitogen-activated protein kinases (MAPKs) signaling pathways and the suppressive effects of compound 12e on pro-inflammatory cytokines. Molecular docking studies of compound 12e into the COX-2 protein receptor (PDB ID: 5IKQ) active site was performed to rationalize their COX-2 inhibitory potency. The results were found to be in line with the biological findings as they exerted more favorable interactions compared to that of dexamethasone (DXM), explaining their remarkable COX-2 inhibitory activity. The findings revealed that these candidates could be identified as potent anti-inflammatory agents, compound 12e could be a promising drug for the treatment of inflammatory diseases.

2.
Physiol Plant ; 176(3): e14333, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38710501

RESUMEN

Condensed tannins are widely present in the fruits and seeds of plants and effectively prevent them from being eaten by animals before maturity due to their astringent taste. In addition, condensed tannins are a natural compound with strong antioxidant properties and significant antibacterial effects. Four samples of mature and near-mature Quercus fabri acorns, with the highest and lowest condensed tannin content, were used for genome-based transcriptome sequencing. The KEGG enrichment analysis revealed that the differentially expressed genes (DEGs) were highly enriched in phenylpropanoid biosynthesis and starch and sucrose metabolism. Given that the phenylpropanoid biosynthesis pathway is a crucial step in the synthesis of condensed tannins, we screened for significantly differentially expressed transcription factors and structural genes from the transcriptome data of this pathway and found that the expression levels of four MADS-box, PAL, and 4CL genes were significantly increased in acorns with high condensed tannin content. The quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) experiment further validated this result. In addition, yeast one-hybrid assay confirmed that three MADS-box transcription factors could bind the promoter of the 4CL gene, thereby regulating gene expression levels. This study utilized transcriptome sequencing to discover new important regulatory factors that can regulate the synthesis of acorn condensed tannins, providing new evidence for MADS-box transcription factors to regulate the synthesis of secondary metabolites in fruits.


Asunto(s)
Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Proantocianidinas , Quercus , Proantocianidinas/metabolismo , Proantocianidinas/biosíntesis , Quercus/genética , Quercus/metabolismo , Transcriptoma/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Frutas/genética , Frutas/metabolismo
3.
Int J Biol Macromol ; 261(Pt 2): 129857, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38307438

RESUMEN

The application of CO2 supercritical fluid (SCF) technology has developed rapidly because of its non-toxic, environmentally friendly, mild reaction conditions and safety. The SCF technology can effectively speed up the reaction process of nano-material synthesis, and maintains a high degree of controllability and repeatability. This study mainly included carboxymethyl chitosan sodium salt (CCS), citral (CT), p-coumaric acid (CA), and ZnSO4 as raw materials to prepare CCS-CT-CA-Zn complex as a pH-responsive agent and was investigated using supercritical fluid technique. The coordination structure of Bridge-CCS-CT-CH3COO-CA-Zn-Schiff base/OH and the morphology of the complex agents were verified. The prepared CCS-CT-CA-Zn complex showed good dispersion and uniformity (mean size: 852 ± 202 nm, PdI: 0.301, and mean zeta potential: -31 ± 6 mV). Also, it has a good pH responsive release in an acid environment. Besides, both of CCS-CT-CA-Zn complex (DS-B) and its decomposed mixture in acid (DS-A) demonstrated significant antioxidant and anti-vibrio activity. Moreover, both DS-B complex and DS-A mixture inhibited biofilm formation, swimming, and swarming motilities of V. parahaemolyticus in a dose-dependent manner. This work will provide a scientific basis for the further design and development of natural products derived antibacterial-antioxidant complex agents, food additives and feed additives.


Asunto(s)
Monoterpenos Acíclicos , Quitosano , Quitosano/farmacología , Quitosano/química , Zinc/química , Bases de Schiff/farmacología , Bases de Schiff/química , Antioxidantes/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Concentración de Iones de Hidrógeno
4.
Int J Food Microbiol ; 411: 110512, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38043475

RESUMEN

Litsea cubeba essential oil (LCEO) is a broad-spectrum bacteriostatic substance produced from the fruit of the Litsea tree that has been used for the treatment of various diseases in China for thousands of years. Here, the antifungal activities of LCEO against 10 different fungi (Naganishia diffluens, Fusarium sacchari, Cladosporium tenuissimum, Fusarium proliferatum, Fusarium verticillioides, Fusarium subglutinans, Mucor racemosus, Penicillium oxalicum, Penicillium chrysogenum, and Aspergillus niger) that cause rot to waxberries were assessed. The chemical components of LCEO and its modes of action against P. oxalicum were investigated. Citral (32.62 %) was characterized as the main component of LCEO by gas chromatography-mass spectrometry. LCEO exhibited excellent antifungal activities against all 10 fungi. The minimum inhibitory concentration (MIC) and minimum fungicidal concentration of LCEO against P. oxalicum were 2.24 and 4.48 g/L, respectively. Furthermore, LCEO (MIC) compromised membrane permeability and integrity, caused leakage of the cell components, and increased production of malondialdehyde and reactive oxygen species. Scanning electron microscopy and transmission electron microscopy indicated that the morphology and ultrastructure of the LCEO-treated hyphal cell membrane and organelles were severely damaged. Meanwhile, LCEO increased the shelf life of waxberries from 1-2 to 5-6 d. LCEO is a potential ecologically friendly alternative to commercial fungicides to inhibit postharvest fungal contamination of waxberries during shipment and storage.


Asunto(s)
Litsea , Aceites Volátiles , Penicillium , Aceites Volátiles/farmacología , Aceites Volátiles/química , Antifúngicos/farmacología , Litsea/química , Aspergillus niger
5.
Plant Physiol ; 194(3): 1674-1691, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-37831423

RESUMEN

Lineage-specific terpenoids have arisen throughout the evolution of land plants and are believed to play a role in interactions between plants and the environment. Species-specific gene clusters in plants have provided insight on the evolution of secondary metabolism. Lauraceae is an ecologically important plant family whose members are also of considerable economic value given their monoterpene contents. However, the gene cluster responsible for the biosynthesis of monoterpenes remains yet to be elucidated. Here, a Lauraceae-specific citral biosynthetic gene cluster (CGC) was identified and investigated using a multifaceted approach that combined phylogenetic, collinearity, and biochemical analyses. The CGC comprises MYB44 as a regulator and 2 alcohol dehydrogenases (ADHs) as modifying enzymes, which derived from species-specific tandem and proximal duplication events. Activity and substrate divergence of the ADHs has resulted in the fruit of mountain pepper (Litsea cubeba), a core Lauraceae species, consisting of more than 80% citral. In addition, MYB44 negatively regulates citral biosynthesis by directly binding to the promoters of the ADH-encoding genes. The aggregation of citral biosynthetic pathways suggests that they may form the basis of important characteristics that enhance adaptability. The findings of this study provide insights into the evolution of and the regulatory mechanisms involved in plant terpene biosynthesis.


Asunto(s)
Monoterpenos Acíclicos , Lauraceae , Factores de Transcripción , Factores de Transcripción/genética , Filogenia , Alcohol Deshidrogenasa , Monoterpenos
6.
Int J Mol Sci ; 24(23)2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-38068969

RESUMEN

The basic leucine zipper (bZIP) family is one of the largest families of transcription factors among eukaryotic organisms. Members of the bZIP family play various roles in regulating the intricate process of flower development in plants. Litsea cubeba (Lour.) (family: Lauraceae) is an aromatic, dioecious plant used in China for a wide range of applications. However, no study to date has undertaken a comprehensive analysis of the bZIP gene family in L. cubeba. In this work, we identified 68 members of the bZIP gene family in L. cubeba and classified them into 12 subfamilies based on previous studies on Arabidopsis thaliana. Transcriptome data analysis revealed that multiple LcbZIP genes exhibit significantly high expression levels in the flowers of L. cubeba, while some also demonstrate distinct temporal specificity during L. cubeba flower development. In particular, some LcbZIP genes displayed specific and high expression levels during the stamen and pistil degradation process. Using differential gene expression analysis, weighted gene co-expression network analysis, and Gene Ontology enrichment analysis, we identified six candidate LcbZIP genes that potentially regulate stamen or pistil degradation during flower development. In summary, our findings provide a framework for future functional analysis of the LcbZIP gene family in L. cubeba and offer novel insights for investigating the mechanism underlying pistil and stamen degeneration in this plant.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico , Litsea , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Litsea/genética , Perfilación de la Expresión Génica , Transcriptoma , Flores/metabolismo , Filogenia , Regulación de la Expresión Génica de las Plantas
7.
Tree Physiol ; 43(12): 2150-2161, 2023 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-37682081

RESUMEN

Litsea cubeba, the core species of the Lauraceae family, is valuable for the production of essential oils due to its high concentration of monoterpenes (90%). The key monoterpene synthase and metabolic regulatory network of monoterpene biosynthesis have provided new insights for improving essential oil content. However, there are few studies on the regulation mechanism of monoterpenes in L. cubeba. In this study, we investigated LcTPS32, a member of the TPS-b subfamily, and identified its function as an enzyme for the synthesis of monoterpenes, including geraniol, α-pinene, ß-pinene, ß-myrcene, linalool and eucalyptol. The quantitative real-time PCR analysis showed that LcTPS32 was highly expressed in the fruits of L. cubeba and contributed to the characteristic flavor of its essential oil. Overexpression of LcTPS32 resulted in a significant increase in the production of monoterpenes in L. cubeba by activating both the MVA and MEP pathways. Additionally, the study revealed that LcMYB106 played a negative regulatory role in monoterpenes biosynthesis by directly binding to the promoter of LcTPS32. Our study indicates that LcMYB106 could serve as a crucial target for metabolic engineering endeavors, aiming at enhancing the monoterpene biosynthesis in L. cubeba.


Asunto(s)
Litsea , Aceites Volátiles , Litsea/genética , Litsea/química , Litsea/metabolismo , Monoterpenos/metabolismo , Aceites Volátiles/metabolismo , Eucaliptol
8.
Molecules ; 28(12)2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-37375273

RESUMEN

Mulberry leaves are a well-known traditional Chinese medicine herb, and it has been observed since ancient times that leaves collected after frost have superior medicinal properties. Therefore, understanding the changes in critical metabolic components of mulberry leaves, specifically Morus nigra L., is essential. In this study, we conducted widely targeted metabolic profiling analyses on two types of mulberry leaves, including Morus nigra L. and Morus alba L., harvested at different times. In total, we detected over 100 compounds. After frost, 51 and 58 significantly different metabolites were identified in the leaves of Morus nigra L. and Morus alba L., respectively. Further analysis revealed a significant difference in the effect of defrosting on the accumulation of metabolites in the two mulberries. Specifically, in Morus nigra L., the content of 1-deoxynojirimycin (1-DNJ) in leaves decreased after frost, while flavonoids peaked after the second frost. In Morus alba L., the content of DNJ increased after frost, reaching its peak one day after the second frost, whereas flavonoids primarily peaked one week before frost. In addition, an analysis of the influence of picking time on metabolite accumulation in two types of mulberry leaves demonstrated that leaves collected in the morning contained higher levels of DNJ alkaloids and flavonoids. These findings provide scientific guidance for determining the optimal harvesting time for mulberry leaves.


Asunto(s)
Alcaloides , Morus , Morus/metabolismo , Flavonoides/análisis , 1-Desoxinojirimicina/metabolismo , Alcaloides/metabolismo , Hojas de la Planta/química , Extractos Vegetales/metabolismo
9.
Int J Mol Sci ; 24(8)2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37108396

RESUMEN

The WRKY gene family is one of the most significant transcription factor (TF) families in higher plants and participates in many secondary metabolic processes in plants. Litsea cubeba (Lour.) Person is an important woody oil plant that is high in terpenoids. However, no studies have been conducted to investigate the WRKY TFs that regulate the synthesis of terpene in L. cubeba. This paper provides a comprehensive genomic analysis of the LcWRKYs. In the L. cubeba genome, 64 LcWRKY genes were discovered. According to a comparative phylogenetic study with Arabidopsis thaliana, these L. cubeba WRKYs were divided into three groups. Some LcWRKY genes may have arisen from gene duplication, but the majority of LcWRKY evolution has been driven by segmental duplication events. Based on transcriptome data, a consistent expression pattern of LcWRKY17 and terpene synthase LcTPS42 was found at different stages of L. cubeba fruit development. Furthermore, the function of LcWRKY17 was verified by subcellular localization and transient overexpression, and overexpression of LcWRKY17 promotes monoterpene synthesis. Meanwhile, dual-Luciferase and yeast one-hybrid (Y1H) experiments showed that the LcWRKY17 transcription factor binds to W-box motifs of LcTPS42 and enhances its transcription. In conclusion, this research provided a fundamental framework for future functional analysis of the WRKY gene families, as well as breeding improvement and the regulation of secondary metabolism in L. cubeba.


Asunto(s)
Arabidopsis , Litsea , Humanos , Factores de Transcripción/metabolismo , Litsea/genética , Filogenia , Fitomejoramiento , Arabidopsis/genética , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Terpenos/metabolismo , Monoterpenos/metabolismo
10.
Int J Biol Macromol ; 239: 124355, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37023879

RESUMEN

Vibrio parahemolyticus is the "Number one killer" of seafood products. Anti-vibrio agents having low cost and high-safety are urgently needed to supplement the application needs. This work attempted to prepare CS-CT-CCa complex with citral (CT), chitosan (CS) and calcium citrate (CCa) as raw material by microwave-assisted high-pressure homogenization. Additionally the coordination structure and morphology of Bridge-CS-CT-Schiff base/OH-CCa were verified. The prepared CS-CT-CCa had a well-dispersed property (the size: 3.55~9.33 µm and the zeta potential: +38.7~+67.5 mV) and an excellent sustained released ability (sustained release up to 180 min). MIC, Glucose assay, MDA assay, biofilm formation inhibition assay, SEM, swimming and swarming motility assay demonstrated that CS-CT-CCa had strong (MIC of 128 µg/mL) and sustained (more than 12 h) inhibitory effects against V. parahaemolyticus. Meanwhile, CS-CT-CCa could increase the membrane permeability of V. parahaemolyticus and inhibit their biofilm-forming ability in a dose-dependent manner. It could be inferred that the antibacterial activities against V. parahaemolyticus caused inhibition of biofilm formation, swimming and swarming motilities. This study provided necessary data for the further design and development of chitosan antibacterial agents, food and feed additives.


Asunto(s)
Antibacterianos , Quitosano , Antibacterianos/farmacología , Antibacterianos/química , Quitosano/química , Calcio/farmacología , Citrato de Calcio/farmacología , Bases de Schiff/farmacología , Preparaciones de Acción Retardada/farmacología , Biopelículas
11.
Int J Biol Macromol ; 232: 123378, 2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-36716839

RESUMEN

Litsea cubeba, an aromatic species of the Lauraceae family, produces a diverse array of monoterpenes. The biosynthesis of monoterpenes is regulated by transcriptional factors (TFs), such as APETALA2/ethylene response factor (AP2/ERF). However, the regulatory mechanisms that control the AP2/ERF gene responsible for the biosynthesis of monoterpenes in L. cubeba have yet to be elucidated. Here, we identified an AP2/ERF gene, LcERF134, as an activator for the accumulation of citral and other monoterpenes. The expression level of LcERF134 was consistent with terpene synthase LcTPS42 in the pericarp. The transient overexpression of LcERF134 significantly increased monoterpene production in L. cubeba as well as the expression of rate-limiting genes involved in the monoterpene biosynthesis pathway. Furthermore, yeast one-hybrid, dual-luciferase and electrophoretic mobility shift assays demonstrated that LcERF134 activated the monoterpene biosynthesis pathway by directly binding to the GCC-box elements of the LcTPS42 and LcGPPS.SSU1 promoters. However, the overexpression of LcERF134 in tomatoes had no impact on the synthesis of monoterpenes, thus indicating that LcERF134 is a species-specific TF. Our research demonstrated that LcERF134 significantly increased the biosynthesis of monoterpenes by inducing the expression of LcTPS42 and LcGPPS.SSU1, thus offering insight into how to enhance the flavor of L. cubeba essential oil.


Asunto(s)
Litsea , Aceites Volátiles , Monoterpenos/farmacología , Litsea/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
12.
Front Microbiol ; 13: 1071530, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36560956

RESUMEN

Burkholderia arboris, which belongs to the Burkholderia cepacia complex, has been shown to possess antifungal activity against several plant fungal pathogens; however, the antifungal compounds are yet to be identified. Here, we identified the antifungal compounds produced by B. arboris using genetic and metabolomic approaches. We generated a Tn5 transposon mutation library of 3,000 B. arboris mutants and isolated three mutants with reduced antifungal activity against the plant fungal pathogen Fusarium oxysporum. Among the mutants, the M464 mutant exhibited the weakest antifungal activity. In the M464 genome, the transposon was inserted into the cobA gene, encoding uroporphyrin-III methyltransferase. Deletion of the cobA gene also resulted in reduced antifungal activity, indicating that the cobA gene contributed to the antifungal activity of B. arboris. Furthermore, a comparison of the differential metabolites between wild type B. arboris and the ∆cobA mutant showed a significantly decreased level of tetrapeptide His-Ala-Phe-Lys (Hafk) in the ∆cobA mutant. Therefore, a Hafk peptide with D-amino acid residues was synthesized and its antifungal activity was evaluated. Notably, the Hafk peptide displayed significant antifungal activity against F. oxysporum and Botrytis cinerea, two plant pathogens that cause destructive fungal diseases. Overall, a novel antifungal compound (Hafk) that can be used for the biocontrol of fungal diseases in plants was identified in B. arboris.

13.
Front Plant Sci ; 13: 1031769, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36466227

RESUMEN

Salix L. (willows) is one of the most taxonomically complex genera of flowering plants, including shrubs, tall trees, bushes, and prostrate plants. Despite the high species diversity, only five mitochondrial genomes (mitogenomes) have been released in this genus. Salix wilsonii is an important ornamental and economic willow tree in section Wilsonia of the genus Salix. In this study, the S. wilsonii mitogenome was assembled into a typical circular structure with a size of 711,456 bp using PacBio HiFi sequencing. A total of 58 genes were annotated in the S. wilsonii mitogenome, including 33 protein-coding genes (PCGs), 22 tRNAs, and 3 rRNAs. In the S. wilsonii mitogenome, four genes (mttB, nad3, nad4, and sdh4) were found to play important roles in its evolution through selection pressure analysis. Collinearity analysis of six Salix mitogenomes revealed high structural variability. To determine the evolutionary position of S. wilsonii, we conducted a phylogenetic analysis of the mitogenomes of S. wilsonii and 12 other species in the order Malpighiales. Results strongly supported the segregation of S. wilsonii and other five Salix species with 100% bootstrap support. The comparative analysis of the S. wilsonii mitogenome not only sheds light on the functional and structural features of S. wilsonii but also provides essential information for genetic studies of the genus Salix.

14.
Hortic Res ; 9: uhac093, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35912071

RESUMEN

The APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF) transcription factors (TFs) are involved in the regulation of specialized terpenoid biosynthesis. However, the AP2/ERF TFs in Litsea cubeba have not been characterized and their role in the biosynthesis of terpenoids is unknown. Here, 174 LcAP2/ERF TFs were identified in L. cubeba and categorized into four subfamilies: 27 AP2, 7 RAV, 1 Soloist, and 139 ERF. Transcriptomic and qRT-PCR assays both showed that the expression levels of LcERF19 were similar to that of terpene synthase LcTPS42 in the pericarp, which is related to the synthesis of geranial and neral in L. cubeba. LcERF19 was further shown to encode a nuclear-localized protein and its expression was strongly induced by jasmonate. Yeast one-hybrid and dual-luciferase assays showed that LcERF19 associated with GCC box elements of the LcTPS42 promoter and promoted its activity. Transient overexpression of LcERF19 in L. cubeba and overexpression of LcERF19 in tomato resulted in a significant increase in geranial and neral. Our findings show that LcERF19 enhances geranial and neral biosynthesis through activation of LcTPS42 expression, which provides a strategy to improve the flavor of tomato and other fruits.

15.
Mitochondrial DNA B Resour ; 7(4): 585-586, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35386635

RESUMEN

Cinnamomum pauciflorum is a valuable aromatic tree of the genus Cinnamomum Trew in the family Lauraceae. To better determine its phylogenetic location with other Cinnamomum species, the complete chloroplast (cp) genome of C. pauciflorum was sequenced. The total cp genome size is 152,766 bp, consisting of a pair of inverted repeats (IRa/b) with a length of 20,074 bp separated by a large single-copy region (LSC) and a small single-copy region (SSC) which are 93,693 and 18,925 bp, respectively. The overall GC content of the cp genome is 39.14%. Maximum-likelihood analysis showed that C. pauciflorum has phylogenetic affinities with Cinnamomum osmophloeum, Cinnamomum aromaticum, Cinnamomum mollifolium, and Cinnamomum tenuipile, providing new insight into the evolution of Lauraceae.

16.
Plants (Basel) ; 11(5)2022 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-35270149

RESUMEN

Quercus fabri Hance, Quercus serrata Thunb, Quercus acutissima Carruth, and Quercus variabilis BL are four Chinese oak species commonly used for forestation. To ensure the survival of seedlings, we first need to understand the differences in drought resistance of the four oak species at the seedling stage, and comprehensively evaluate their drought resistance capabilities. The four oak seedlings were divided into drought-rewatering treatment group and well watered samples (control group). For the seedlings of the drought-rewatering treatment group, drought stress lasting 31 days was used, and then re-watering for 5 days. The water parameters, osmotic solutes content, antioxidant enzyme activity and photosynthesis parameters of the seedlings in the two groups were measured every 5 days. Compared with the control group, the relative water content, water potential, net photosynthetic rate, transpiration rate, and stomatal conductance levels of the four oaks all showed a downward trend under continuous drought stress, and showed an upward trend after rehydration. The soluble protein, soluble sugar, proline, peroxidase, superoxide dismutase and catalase content of the four oaks increased first and then decreased under drought stress, and then increased after rehydration. The content of glycine betaine and malondialdehyde continued to increase, and gradually decreased after rehydration. The weight of each index was calculated by principal component analysis, and then the comprehensive evaluation of each index was carried out through the membership function method. The drought resistance levels of the four oak species were as follows: Q. serrata > Q. fabri > Q. variabilis > Q. acutissima.

17.
Mitochondrial DNA B Resour ; 7(2): 312-313, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35141406

RESUMEN

Cinnamomum tenuipile Kosterm is a precious aromatic tree in Lauraceae. To better determine its phylogenetic location with other Cinnamomum species, the chloroplast genome of C. tenuipile was sequenced. The complete chloroplast genome size is 152,761 bp, consisting of a pair of inverted repeats (IRa/b) with a length of 20,074 bp separated by a large single-copy region (LSC) and a small single-copy region (SSC) which are 93,685 and 18,928 bp, respectively. The overall GC content of the cp genome is 39.16%. The maximum-likelihood phylogenetic tree showed that C. tenuipile is more closely related to C. aromaticum, providing new insight into the evolution of Lauraceae.

18.
J Chromatogr Sci ; 61(1): 15-31, 2022 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-35134870

RESUMEN

Chaenomeles speciosa (Sweet) Nakai (C. speciosa Nakai) is a popular fruit widely used in China for its health-promoting properties. The presences of phytochemical compositions in the plants play an important role in the health benefits. Nevertheless, the detailed information of these ingredients is still unknown. Therefore, in this work, an untargeted analytical method based on ultra-high-performance liquid chromatography-quadrupole-time of flight coupled to mass spectrometry in two different ionization modes was used to qualitative the phytochemicals in C. speciosa Nakai, meanwhile, the anti-inflammatory activity of these phytochemicals was researched through detecting the inhibition of nitric oxide (NO) that was induced by lipopolysaccharide in RAW 264.7 murine macrophage cells. The results showed that there were totally 175 primary and secondary metabolites were identified in the fruit of C. speciosa Nakai, including phenols, terpenoids, flavonoids and other phyto-constituents. Actually, most compounds were described in C. speciosa Nakai fruits for the first time. Besides, the anti-inflammatory activity was measured by the result of NO inhibition rate, the consequence showed that the value of half-inhibitory concentration (IC50) was 365.208 µg/mL. These results indicate that C. speciosa Nakai is an efficient medicinal fruit, which owns various bioactivities and has the potential to treat various diseases.


Asunto(s)
Rosaceae , Espectrometría de Masas en Tándem , Ratones , Animales , Espectrometría de Masas en Tándem/métodos , Frutas/química , Extractos Vegetales/química , Cromatografía Líquida de Alta Presión/métodos , Rosaceae/química , Fitoquímicos/análisis , Antiinflamatorios/farmacología , Antiinflamatorios/análisis , Espectrometría de Masa por Ionización de Electrospray/métodos
19.
Ultrasonography ; 41(1): 177-188, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34551499

RESUMEN

PURPOSE: This study aimed to compare the ability of B-mode ultrasonography and magnetic resonance imaging (MRI) to predict the repairability of large-to-massive rotator cuff tears (RCTs). METHODS: This cross-sectional study included participants with large-to-massive RCTs who underwent arthroscopic repair. B-mode ultrasonography and MRI were conducted prior to arthroscopic repair. B-mode ultrasonography was used to evaluate the echogenicity of the rotator cuff muscle using the Heckmatt scale. Intra-rater and inter-rater reliabilities were examined for two independent physicians. MRI was used to evaluate the degrees of tendon retraction, fatty infiltration of rotator cuff muscles, and muscle atrophy. Finally, two experienced orthopedic surgeons performed surgery and decided whether the torn stump could be completely repaired intraoperatively. RESULTS: Fifty participants were included, and 32 complete repairs and 18 partial repairs were performed. B-mode ultrasonography showed good intra-rater reliability and inter-rater reliability for assessment of the muscle echogenicity of the supraspinatus and infraspinatus muscles. The correlation coefficients between B-mode ultrasound findings and MRI findings showed medium to large effect sizes (r=0.4-0.8). The Goutallier classification of the infraspinatus muscles was the MRI predictor with the best discriminative power for surgical reparability (area under the curve [AUC], 0.89; 95% confidence interval [CI], 0.81 to 0.98), while the Heckmatt scale for infraspinatus muscles was the most accurate ultrasound predictor (AUC, 0.85; 95% CI, 0.74 to 0.96). No significant differences in AUCs among the MRI and ultrasound predictors were found. CONCLUSION: B-mode ultrasonography was a reliable examination tool and had a similar ability to predict surgical reparability to that of MRI among patients with large-to-massive RCTs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...