Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
IEEE Trans Image Process ; 33: 3145-3160, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38656843

RESUMEN

Multi-view subspace clustering (MVSC) has drawn significant attention in recent study. In this paper, we propose a novel approach to MVSC. First, the new method is capable of preserving high-order neighbor information of the data, which provides essential and complicated underlying relationships of the data that is not straightforwardly preserved by the first-order neighbors. Second, we design log-based nonconvex approximations to both tensor rank and tensor sparsity, which are effective and more accurate than the convex approximations. For the associated shrinkage problems, we provide elegant theoretical results for the closed-form solutions, for which the convergence is guaranteed by theoretical analysis. Moreover, the new approximations have some interesting properties of shrinkage effects, which are guaranteed by elegant theoretical results. Extensive experimental results confirm the effectiveness of the proposed method.

2.
IEEE Trans Image Process ; 33: 2491-2501, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38517713

RESUMEN

Low-rank tensor representation with the tensor nuclear norm has been rising in popularity in multi-view subspace clustering (MVSC), in which the tensor nuclear norm is commonly implemented using discrete Fourier transform (DFT). Unfortunately, existing DFT-oriented MVSC methods may provide unsatisfactory results since (1) DFT exploits complex arithmetic in the Fourier domain, usually resulting in high tubal tensor rank, and (2) local structural information is rarely considered. To solve these problems, in this paper, we propose a novel double discrete cosine transform (DCT)-oriented multi-view subspace clustering (D2CTMSC) method, in which the first DCT aims to derive the tensor nuclear norm without complex arithmetic while the second DCT aims to explore the local structure of the self-representation tensor, such that the essential low-rankness and sparsity embedding in multi-view features can be thoroughly exploited. Moreover, we design an effective alternating iteration strategy to solve the proposed model. Experimental results on four types of multi-view datasets (News stories, Face images, Scene images, and Generic objects) demonstrate the superiority of the D2CTMSC method compared with DFT-based methods and other state-of-the-art clustering methods.

3.
IEEE Trans Image Process ; 33: 2347-2360, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38470592

RESUMEN

Deep unrolling-based snapshot compressive imaging (SCI) methods, which employ iterative formulas to construct interpretable iterative frameworks and embedded learnable modules, have achieved remarkable success in reconstructing 3-dimensional (3D) hyperspectral images (HSIs) from 2D measurement induced by coded aperture snapshot spectral imaging (CASSI). However, the existing deep unrolling-based methods are limited by the residuals associated with Taylor approximations and the poor representation ability of single hand-craft priors. To address these issues, we propose a novel HSI construction method named residual completion unrolling with mixed priors (RCUMP). RCUMP exploits a residual completion branch to solve the residual problem and incorporates mixed priors composed of a novel deep sparse prior and mask prior to enhance the representation ability. Our proposed CNN-based model can significantly reduce memory cost, which is an obvious improvement over previous CNN methods, and achieves better performance compared with the state-of-the-art transformer and RNN methods. In this work, our method is compared with the 9 most recent baselines on 10 scenes. The results show that our method consistently outperforms all the other methods while decreasing memory consumption by up to 80%.

4.
IEEE Trans Image Process ; 33: 1272-1284, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38285574

RESUMEN

To manipulate large-scale data, anchor-based multi-view clustering methods have grown in popularity owing to their linear complexity in terms of the number of samples. However, these existing approaches pay less attention to two aspects. 1) They target at learning a shared affinity matrix by using the local information from every single view, yet ignoring the global information from all views, which may weaken the ability to capture complementary information. 2) They do not consider the removal of feature redundancy, which may affect the ability to depict the real sample relationships. To this end, we propose a novel fast multi-view clustering method via pick-and-place transform learning named PPTL, which could capture insightful global features to characterize the sample relationships quickly. Specifically, PPTL first concatenates all the views along the feature direction to produce a global matrix. Considering the redundancy of the global matrix, we design a pick-and-place transform with l2,p -norm regularization to abandon the poor features and consequently construct a compact global representation matrix. Thus, by conducting anchor-based subspace clustering on the compact global representation matrix, PPTL can learn a consensus skinny affinity matrix with a discriminative clustering structure. Numerous experiments performed on small-scale to large-scale datasets demonstrate that our method is not only faster but also achieves superior clustering performance over state-of-the-art methods across a majority of the datasets.

5.
Neural Netw ; 167: 213-222, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37660670

RESUMEN

Precision medicine is devoted to discovering personalized therapy for complex and difficult diseases like cancer. Many machine learning approaches have been developed for drug response prediction towards precision medicine. Notwithstanding, genetic profiles based multi-view graph learning schemes have not yet been explored for drug response prediction in previous works. Furthermore, multi-scale latent feature fusion is not considered sufficiently in the existing frameworks of graph neural networks (GNNs). Previous works on drug response prediction mainly depend on sequence data or single-view graph data. In this paper, we propose to construct multi-view graph by means of multi-omics data and STRING protein-protein association data, and develop a new architecture of GNNs for drug response prediction in cancer. Specifically, we propose hybrid multi-view and multi-scale graph duplex-attention networks (HMM-GDAN), in which both multi-view self-attention mechanism and view-level attention mechanism are devised to capture the complementary information of views and emphasize on the importance of each view collaboratively, and rich multi-scale features are constructed and integrated to further form high-level representations for better prediction. Experiments on GDSC2 dataset verify the superiority of the proposed HMM-GDAN when compared with state-of-the-art baselines. The effectiveness of multi-view and multi-scale strategies is demonstrated by the ablation study.


Asunto(s)
Neoplasias , Humanos , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Aprendizaje Automático , Multiómica , Redes Neurales de la Computación
6.
IEEE Trans Image Process ; 32: 4059-4072, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37440400

RESUMEN

Multi-view subspace clustering aims to integrate the complementary information contained in different views to facilitate data representation. Currently, low-rank representation (LRR) serves as a benchmark method. However, we observe that these LRR-based methods would suffer from two issues: limited clustering performance and high computational cost since (1) they usually adopt the nuclear norm with biased estimation to explore the low-rank structures; (2) the singular value decomposition of large-scale matrices is inevitably involved. Moreover, LRR may not achieve low-rank properties in both intra-views and inter-views simultaneously. To address the above issues, this paper proposes the Bi-nuclear tensor Schatten- p norm minimization for multi-view subspace clustering (BTMSC). Specifically, BTMSC constructs a third-order tensor from the view dimension to explore the high-order correlation and the subspace structures of multi-view features. The Bi-Nuclear Quasi-Norm (BiN) factorization form of the Schatten- p norm is utilized to factorize the third-order tensor as the product of two small-scale third-order tensors, which not only captures the low-rank property of the third-order tensor but also improves the computational efficiency. Finally, an efficient alternating optimization algorithm is designed to solve the BTMSC model. Extensive experiments with ten datasets of texts and images illustrate the performance superiority of the proposed BTMSC method over state-of-the-art methods.

7.
Artículo en Inglés | MEDLINE | ID: mdl-37379195

RESUMEN

Multiview clustering (MVC), which can dexterously uncover the underlying intrinsic clustering structures of the data, has been particularly attractive in recent years. However, previous methods are designed for either complete or incomplete multiview only, without a unified framework that handles both tasks simultaneously. To address this issue, we propose a unified framework to efficiently tackle both tasks in approximately linear complexity, which integrates tensor learning to explore the inter-view low-rankness and dynamic anchor learning to explore the intra-view low-rankness for scalable clustering (TDASC). Specifically, TDASC efficiently learns smaller view-specific graphs by anchor learning, which not only explores the diversity embedded in multiview data, but also yields approximately linear complexity. Meanwhile, unlike most current approaches that only focus on pair-wise relationships, the proposed TDASC incorporates multiple graphs into an inter-view low-rank tensor, which elegantly models the high-order correlations across views and further guides the anchor learning. Extensive experiments on both complete and incomplete multiview datasets clearly demonstrate the effectiveness and efficiency of TDASC compared with several state-of-the-art techniques.

8.
Artículo en Inglés | MEDLINE | ID: mdl-37195853

RESUMEN

In this article, we propose a novel bilayer low-rankness measure and two models based on it to recover a low-rank (LR) tensor. The global low rankness of underlying tensor is first encoded by LR matrix factorizations (MFs) to the all-mode matricizations, which can exploit multiorientational spectral low rankness. Presumably, the factor matrices of all-mode decomposition are LR, since local low-rankness property exists in within-mode correlation. In the decomposed subspace, to describe the refined local LR structures of factor/subspace, a new low-rankness insight of subspace: a double nuclear norm scheme is designed to explore the so-called second-layer low rankness. By simultaneously representing the bilayer low rankness of the all modes of the underlying tensor, the proposed methods aim to model multiorientational correlations for arbitrary N -way ( N ≥ 3 ) tensors. A block successive upper-bound minimization (BSUM) algorithm is designed to solve the optimization problem. Subsequence convergence of our algorithms can be established, and the iterates generated by our algorithms converge to the coordinatewise minimizers in some mild conditions. Experiments on several types of public datasets show that our algorithm can recover a variety of LR tensors from significantly fewer samples than its counterparts.

9.
Artículo en Inglés | MEDLINE | ID: mdl-37040241

RESUMEN

Dynamic magnetic resonance imaging (dMRI) speed and imaging quality have always been a crucial issue in medical imaging research. Most existing methods characterize the tensor rank-based minimization to reconstruct dMRI from sampling k- t space data. However, (1) these approaches that unfold the tensor along each dimension destroy the inherent structure of dMR images. (2) they focus on preserving global information only, while ignoring the local details reconstruction such as the spatial piece-wise smoothness and sharp boundaries. To overcome these obstacles, we suggest a novel low-rank tensor decomposition approach by integrating tensor Qatar Riyal (QR) decomposition, low-rank tensor nuclear norm, and asymmetric total variation to reconstruct dMRI, named TQRTV. Specifically, while preserving the tensor inherent structure by utilizing tensor nuclear norm minimization to approximate tensor rank, QR decomposition reduces the dimensions in the low-rank constraint term, thereby improving the reconstruction performance. TQRTV further exploits the asymmetric total variation regularizer to capture local details. Numerical experiments demonstrate that the proposed reconstruction approach is superior to the existing ones.

10.
Artículo en Inglés | MEDLINE | ID: mdl-37027654

RESUMEN

Heart sound analysis plays an important role in early detecting heart disease. However, manual detection requires doctors with extensive clinical experience, which increases uncertainty for the task, especially in medically underdeveloped areas. This paper proposes a robust neural network structure with an improved attention module for automatic classification of heart sound wave. In the preprocessing stage, noise removal with Butterworth bandpass filter is first adopted, and then heart sound recordings are converted into time-frequency spectrum by short-time Fourier transform (STFT). The model is driven by STFT spectrum. It automatically extracts features through four down sample blocks with different filters. Subsequently, an improved attention module based on Squeeze-and-Excitation module and coordinate attention module is developed for feature fusion. Finally, the neural network will give a category for heart sound waves based on the learned features. The global average pooling layer is adopted for reducing the model's weight and avoiding overfitting, while focal loss is further introduced as the loss function to minimize the data imbalance problem. Validation experiments have been conducted on two publicly available datasets, and the results well demonstrate the effectiveness and advantages of our method.

11.
IEEE Trans Cybern ; PP2023 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-37058384

RESUMEN

In this article, a unified multiview subspace learning model, called partial tubal nuclear norm-regularized multiview subspace learning (PTN 2 MSL), was proposed for unsupervised multiview subspace clustering (MVSC), semisupervised MVSC, and multiview dimension reduction. Unlike most of the existing methods which treat the above three related tasks independently, PTN 2 MSL integrates the projection learning and the low-rank tensor representation to promote each other and mine their underlying correlations. Moreover, instead of minimizing the tensor nuclear norm which treats all singular values equally and neglects their differences, PTN 2 MSL develops the partial tubal nuclear norm (PTNN) as a better alternative solution by minimizing the partial sum of tubal singular values. The PTN 2 MSL method was applied to the above three multiview subspace learning tasks. It demonstrated that these tasks organically benefited from each other and PTN 2 MSL has achieved better performance in comparison to state-of-the-art methods.

12.
Artículo en Inglés | MEDLINE | ID: mdl-37018565

RESUMEN

Arbitrary image stylization by neural networks has become a popular topic, and video stylization is attracting more attention as an extension of image stylization. However, when image stylization methods are applied to videos, unsatisfactory results that suffer from severe flickering effects appear. In this article, we conducted a detailed and comprehensive analysis of the cause of such flickering effects. Systematic comparisons among typical neural style transfer approaches show that the feature migration modules for state-of-the-art (SOTA) learning systems are ill-conditioned and could lead to a channelwise misalignment between the input content representations and the generated frames. Unlike traditional methods that relieve the misalignment via additional optical flow constraints or regularization modules, we focus on keeping the temporal consistency by aligning each output frame with the input frame. To this end, we propose a simple yet efficient multichannel correlation network (MCCNet), to ensure that output frames are directly aligned with inputs in the hidden feature space while maintaining the desired style patterns. An inner channel similarity loss is adopted to eliminate side effects caused by the absence of nonlinear operations such as softmax for strict alignment. Furthermore, to improve the performance of MCCNet under complex light conditions, we introduce an illumination loss during training. Qualitative and quantitative evaluations demonstrate that MCCNet performs well in arbitrary video and image style transfer tasks. Code is available at https://github.com/kongxiuxiu/MCCNetV2.

13.
Neural Netw ; 160: 22-33, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36592527

RESUMEN

The video-based person re-identification (ReID) aims to identify the given pedestrian video sequence across multiple non-overlapping cameras. To aggregate the temporal and spatial features of the video samples, the graph neural networks (GNNs) are introduced. However, existing graph-based models, like STGCN, perform the mean/max pooling on node features to obtain the graph representation, which neglect the graph topology and node importance. In this paper, we propose the graph pooling network (GPNet) to learn the multi-granularity graph representation for the video retrieval, where the graph pooling layer is implemented to downsample the graph. We construct a multi-granular graph by using node features learned from backbone, then implement multiple graph convolutional layers to perform the spatial and temporal aggregation on nodes. To downsample the graph, we propose a multi-head full attention graph pooling (MHFAPool) layer, which integrates the advantages of existing node clustering and node selection pooling methods. Specifically, MHFAPool first learns a full attention matrix for each pooled node, then obtains the principal eigenvector of the attention matrix via the power iteration algorithm, finally takes the softmax of the principal eigenvector as the aggregation coefficients. Extensive experiments demonstrate that our GPNet achieves the competitive results on four widely-used datasets, i.e., MARS, DukeMTMC-VideoReID, iLIDS-VID and PRID-2011.


Asunto(s)
Algoritmos , Aprendizaje , Humanos , Análisis por Conglomerados , Redes Neurales de la Computación
14.
IEEE/ACM Trans Comput Biol Bioinform ; 20(4): 2367-2375, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-34982688

RESUMEN

Accurate segmentation of ventricle and myocardium from the late gadolinium enhancement (LGE) cardiac magnetic resonance (CMR) is an important tool for myocardial infarction (MI) analysis. However, the complex enhancement pattern of LGE-CMR and the lack of labeled samples make its automatic segmentation difficult to be implemented. In this paper, we propose an unsupervised LGE-CMR segmentation algorithm by using multiple style transfer networks for data augmentation. It adopts two different style transfer networks to perform style transfer of the easily available annotated balanced-Steady State Free Precession (bSSFP)-CMR images. Then, multiple sets of synthetic LGE-CMR images are generated by the style transfer networks and used as the training data for the improved U-Net. The entire implementation of the algorithm does not require the labeled LGE-CMR. Validation experiments demonstrate the effectiveness and advantages of the proposed algorithm.

15.
Molecules ; 27(23)2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36500448

RESUMEN

Herein the reaction mechanism and the origin of stereoselectivity of asymmetric hydrogenation of oximes to hydroxylamines catalyzed by the cyclometalated iridium (III) complexes with chiral substituted single cyclopentadienyl ligands (Ir catalysts A1 and B1) under acidic condition were unveiled using DFT calculations. The catalytic cycle for this reaction consists of the dihydrogen activation step and the hydride transfer step. The calculated results indicate that the hydride transfer step is the chirality-determining step and the involvement of methanesulfonate anion (MsO-) in this reaction is of importance in the asymmetric hydrogenation of oximes catalyzed by A1 and B1. The calculated energy barriers for the hydride transfer steps without an MsO- anion are higher than those with an MsO- anion. The differences in Gibbs free energies between TSA5-1fR/TSA5-1fS and TSB5-1fR/TSB5-1fS are 13.8/13.2 (ΔΔG‡ = 0.6 kcal/mol) and 7.5/5.6 (ΔΔG‡ = 1.9 kcal/mol) kcal/mol for the hydride transfer step of substrate protonated oximes with E configuration (E-2a-H+) with MsO- anion to chiral hydroxylamines product R-3a/S-3a catalyzed by A1 and B1, respectively. According to the Curtin-Hammet principle, the major products are hydroxylamines S-3a for the reaction catalyzed by A1 and B1, which agrees well with the experimental results. This is due to the non-covalent interactions among the protonated substrate, MsO- anion and catalytic species. The hydrogen bond could not only stabilize the catalytic species, but also change the preference of stereoselectivity of this reaction.


Asunto(s)
Iridio , Oximas , Iridio/química , Hidrogenación , Catálisis , Aniones
16.
Pharmacol Res ; 185: 106458, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36152740

RESUMEN

Our initial studies detected elevated levels of 3,4-dihydroxyphenyllactic acid (DHPLA) in urine samples of patients with severe heart disease when compared with healthy subjects. Given the reported anti-inflammatory properties of DHPLA and related dihydroxylated phenolic acids (DPAs), we embarked on an exploratory multi-centre investigation in patients with no urinary tract infections to establish the possible pathophysiological significance and therapeutic implications of these findings. Chinese and Caucasian patients being treated for severe heart disease or those conditions associated with inflammation (WBC ≥ 10 ×109/L or hsCRP ≥ 3.0 mg/L) and/or hypoxia (PaO2 ≤ 75 mmHg) were enrolled; their urine samples were analyzed by HPLC, HPLC-MS, GC-MS and biotransformation assays. DHPLA was detected in urine samples of patients, but undetectable in healthy volunteers. Dynamic monitoring of inpatients undergoing treatment showed their DHPLA levels declined in proportion to their clinical improvement. In DHPLA-positive patients' fecal samples, Proteus vulgaris and P. mirabilis were more abundant than healthy volunteers. In culture, these gut bacteria were capable of reversible interconversion between DOPA and DHPLA. Furthermore, porcine and rodent organs were able to metabolize DOPA to DHPLA and related phenolic acids. The elevated levels of DHPLA in these patients suggest bioactive DPAs are generated de novo as part of a human's defense mechanism against disease. Because DHPLA isolated from Radix Salvia miltiorrhizae has a multitude of pharmacological activities, these data underpin the scientific basis of this medicinal plant's ethnopharmacological applications as well as highlighting the therapeutic potential of endogenous, natural or synthetic DPAs and their derivatives in humans.


Asunto(s)
Cardiopatías , Inflamación , Humanos , Porcinos , Animales , Hipoxia , Dihidroxifenilalanina
17.
IEEE J Biomed Health Inform ; 26(10): 4987-4995, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35849679

RESUMEN

With the popularity of the wireless body sensor network, real-time and continuous collection of single-lead electrocardiogram (ECG) data becomes possible in a convenient way. Data mining from the collected single-lead ECG waves has therefore aroused extensive attention worldwide, where early detection of atrial fibrillation (AF) is a hot research topic. In this paper, a two-channel convolutional neural network combined with a data augmentation method is proposed to detect AF from single-lead short ECG recordings. It consists of three modules, the first module denoises the raw ECG signals and produces 9-s ECG signals and heart rate (HR) values. Then, the ECG signals and HR rate values are fed into the convolutional layers for feature extraction, followed by three fully connected layers to perform the classification. The data augmentation method is used to generate synthetic signals to enlarge the training set and increase the diversity of the single-lead ECG signals. Validation experiments and the comparison with state-of-the-art studies demonstrate the effectiveness and advantages of the proposed method.


Asunto(s)
Fibrilación Atrial , Aprendizaje Profundo , Fibrilación Atrial/diagnóstico , Electrocardiografía/métodos , Frecuencia Cardíaca , Humanos , Redes Neurales de la Computación
18.
Bioinformatics ; 38(10): 2712-2718, 2022 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-35561206

RESUMEN

MOTIVATION: Therapeutic peptide prediction is important for the discovery of efficient therapeutic peptides and drug development. Researchers have developed several computational methods to identify different therapeutic peptide types. However, these computational methods focus on identifying some specific types of therapeutic peptides, failing to predict the comprehensive types of therapeutic peptides. Moreover, it is still challenging to utilize different properties to predict the therapeutic peptides. RESULTS: In this study, an adaptive multi-view based on the tensor learning framework TPpred-ATMV is proposed for predicting different types of therapeutic peptides. TPpred-ATMV constructs the class and probability information based on various sequence features. We constructed the latent subspace among the multi-view features and constructed an auto-weighted multi-view tensor learning model to utilize the high correlation based on the multi-view features. Experimental results showed that the TPpred-ATMV is better than or highly comparable with the other state-of-the-art methods for predicting eight types of therapeutic peptides. AVAILABILITY AND IMPLEMENTATION: The code of TPpred-ATMV is accessed at: https://github.com/cokeyk/TPpred-ATMV. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Péptidos , Péptidos/química
19.
IEEE Trans Neural Netw Learn Syst ; 33(9): 4712-4726, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33651701

RESUMEN

Multiview clustering as an important unsupervised method has been gathering a great deal of attention. However, most multiview clustering methods exploit the self-representation property to capture the relationship among data, resulting in high computation cost in calculating the self-representation coefficients. In addition, they usually employ different regularizers to learn the representation tensor or matrix from which a transition probability matrix is constructed in a separate step, such as the one proposed by Wu et al.. Thus, an optimal transition probability matrix cannot be guaranteed. To solve these issues, we propose a unified model for multiview spectral clustering by directly learning an adaptive transition probability matrix (MCA2M), rather than an individual representation matrix of each view. Different from the one proposed by Wu et al., MCA2M utilizes the one-step strategy to directly learn the transition probability matrix under the robust principal component analysis framework. Unlike existing methods using the absolute symmetrization operation to guarantee the nonnegativity and symmetry of the affinity matrix, the transition probability matrix learned from MCA2M is nonnegative and symmetric without any postprocessing. An alternating optimization algorithm is designed based on the efficient alternating direction method of multipliers. Extensive experiments on several real-world databases demonstrate that the proposed method outperforms the state-of-the-art methods.

20.
J Diabetes Investig ; 13(2): 397-401, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34460997

RESUMEN

Maternally inherited diabetes and deafness is a rare genetic disease mainly caused by a point mutation in mitochondrial deoxyribonucleic acid. Lipoprotein lipase gene mutations are associated with familial dyslipidemias, which are difficult to manage. We reported for the first time a case that had both maternally inherited diabetes and severe hyperlipidemia caused by lipoprotein lipase gene mutation (C.347(exon3)G>C) that was resistant to fenofibrate and atorvastatin. We were able to manage the patient's hyperlipidemia with bezafibrate, and her diabetes was well controlled with insulin. In conclusion, genetic testing is helpful in identifying rare and interesting cases when clinicians suspect inheritable diseases. Additionally, when one fibrate drug is ineffective in treating hyperlipidemia, it might be worthwhile trying another fibrate.


Asunto(s)
Diabetes Mellitus Tipo 2 , Fenofibrato , Hiperlipidemias , Lipoproteína Lipasa/genética , Atorvastatina/uso terapéutico , Bezafibrato/uso terapéutico , Sordera , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/genética , Femenino , Fenofibrato/uso terapéutico , Humanos , Hiperlipidemias/complicaciones , Hiperlipidemias/tratamiento farmacológico , Hiperlipidemias/genética , Enfermedades Mitocondriales , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...