Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Front Microbiol ; 15: 1414724, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38957615

RESUMEN

Increased nitrogen deposition is a key feature of global climate change, however, its effects on the structure and assembling mechanisms of the nitrogen-fixing bacteria present at the root surface remain to be elucidated. In this pursuit, we used NH4NO3 to simulate nitrogen deposition in a 10-year-old Camellia oleifera plantation, and set up four deposition treatments, including control N0 (0 kg N hm-2 a-1), low nitrogen N20 (20 kg N hm-2 a-1), medium nitrogen N40 (40 kg N hm-2 a-1) and high nitrogen N160 (160 kg N hm-2 a-1). The results showed that nitrogen deposition affected the soil nitrogen content and the structure of the nitrogen-fixing bacterial community. Low nitrogen deposition was conducive for nitrogen fixation in mature C. oleifera plantation. With increasing nitrogen deposition, the dominant soil nitrogen-fixing bacterial community shifted from Desulfobulbaceae to Bradyrhizobium. When nitrogen deposition was below 160 kg N hm-2 a-1, the soil organic matter content, total nitrogen content, nitrate nitrogen content, ammonium nitrogen content, urease activity, soil pH and nitrate reductase activity influenced the composition of the nitrogen-fixing bacterial community, but the stochastic process remained the dominant factor. The results indicate that the strains of Bradyrhizobium japonicum and Bradyrhizobium sp. ORS 285 can be used as indicator species for excessive nitrogen deposition.

2.
J Agric Food Chem ; 72(32): 18257-18270, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39084609

RESUMEN

Camellia oleifera, a major woody oil crop in China, produces tea oil rich in unsaturated fatty acids, earning it names like liquid gold and eastern olive oil. This study provides an integrated investigation of the transcriptome and lipidome within seeds at the maturing process across three C. oleifera varieties, revealing a significant relationship between fatty acid production and genes involved in lipid synthesis. Through transcriptomic analysis, 26,344 genes with varied expression were found. Functional enrichment analysis highlighted that pathways related to starch and sucrose metabolism, plant hormone signal transduction, and lipid accumulation were highly enriched among the differentially expressed genes. Coordinated high expression of key genes (ACCase, KAS I, KAS II, KAS III, KAR, HAD, EAR, SAD, LPAAT, LACS, DGAT, PDAT) during the late maturation stage contributes largely to high oil content. Additionally, expression variations of SAD and FADs among different varieties were explored. The analysis suggests that high expression of genes such as FAD3, FAD7, and FAD8 notably increased linolenic acid content. This research provides new insights into the molecular mechanisms of oil biosynthesis in C. oleifera, offering valuable references for improving yield and quality.


Asunto(s)
Camellia , Ácidos Grasos , Regulación de la Expresión Génica de las Plantas , Lipidómica , Proteínas de Plantas , Semillas , Transcriptoma , Camellia/metabolismo , Camellia/genética , Camellia/crecimiento & desarrollo , Camellia/química , Semillas/metabolismo , Semillas/crecimiento & desarrollo , Semillas/genética , Semillas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácidos Grasos/metabolismo , Aceites de Plantas/metabolismo , Aceites de Plantas/química , China
3.
Analyst ; 149(13): 3651-3660, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38814120

RESUMEN

Monitoring methods for beta-lactam (ß-lactam) antibiotics, especially for ampicillin (AMP), with simple operation and sensitivity for realtime applications are highly required. To address this need, antioxidant carbon dots (E-CDs) with excellent fluorescence properties were synthesized using citric acid and ethylenediamine as raw materials. With a quantum yield of 81.97%, E-CDs exhibited a specific and sensitive response to ˙OH. The quenched fluorescence of E-CDs by the formed ˙OH could be restored through a competition reaction with AMP. Leveraging the signal-quenching strategy of E-CDs, H2O2, and Fe2+, a fluorescence signal-on strategy was developed using AMP as the fluorescence recovery agent for the sensitive detection of AMP. The mechanism of the quenching of E-CDs by ˙OH was attributed to the damaging effect of ˙OH on E-CDs. Under optimal conditions, the detection limit of this method for AMP was determined to be 0.38 µg mL-1. This method was successful in drug quality control and the spiked detection of AMP in lake water, milk, and sea cucumber, presenting a viable option for convenient and rapid antibiotic monitoring methods.


Asunto(s)
Ampicilina , Carbono , Límite de Detección , Puntos Cuánticos , Espectrometría de Fluorescencia , Carbono/química , Ampicilina/análisis , Ampicilina/química , Puntos Cuánticos/química , Espectrometría de Fluorescencia/métodos , Animales , Antioxidantes/análisis , Antioxidantes/química , Leche/química , Peróxido de Hidrógeno/química , Peróxido de Hidrógeno/análisis , Radical Hidroxilo/química , Radical Hidroxilo/análisis , Antibacterianos/análisis , Antibacterianos/química , Colorantes Fluorescentes/química , Ácido Cítrico/química , Fluorescencia , Etilenodiaminas
4.
Artículo en Inglés | MEDLINE | ID: mdl-38551603

RESUMEN

BACKGROUND: Jianxin (JX) granules is a traditional Chinese medicine widely used in the treatment of heart failure (HF), but the mechanism is unclear. This study aimed to investigate the mechanism of JX granules in the treatment of HF based on network pharmacology analysis and in-vivo experiments. METHODS: A series of network pharmacology methods was employed to ascertain potential targets and critical pathways implicated in the therapeutic action of JX granules against HF. Subsequently, molecular docking was utilized to investigate the binding affinity of key active constituents within JX granules to these targets. In-vivo experiments, echocardiography, hematoxylin and eosin, Masson's trichrome assay, and western blot analysis were conducted to validate the efficacy and mechanism of JX granules in treating rats with HF. RESULTS: A total of 122 active components, 896 drug targets, 1216 HF-related targets, and 136 targets pertinent to drug-disease interactions were identified. 151 key targets and 725 core clusters were detected through protein-protein interaction network analysis. Among these, interleukin 6 (IL-6), vascular endothelial growth factor a (VEGFA), and serine/threonine kinase 1 (AKT1) were core hub genes. Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis revealed the critical pathways, including epidermal growth factor receptor (EGFR), advanced glycation end products (AGEs) and their receptors (RAGE) pathway, along with hypoxia-inducible factor 1 (HIF-1) signaling pathway. Molecular docking studies demonstrated high binding affinities between key targets and the pivotal active ingredients of Danshenol A, salvianolic acid B, and arachidonic acid. Furthermore, animal studies corroborated that JX granules improve cardiac function and reduce myocardial fibrosis, potentially by modulating the expression of IL-6, VEGFA, and p-AKT1. CONCLUSIONS: The bioactive components within JX granules, such as Danshenol A, salvianolic acid B, and arachidonic acid may exert therapeutic effects on HF through modulation of IL-6, VEGFA, and AKT1 gene expression. This study provides a scientific basis for subsequent clinical application of JX granules and an in-depth investigation of their mechanisms of action.

5.
Plants (Basel) ; 13(2)2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-38256779

RESUMEN

This study comprehensively investigates the physiological and molecular regulatory mechanisms of Camellia oleifera seedlings under drought stress with a soil moisture content of about 30%, where exogenous abscisic acid (ABA) was applied via foliar spraying at concentrations of 50 µg/L, 100 µg/L, and 200 µg/L. The results demonstrated that appropriate concentrations of ABA treatment can regulate the physiological state of the seedlings through multiple pathways, including photosynthesis, oxidative stress response, and osmotic balance, thereby aiding in the restructuring of their drought response strategy. ABA treatment effectively activated the antioxidant system by reducing stomatal conductance and moderately inhibiting the photosynthetic rate, thus alleviating oxidative damage caused by drought stress. Additionally, ABA treatment promoted the synthesis of osmotic regulators such as proline, maintaining cellular turgor stability and enhancing the plant's drought adaptability. The real-time quantitative PCR results of related genes indicated that ABA treatment enhanced the plant's response to the ABA signaling pathway and improved disease resistance by regulating the expression of related genes, while also enhancing membrane lipid stability. A comprehensive evaluation using a membership function approach suggested that 50 µg/L ABA treatment may be the most-effective in mitigating drought effects in practical applications, followed by 100 µg/L ABA. The application of 50 µg/L ABA for 7 h induced significant changes in various biochemical parameters, compared to a foliar water spray. Notably, superoxide dismutase activity increased by 17.94%, peroxidase activity by 30.27%, glutathione content by 12.41%, and proline levels by 25.76%. The content of soluble sugars and soluble proteins rose by 14.79% and 87.95%, respectively. Additionally, there was a significant decrease of 31.15% in the malondialdehyde levels.

6.
Langmuir ; 39(50): 18581-18593, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38060286

RESUMEN

Kerogen is mainly composed of carbon, hydrogen, and oxygen, which are the main components of crude oil and gas. The pyrolysis of kerogen is an efficient method to generate clean energy. In the present work, the pyrolysis reaction process of three types of kerogen is simulated using ReaxFF molecular dynamics (MD) methods to study the microscopic mechanism and the distribution of products. The results indicated that the pyrolysis products of the three types of kerogen significantly depend on the molecular structures, temperature, and reaction time. As the temperature increases, the gaseous hydrocarbon and the light and heavy oil fractions decreased, where small molecular fragments polymerized to form new molecular fragments. For an isothermal temperature, with the reaction proceeding, some component polymerization of the pyrolyzed fragments occurred, resulting in the generation of new light oils and heavy oils. Moreover, quantum chemical analysis was employed to reveal the kerogen pyrolysis mechanism. First, the weak bonds such as C-O, C-N, and C-S structures were decomposed to generate large carbon and some heavy shale oil fragments. Second, the cycloalkanes and long-chain alkanes were decomposed to generate a large amount of light shale oil and gaseous hydrocarbons. Finally, the decomposition of C═C in the aromatic ring, the secondary decomposition of light and heavy shale oils, and the further decomposition of short-chain alkanes occurred. In addition, the production of hydrogen (H2) occurred at the late stage of the pyrolysis reaction. Hydrogen radicals were formed by the decomposition of C-H bonds and subsequently collided with each other, resulting in the formation of H2 molecules. The pyrolysis and chemical analysis of kerogen can clearly determine the type and content of hydrocarbon substances, providing scientific data for exploration, development, and utilization of shale gas and shale oil.

7.
Nutrients ; 15(23)2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-38068746

RESUMEN

Camellia seed oil (CO) is used as edible oil in southern China because of its excellent fatty acid composition and abundant bioactive compounds. Chronic kidney disease (CKD) is one of the most common chronic degenerative diseases in China, and active compounds in vegetable oil, like virgin olive oil, have been demonstrated to be efficacious in the management of CKD. In this study, virgin CO was refined using a standard process. The refining had minimal impact on the fatty acid composition, but significantly reduced the presence of bioactive compounds like polyphenols in CO. Sprague-Dawley (SD) rats fed with high fat diet (Group G) were treated with either virgin (Group Z) or refined CO (Group R). The oral administration of CO alleviated lipid accumulation and decreased body and kidney weight gain. Furthermore, treatment with virgin CO increased the renal ATP content. The renal expression levels of AMPK and key enzymes involved in fatty acid oxidation (CPT-1 and ACOX1) and glycolysis (HK, PFK, PK and GAPDH) were up-regulated in Group Z, thereby enhancing the ATP production. Virgin CO treatment downregulated the expression level of SREBP2 and its downstream target genes, such as ACC, FAS, and HMGCR, which reduced lipid synthesis. These findings indicate that virgin CO improves glycolipid metabolism and restores energy homeostasis in the kidneys of rats fed with a high-fat diet by modulating the AMPK-SREBP-signaling pathway, suggesting the potential of active compounds in virgin CO for managing the renal failure associated with glycolipid dysmetabolism.


Asunto(s)
Camellia , Insuficiencia Renal Crónica , Ratas , Animales , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Ratas Sprague-Dawley , Aceites de Plantas/farmacología , Aceites de Plantas/metabolismo , Aceite de Oliva/metabolismo , Metabolismo de los Lípidos , Riñón/metabolismo , Ácidos Grasos/metabolismo , Insuficiencia Renal Crónica/metabolismo , Glucolípidos/metabolismo , Adenosina Trifosfato/metabolismo , Hígado/metabolismo
8.
Front Microbiol ; 14: 1152632, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37007482

RESUMEN

Camellia oleifera (C. oleifera) is a unique edible oil crop in China cultivated in the hilly southern mountains. Although C. oleifera is classified as a drought-tolerant tree species, drought remains the main factor limiting the growth of C. oleifera in summer and autumn. Using endophytes to improve crop drought tolerance is one effective strategy to meet our growing food crop demand. In this study, we showed that endophyte Streptomyces albidoflavus OsiLf-2 could mitigate the negative impact of drought stress on C. oleifera, thus improving seed, oil, and fruit quality. Microbiome analysis revealed that OsiLf-2 treatment significantly affected the microbial community structure in the rhizosphere soil of C. oleifera, decreasing both the diversity and abundance of the soil microbe. Likewise, transcriptome and metabolome analyses found that OsiLf-2 protected plant cells from drought stress by reducing root cell water loss and synthesizing osmoregulatory substances, polysaccharides, and sugar alcohols in roots. Moreover, we observed that OsiLf-2 could induce the host to resist drought stress by increasing its peroxidase activity and synthesizing antioxidants such as cysteine. A multi-omics joint analysis of microbiomes, transcriptomes, and metabolomes revealed OsiLf-2 assists C. oleifera in resisting drought stress. This study provides theoretical and technical support for future research on endophytes application to enhance the drought resistance, yield, and quality of C. oleifera.

9.
Front Plant Sci ; 14: 1101766, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37077639

RESUMEN

Oiltea-camellia (C. oleifera) is a widely cultivated woody oil crop in Southern China and Southeast Asia. The genome of oiltea-camellia was very complex and not well explored. Recently, genomes of three oiltea-camellia species were sequenced and assembled, multi-omic studies of oiltea-camellia were carried out and provided a better understanding of this important woody oil crop. In this review, we summarized the recent assembly of the reference genomes of oiltea-camellia, genes related to economic traits (flowering, photosynthesis, yield and oil component), disease resistance (anthracnose) and environmental stress tolerances (drought, cold, heat and nutrient deficiency). We also discussed future directions of integrating multiple omics for evaluating genetic resources and mining key genes of important traits, and the application of new molecular breeding and gene editing technologies to accelerate the breeding process of oiltea-camellia.

10.
Sheng Wu Gong Cheng Xue Bao ; 39(1): 204-216, 2023 Jan 25.
Artículo en Chino | MEDLINE | ID: mdl-36738211

RESUMEN

In this study, a single base editing system was used to edit the FecB and GDF9 gene to achieve a targeted site mutation from A to G and from C to T in Ouler Tibetan sheep fibroblasts, and to test its editing efficiency. Firstly, we designed and synthesized sgRNA sequences targeting FecB and GDF9 genes of Ouler Tibetan sheep, followed by connection to epi-ABEmax and epi-BE4max plasmids to construct vectors and electrotransfer into Ouler Tibetan sheep fibroblasts. Finally, Sanger sequencing was performed to identify the target point mutation of FecB and GDF9 genes positive cells. T-A cloning was used to estimate the editing efficiency of the single base editing system. We obtained gRNA targeting FecB and GDF9 genes and constructed the vector aiming at mutating single base of FecB and GDF9 genes in Ouler Tibetan sheep. The editing efficiency for the target site of FecB gene was 39.13%, whereas the editing efficiency for the target sites (G260, G721 and G1184) of GDF9 gene were 10.52%, 26.67% and 8.00%, respectively. Achieving single base mutation in FecB and GDF9 genes may facilitate improving the reproduction traits of Ouler Tibetan sheep with multifetal lambs.


Asunto(s)
Edición Génica , Animales , Ovinos/genética , Tibet , Mutación , Fenotipo , Mutagénesis Sitio-Dirigida
11.
Chin Med ; 18(1): 16, 2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36782242

RESUMEN

BACKGROUND: Histone acetyltransferases (HATs) play an important role in plant growth and development, stress response, and regulation of secondary metabolite biosynthesis. Hemp (Cannabis sativa L.) is famous for its high industrial, nutritional, and medicinal value. It contains non-psychoactive cannabinoid cannabidiol (CBD) and cannabinol (CBG), which play important roles as anti-inflammatory and anti-anxiety. At present, the involvement of HATs in the regulation of cannabinoid CBD and CBG synthesis has not been clarified. METHODS: The members of HAT genes family in hemp were systematically analyzed by bioinformatics analysis. In addition, the expression level of HATs and the level of histone acetylation modification were analyzed based on transcriptome data and protein modification data. Real-time quantitative PCR was used to verify the changes in gene expression levels after inhibitor treatment. The changes of CBD and CBG contents after inhibitor treatment were verified by HPLC-MS analysis. RESULTS: Here, 11 HAT genes were identified in the hemp genome. Phylogenetic analysis showed that hemp HAT family genes can be divided into six groups. Cannabinoid synthesis genes exhibited spatiotemporal specificity, and histones were acetylated in different inflorescence developmental stages. The expression of cannabinoid synthesis genes was inhibited and the content of CBD and CBG declined by 10% to 55% in the samples treated by HAT inhibitor (PU139). Results indicated that CsHAT genes may regulate cannabinoid synthesis through altering histone acetylation. CONCLUSIONS: Our study provides genetic information of HATs responsible for cannabinoid synthesis, and offers a new approach for increasing the content of cannabinoid in hemp.

12.
Front Plant Sci ; 13: 1001357, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36247533

RESUMEN

Camellia oleifera Abel. (C. oleifera) is an edible oil tree species that provide an important guarantee for targeted poverty alleviation strategy in China. Severe difficulties in irrigation leading to drought stress have become a major obstacle to the development of the C. oleifera planting industry. Breeding of drought-tolerant cultivars is the main idea for solving the problem of water shortage stress in C. oleifera cultivation. The photosynthetic physiology traits of C. oleifera cultivars 'Xianglin No.1' and 'Hengdong No.2' were affected by drought stress to different degrees, which demonstrated that the two cultivars suffered different degrees of damage. In the present study, we applied mRNA-seq and miRNA-seq to analyze the difference in molecular responses between drought stress and control, drought-tolerant and -sensitive cultivars, at mRNA and miRNA levels. The differentially expressed genes (DEGs) involved in photosynthesis-related, porphyrin, and chlorophyll metabolism, circadian rhythm system, and plant hormone signal transduction pathways were identified that might be candidates for drought stress tolerance genes. Subsequently, the miRNA-mRNA regulatory networks connected the differentially expressed miRNAs (DEMs) to their predicted target genes were established. miR398 and miR408-3p in C. oleifera showed that associated with the response to drought stress by negatively regulating genes encoding Downy Mildew Resistance 6 (DMR6) and Enhanced Disease Resistance 2 (EDR2), respectively, which might further improve drought tolerance via crosstalk between different stress-responsive pathways. The quantitation results of miRNA and mRNA were validated by quantitative real-time PCR (qRT-PCR). In summary, the integrated mRNA-seq and miRNA-seq analysis deepen our understanding of the regulatory network response to drought stress and variety-specific responses improving drought tolerance in C. oleifera.

13.
J Clin Neurosci ; 103: 172-179, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35907352

RESUMEN

BACKGROUND: Elevated blood glucose is frequently detected early after aneurysmal subarachnoid hemorrhage (aSAH). We aimed to investigate whether hyperglycemia at admission is associated with mortality in patients with aSAH. METHODS: In a multicenter observational study of patients with aSAH, we defined normal glycemia, mild hyperglycemia, moderate hyperglycemia, and severe hyperglycemia as blood glucose of 4.00-6.09 mmol/L, 6.10-7.80 mmol/L, 7.81-10.00 mmol/L, and > 10.00 mmol/L, respectively. We performed propensity score matching to obtain the adjusted odds ratios (OR) with 95 % confidence intervals (CI). RESULTS: Of 6771 patients with aSAH, 511(7.5 %) had died in hospital, and hyperglycemia at admission was observed in 4804 (70.9 %). Propensity scores matching analyses indicated that compared with normal glycemia, the odds of in-hospital mortality were slightly lower in patients with mild hyperglycemia (OR 0.89, 95 % CI 0.56-1.40), significantly higher in patients with moderate hyperglycemia (OR 1.90, 95 % CI 1.20-3.01), and in patients with severe hyperglycemia (OR 3.45, 95 % CI 2.15-5.53; P trend < 0.001). Long-term survival was worse among patients with hyperglycemia and was proportional to its severity. Similar dose-response associations were evident for poor functional outcomes and major disability. Hyperglycemia was associated with an increased risk of hospital-acquired infections (OR 1.46, 95 % CI 1.29-1.66) and rebleeding (OR 1.58, 95 % CI 1.06-2.35). CONCLUSIONS: Among aSAH patients, hyperglycemia at admission was independently associated with increased mortality. Both moderate hyperglycemia and severe hyperglycemia were associated with an increased risk of mortality, but these associations were not seen in mild hyperglycemia (blood glucose 6.10-7.80 mmol/L).


Asunto(s)
Hiperglucemia , Hemorragia Subaracnoidea , Glucemia , Humanos , Oportunidad Relativa , Estudios Prospectivos , Estudios Retrospectivos
14.
Front Plant Sci ; 13: 904163, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35800608

RESUMEN

Hemp seeds are rich in metabolites such as protein, lipids and flavonoids, which are beneficial to health and can be used as a nutritional supplement. Few studies have focused on the metabolites of different hemp seed varieties. In the current study, using widely targeted metabolomics based on UHPLC-QQQ-MS/MS, we compared the metabolomes of seeds from seven hemp varieties with different uses. A total of 1,001 metabolites, including 201 flavonoids, 86 alkaloids, and 149 phenolic acids, were identified. Flavonoids, organic acids, alkaloids, lipids, and fatty acids with high nutritional value are important to investigate the differences between hemp accessions. By using weighted gene co-expression network analysis (WGCNA), six modules of closely related metabolites were identified. And, we identified the metabolite characteristics and hub metabolites of each variety. Then, we experimentally determined antioxidant activity of seven varieties and demonstrated that alkaloids, flavonoids, phenolic acids, terpenes, and free fatty acids are responsible for the antioxidant activity of hemp seeds. Our research provides useful information for further investigation of the chemical composition of hemp seeds.

15.
Food Res Int ; 156: 111159, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35651025

RESUMEN

C. oleifera oil is one of the high-quality edible oils recommended by the Food and Agriculture Organization of the United Nations (FAO). Pharmacological studies have shown that C. oleifera oil is the homology of medicine and food, and it possesses extensive beneficial health properties both in vivo and in vitro. C. oleifera oil found its application in the functional food, cosmetic, and pharmaceutical industries. In recent years, the need for high-quality and high-quantity production of C. oleifera oil for human consumption has increased. The present review examines the chemical composition of C. oleifera oil, bioactive substances, extraction technologies, and evidence supporting the health benefits of C. oleifera oil. From the reviewed studies, it appears that C. oleifera oil contains a significant proportion of unsaturated fatty acids (>85%) with oleic acid (>75%) as the major compound, and high contents of squalene, tea polyphenols, tocopherol and phytosterol. Some variations in C. oleifera oil composition can be found depending on the kernel's origin and the extraction method used. Emerging technologies such as aqueous extraction, and supercritical fluid extraction are highly efficient processes, and can achieve higher recovery while reducing solvent and energy consumption. This review provides an in-depth discussion on the various extraction technologies and factors affecting the extraction efficiency of C. oleifera oil using traditional and emerging methods. The influences of different extraction methods on the C. oleifera oil characteristics are also introduced. Furthermore, challenges and future prospects of the extraction of C. oleifera oil have been identified and discussed.


Asunto(s)
Camellia , Fitosteroles , Camellia/química , Humanos , Aceites de Plantas/química , Polifenoles/química , Tocoferoles
16.
Nutrients ; 14(12)2022 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35745155

RESUMEN

Camellia (Camellia oleifera Abel.) seed oil (CO) has been shown to effectively reduce the blood lipid level of its host due to its fatty acid content, but the specific molecular mechanism associated with the metabolic phenotype after digestion is not clear. Here, we further investigated the relationship between branched-chain amino acids (BCAA) and the metabolic phenotype that may exhibit the anti-dyslipidemia effect of CO on mice fed a high-fat diet for 30 day C57BL/6J male mice were allocated to three groups: the control group (Cont), the high-fat feed group (HFD), and a high-fat feed group with CO treatment (CO). A serum sample was collected to detect lipid biomarkers and BCAA concentration. Notably, Low-density lipoprotein (LDL), Total Cholesterol (TC), and Triglycerides (TG) showed a significant decrease, whereas High-density lipoprotein (HDL) increased in CO mice but not in the HFD group. The concentration of Isoleucine (Ile), leucine (Leu), and valine (Val) was similar between the Cont and CO groups compared with the HFD group, exhibiting an inhibition induced by CO in mice fed with a high-fat diet. A metabolic phenotype from serum examined by non-targeted metabolite analysis using UHPLC/MS showed most metabolites exhibited lipid and BCAA metabolism. The results indicated that CO treatment notably regulated the metabolism of arachidonic acid and steroid biosynthesis in response to HFD-induced dyslipidemia. In addition, the expression of PPARγ genes that correlated with the BCAA and serum lipid biomarkers were compared, and significant inhibition was noticed, which might lead to the potential exposure of the anti-dyslipidemia mechanism of CO in HFD-fed mice. In conclusion, the expression of PPARγ genes, serum lipid level, BCAA concentration, and the metabolic phenotype was significantly positive in correlation with a high-fat diet, whereas oral CO improved the biomarkers and metabolism of some specific serum metabolites in HFD-fed mice.


Asunto(s)
Camellia , Dislipidemias , Aminoácidos/metabolismo , Aminoácidos de Cadena Ramificada , Animales , Biomarcadores/metabolismo , Dieta Alta en Grasa/efectos adversos , Dislipidemias/tratamiento farmacológico , Dislipidemias/etiología , Metabolismo de los Lípidos , Masculino , Ratones , Ratones Endogámicos C57BL , PPAR gamma/metabolismo , Fenotipo , Aceites de Plantas/farmacología
17.
Oxid Med Cell Longev ; 2022: 3355687, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35401925

RESUMEN

Since the human and porcine digestive systems have similar anatomical structures and physiological functions, pigs are a useful animal model for studying human digestive diseases. By investigating intestinal metabolites in piglets after weaning, this study attempted to identify the inherent connection between dietary protein levels and changes in the intestinal microbiota of piglets. Casein was employed as the only source of protein for the piglets in this study to avoid the influence of other protein sources. 14 weaning at 28-day-old piglets (6.9 ± 0.19 kg) formed into two dietary groups: 17% casein fed group (LP) and 30% casein fed group (HP). Piglets were allowed to free food and water during the 2-week experiment. Throughout the trial, the piglets' diarrhea index (1: no diarrhea and 3: watery diarrhea) and food intake were noted during the experiment. We discovered piglets fed a high-protein diet developed diarrhea throughout the duration of the research, whereas piglets fed a normal protein diet did not. In addition, the HP group had lower feed intake and body weight than the control group (P < 0.05). The HP diet influenced the content of short-chain and branched-chain fatty acids in the colon, including acetate and isovaleric acid. The ileal microbiota's 16S rRNA gene was sequenced, and it was discovered that the relative abundance of gastrointestinal bacteria differed between the HP and control groups. Dietary protein levels influenced bile acid biosynthesis, alpha-linolenic acid metabolism, phospholipid biosynthesis, arachidonic acid metabolism, fatty acid biosynthesis, retinol metabolism, arginine and proline metabolism, pyrimidine metabolism, tryptophan metabolism, and glycine and serine metabolism, according to gas chromatography-mass spectrometry analysis. Furthermore, a correlation analysis of the pooled information revealed a possible link between intestinal metabolites and specific bacteria species. These findings demonstrate that weaned piglets' microbiota composition and metabolites are modified by a high-protein diet and thus inducing severe postweaning diarrhea and inhibiting growth performance. However, the potential molecular mechanism of this regulation in the growth of piglets remains unclear.


Asunto(s)
Alimentación Animal , Caseínas , Alimentación Animal/análisis , Animales , Diarrea/microbiología , Diarrea/veterinaria , Dieta , Proteínas en la Dieta , Suplementos Dietéticos/análisis , ARN Ribosómico 16S , Porcinos , Destete
18.
Food Funct ; 13(9): 4977-4992, 2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35452062

RESUMEN

Camellia (Camellia oleifera bel.) seed oil (CO) is extensively used as an edible oil in China and Asian countries owing to its high nutritional and medicinal values. It has been shown that a high-fat diet enhances lipid accumulation and induces intestinal microbiota imbalance in mice. However, it is still to be learned whether CO prevents dyslipidemia through gut microbiota. Here, using 16S rRNA gene sequencing analysis of the gut microbiota, we found that oral CO relieved lipid accumulation and reversed gut microbiota dysbiosis. Compared to mice (C57BL/6J male mice) fed a high-fat diet, treatment with CO regulated the composition and functional profiling communities related to the lipid metabolism of gut microbiota. The abundances of Dubosiella, Lactobacillus, and Alistipes were markedly increased in CO supplementation mice. In addition, the colon levels of isobutyric acid, pentanoic acid, and isovaleric acid were similar between the control and CO supplementation mice. Besides, the results indicated that CO supplementation in mice alleviated lipid droplet accumulation in the hepatocytes and subcutaneous adipose tissue, although the liver index did not show a difference. Notably, CO supplementation for 6 weeks significantly reduced the levels of LDL, TC, and TG, while enhancing the level of HDL in serum and liver. Meanwhile, we also identified that CO supplementation suppressed the mammalian target of rapamycin (mTOR) signaling pathway in high fat-fed (HF-fed) mice. Taken together, our results suggest that CO improved dyslipidemia and alleviated lipid accumulation in HF-fed mice, the molecular mechanisms possibly associated with the reorganization of gut microbiota, in particular, Alistipes and Dubosiella, mediated the inhibition of the mTOR pathway.


Asunto(s)
Camellia , Dislipidemias , Microbioma Gastrointestinal , Animales , Dieta Alta en Grasa/efectos adversos , Metabolismo de los Lípidos , Lípidos , Masculino , Ratones , Ratones Endogámicos C57BL , Aceites de Plantas/metabolismo , ARN Ribosómico 16S/metabolismo , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo
19.
Sci Total Environ ; 830: 154583, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35304141

RESUMEN

Although interplays between plant and coevolved microorganisms are believed to drive landscape formation and ecosystem services, the relationships between the mycobiome and phytochemical evolution and the evolutionary characteristics of plant-mycobiome interaction patterns are still unclear. The present study explored fungal communities from 405 multiniche samples of three Holarctic disjunct Panax species. The overall mycobiomes showed compartment-dominated variations and dynamic universality. Neutral models were fitted for each compartment at the Panax genus (I) and species (II) levels to infer the community assembly mechanism and identify fungal subgroups potentially representing different plant-fungi interaction results, i.e., the potentially selected, opposed, and neutral taxa. Selection contributed more to the endosphere than to external compartments. The nonneutral taxa showed significant phylogenetic clustering. In Model I, the opposed subgroups could best reflect Panax saponin diversities (r = 0.69), and genera with highly positive correlations to specific saponins were identified using machine learning. Although mycobiomes in the three species differed significantly, subgroups in Model II were phylogenetically clustered based on potential interaction type rather than plant species, indicating potentially conservative plant-fungi interactions. In summary, the finding of strong links between invaders and saponin diversity can help explore the underlying mechanisms of saponin biosynthesis evolution from microbial insights, which is important to understanding the formation of the current landscape. The potential conservatism of plant-fungi interaction patterns suggests that the related genetic modules and selection pressures were convergent across Panax species, advancing our understanding of plant interplay with biotic environments.


Asunto(s)
Micobioma , Panax , Saponinas , Ecosistema , Hongos , Filogenia , Plantas , Microbiología del Suelo
20.
Sci Rep ; 11(1): 7388, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33795823

RESUMEN

Sophora flavescens are widely used for their pharmacological effects. As its main pharmacological components, alkaloids and flavonoids are distributed in the root tissues wherein molecular mechanisms remain elusive. In this study, metabolite profiles are analyzed using metabolomes to obtain biomarkers detected in different root tissues. These biomarkers include alkaloids, phenylpropanoids, and flavonoids. The high-performance liquid chromatography analysis results indicate the differences in principal component contents. Oxymatrine, sophoridine, and matrine contents are the highest in the phloem, whereas trifolirhizin, maackiain, and kushenol I contents are the highest in the xylem. The transcript expression profiles also show tissue specificity in the roots. A total of 52 and 39 transcripts involved in alkaloid and flavonoid syntheses are found, respectively. Among them, the expression levels of LYSA1, LYSA2, AO2, AO6, PMT1, PMT17, PMT34, and PMT35 transcripts are highly and positively correlated with alkaloids contents. The expression levels of 4CL1, 4CL3, 4CL12, CHI5, CHI7, and CHI9 transcripts are markedly and positively correlated with flavonoids contents. Moreover, the quantitative profiles of alkaloids and flavonoids are provided, and the pivotal genes regulating their distribution in S. flavescens are determined. These results contribute to the existing data for the genetic improvement and target breeding of S. flavescens.


Asunto(s)
Alcaloides/química , Metaboloma , Sophora/química , Transcriptoma , Alcaloides/metabolismo , Biomarcadores/metabolismo , Cromatografía Líquida de Alta Presión , Flavonoides/química , Flavonoides/metabolismo , Perfilación de la Expresión Génica , Glucósidos/química , Compuestos Heterocíclicos de 4 o más Anillos/química , Fitomejoramiento , Extractos Vegetales/farmacología , Raíces de Plantas/metabolismo , Análisis de Componente Principal , Pterocarpanos/química , Quinolizinas/química , ARN/metabolismo , Sophora/metabolismo , Matrinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA