Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cereb Cortex ; 34(5)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38715408

RESUMEN

Speech comprehension in noise depends on complex interactions between peripheral sensory and central cognitive systems. Despite having normal peripheral hearing, older adults show difficulties in speech comprehension. It remains unclear whether the brain's neural responses could indicate aging. The current study examined whether individual brain activation during speech perception in different listening environments could predict age. We applied functional near-infrared spectroscopy to 93 normal-hearing human adults (20 to 70 years old) during a sentence listening task, which contained a quiet condition and 4 different signal-to-noise ratios (SNR = 10, 5, 0, -5 dB) noisy conditions. A data-driven approach, the region-based brain-age predictive modeling was adopted. We observed a significant behavioral decrease with age under the 4 noisy conditions, but not under the quiet condition. Brain activations in SNR = 10 dB listening condition could successfully predict individual's age. Moreover, we found that the bilateral visual sensory cortex, left dorsal speech pathway, left cerebellum, right temporal-parietal junction area, right homolog Wernicke's area, and right middle temporal gyrus contributed most to prediction performance. These results demonstrate that the activations of regions about sensory-motor mapping of sound, especially in noisy conditions, could be sensitive measures for age prediction than external behavior measures.


Asunto(s)
Envejecimiento , Encéfalo , Comprensión , Ruido , Espectroscopía Infrarroja Corta , Percepción del Habla , Humanos , Adulto , Percepción del Habla/fisiología , Masculino , Femenino , Espectroscopía Infrarroja Corta/métodos , Persona de Mediana Edad , Adulto Joven , Anciano , Comprensión/fisiología , Encéfalo/fisiología , Encéfalo/diagnóstico por imagen , Envejecimiento/fisiología , Mapeo Encefálico/métodos , Estimulación Acústica/métodos
2.
Cereb Cortex ; 34(1)2024 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-38163443

RESUMEN

The onset of hearing loss can lead to altered brain structure and functions. However, hearing restoration may also result in distinct cortical reorganization. A differential pattern of functional remodeling was observed between post- and prelingual cochlear implant users, but it remains unclear how these speech processing networks are reorganized after cochlear implantation. To explore the impact of language acquisition and hearing restoration on speech perception in cochlear implant users, we conducted assessments of brain activation, functional connectivity, and graph theory-based analysis using functional near-infrared spectroscopy. We examined the effects of speech-in-noise stimuli on three groups: postlingual cochlear implant users (n = 12), prelingual cochlear implant users (n = 10), and age-matched individuals with hearing controls (HC) (n = 22). The activation of auditory-related areas in cochlear implant users showed a lower response compared with the HC group. Wernicke's area and Broca's area demonstrated differences network attributes in speech processing networks in post- and prelingual cochlear implant users. In addition, cochlear implant users maintain a high efficiency of the speech processing network to process speech information. Taken together, our results characterize the speech processing networks, in varying noise environments, in post- and prelingual cochlear implant users and provide new insights for theories of how implantation modes impact remodeling of the speech processing functional networks.


Asunto(s)
Implantación Coclear , Implantes Cocleares , Sordera , Percepción del Habla , Humanos , Habla , Sordera/cirugía , Audición , Percepción del Habla/fisiología
3.
Hum Brain Mapp ; 45(1): e26577, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38224542

RESUMEN

Healthy aging leads to complex changes in the functional network of speech processing in a noisy environment. The dual-route neural architecture has been applied to the study of speech processing. Although evidence suggests that senescent increases activity in the brain regions across the dorsal and ventral stream regions to offset reduced periphery, the regulatory mechanism of dual-route functional networks underlying such compensation remains largely unknown. Here, by utilizing functional near-infrared spectroscopy (fNIRS), we investigated the compensatory mechanism of the dual-route functional connectivity, and its relationship with healthy aging by using a speech perception task at varying signal-to-noise ratios (SNR) in healthy individuals (young adults, middle-aged adults, and older adults). Results showed that the speech perception scores showed a significant age-related decrease with the reduction of the SNR. The analysis results of dual-route speech processing networks showed that the functional connection of Wernicke's area and homolog Wernicke's area were age-related increases. Further to clarify the age-related characteristics of the dual-route speech processing networks, graph-theoretical network analysis revealed an age-related increase in the efficiency of the networks, and the age-related differences in nodal characteristics were found both in Wernicke's area and homolog Wernicke's area under noise environment. Thus, Wernicke's area might be a key network hub to maintain efficient information transfer across the speech process network with healthy aging. Moreover, older adults would recruit more resources from the homologous Wernicke's area in a noisy environment. The recruitment of the homolog of Wernicke's area might provide a means of compensation for older adults for decoding speech in an adverse listening environment. Together, our results characterized dual-route speech processing networks at varying noise environments and provided new insight for the compensatory theories of how aging modulates the dual-route speech processing functional networks.


Asunto(s)
Percepción del Habla , Habla , Persona de Mediana Edad , Adulto Joven , Humanos , Anciano , Imagen por Resonancia Magnética , Envejecimiento , Encéfalo/diagnóstico por imagen
4.
Ear Hear ; 45(3): 742-752, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38268081

RESUMEN

OBJECTIVES: Age-related speech perception difficulties may be related to a decline in central auditory processing abilities, particularly in noisy or challenging environments. However, how the activation patterns related to speech stimulation in different noise situations change with normal aging has yet to be elucidated. In this study, we aimed to investigate the effects of noisy environments and aging on patterns of auditory cortical activation. DESIGN: We analyzed the functional near-infrared spectroscopy signals of 20 young adults, 21 middle-aged adults, and 21 elderly adults, and evaluated their cortical response patterns to speech stimuli under five different signal to noise ratios (SNRs). In addition, we analyzed the behavior score, activation intensity, oxyhemoglobin variability, and dominant hemisphere, to investigate the effects of aging and noisy environments on auditory cortical activation. RESULTS: Activation intensity and oxyhemoglobin variability both showed a decreasing trend with aging at an SNR of 0 dB; we also identified a strong correlation between activation intensity and age under this condition. However, we observed an inconsistent activation pattern when the SNR was 5 dB. Furthermore, our analysis revealed that the left hemisphere may be more susceptible to aging than the right hemisphere. Activation in the right hemisphere was more evident in older adults than in the left hemisphere; in contrast, younger adults showed leftward lateralization. CONCLUSIONS: Our analysis showed that with aging, auditory cortical regions gradually become inflexible in noisy environments. Furthermore, changes in cortical activation patterns with aging may be related to SNR conditions, and that understandable speech with a low SNR ratio but still understandable may induce the highest level of activation. We also found that the left hemisphere was more affected by aging than the right hemisphere in speech perception tasks; the left-sided dominance observed in younger individuals gradually shifted to the right hemisphere with aging.


Asunto(s)
Corteza Auditiva , Percepción del Habla , Anciano , Persona de Mediana Edad , Adulto Joven , Humanos , Corteza Auditiva/fisiología , Percepción del Habla/fisiología , Oxihemoglobinas , Espectroscopía Infrarroja Corta , Ruido , Percepción Auditiva , Estimulación Acústica
5.
Hear Res ; 428: 108668, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36543037

RESUMEN

Cochlear implants (CIs) allow patients with severe to profound hearing loss to gain or regain their sense of hearing. However, the objective assessment of auditory rehabilitation in CI users remains a challenge. In particular, the utility of phase-amplitude coupling (PAC) for evaluating postoperative rehabilitation of CI users remains unknown. In the present study, we conducted an oddball paradigm with stimuli varying in sample speech syllables and collected electroencephalography (EEG) signals for 10 CI users at the time the implant was activated and 180 days after activation. Twelve normal-hearing subjects served as controls. We explored the oscillatory properties of the neural response to syllable incongruence and the cross-frequency coupling between multiple frequencies in CI users. We found that beta-gamma coupling appeared to be enhanced in CI users compared with normal controls and this difference gradually disappeared with increasing implantation time. The present results suggest that predictively encoded auditory pathways are gradually restored in CI users. In addition, the PAC feature in unilateral CI users was found to be lateralized in the auditory cortex, which was consistent with previous studies of auditory-evoked cortical activity. Therefore, PAC may be a reference biomarker for the rehabilitation of speech discrimination in CI users.


Asunto(s)
Implantación Coclear , Implantes Cocleares , Percepción del Habla , Humanos , Implantación Coclear/métodos , Electroencefalografía , Audición , Percepción del Habla/fisiología , Potenciales Evocados Auditivos/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...