Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Opt Express ; 32(7): 12243-12256, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38571053

RESUMEN

Integral imaging is a kind of true three-dimensional (3D) display technology that uses a lens array to reconstruct vivid 3D images with full parallax and true color. In order to present a high-quality 3D image, it's vital to correct the axial position error caused by the misalignment and deformation of the lens array which makes the reconstructed lights deviate from the correct directions, resulting in severe voxel drifting and image blurring. We proposed a sub-pixel marking method to measure the axial position error of the lenses with great accuracy by addressing the sub-pixels under each lens and forming a homologous sub-pixel pair. The proposed measurement method relies on the geometric center alignment of image points, which is specifically expressed as the overlap between the test 3D voxel and the reference 3D voxel. Hence, measurement accuracy could be higher. Additionally, a depth-based sub-pixel correction method was proposed to eliminate the voxel drifting. The proposed correction method takes the voxel depth into consideration in the correction coefficient, and achieves accurate error correction for 3D images with different depths. The experimental results well confirmed that the proposed measuring and correction methods can greatly suppress the voxel drifting caused by the axial position error of the lenses, and greatly improve the 3D image quality.

2.
Nanomaterials (Basel) ; 14(7)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38607142

RESUMEN

This work involves the introduction of niobium oxide into lanthanum aluminate (LaAlO3) via a conventional solid-state reaction technique to yield LaAlO3:Nb (LaNbxAl1-xO3+δ) samples with Nb5+ doping levels ranging from 0.00 to 0.25 mol%. This study presents a comprehensive investigation of the effects of niobium doping on the phase evolution, defect control, and reflectance of LaNbxAl1-xO3+δ powder. Powder X-ray diffraction (XRD) analysis confirms the perovskite structure in all powders, and XRD and transmission electron microscopy (TEM) reveal successful doping of Nb5+ into LaNbxAl1-xO3+δ. The surface morphology was analyzed by scanning electron microscopy (SEM), and the results show that increasing the doping concentration of niobium leads to fewer microstructural defects. Oxygen vacancy defects in different compositions are analyzed at 300 K, and as the doping level increases, a clear trend of defect reduction is observed. Notably, LaNbxAl1-xO3+δ with 0.15 mol% Nb5+ exhibits excellent reflectance properties, with a maximum infrared reflectance of 99.7%. This study shows that LaNbxAl1-xO3+δ powder materials have wide application potential in the field of high reflectivity coating materials due to their extremely low microstructural defects and oxygen vacancy defects.

3.
J Control Release ; 370: 479-489, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38685385

RESUMEN

Scramblase Xk-related protein 8 (Xkr8) regulates the externalization of phosphatidylserine (PS) during apoptosis and holds a pivotal role in fostering tumor immunosuppression. Targeting Xkr8 in conjunction with chemotherapy demonstrated a novel avenue for amplifying antitumor immune response and overcoming chemo-immune resistance. Here we further evaluated this strategy by using a clinically relevant orthotopic model and elucidated the mechanism through in-depth single-cell RNA sequencing (scRNA-seq). We found that Xkr8 knockdown exhibited the potential to lead to immunogenic cell death (ICD) by impeding the normal clearance of apoptotic cells. Co-delivery of Xkr8 small interference RNA (siRNA) and a prodrug conjugate of 5-fluorouracil (5-Fu) and oxoplatin (FuOXP) showed remarkable therapeutic efficacy in an orthotopic pancreatic tumor model with increased infiltration of proliferative NK cells and activated macrophages in the tumor microenvironment (TME). Single-cell trajectory analysis further unveiled that tumor infiltrating CD8+ T cells are differentiated favorably to cytotoxic over exhausted phenotype after combination treatment. Our study sheds new light on the impact of Xkr8 knockdown on TME and solidifies the rationale of combining Xkr8 knockdown with chemotherapy to treat various types of cancers.

4.
J Control Release ; 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38471639

RESUMEN

Scramblase Xkr8 regulates the externalization of phosphatidylserine (PS) during apoptosis and holds a pivotal role in fostering tumor immunosuppression. Targeting Xkr8 in conjunction with chemotherapy demonstrated a novel avenue for amplifying antitumor immune response and overcoming chemo-immune resistance. Here we further evaluated this strategy by using a clinically relevant orthotopic model and elucidated the mechanism through in-depth single-cell RNA sequencing (scRNA-seq). We found that Xkr8 knockdown exhibited the potential to lead to immunogenic cell death (ICD) by impeding the normal clearance of apoptotic cells. Co-delivery of Xkr8 small interference RNA (siRNA) and chemo prodrug FuOXP showed remarkable therapeutic efficacy in an orthotopic pancreatic tumor model with an increase of proliferative NK cells and activated macrophages infiltration in the tumor microenvironment (TME). Single-cell trajectory analysis further unveiled that tumor infiltrating CD8+ T cells are differentiated favorably to cytotoxic over exhausted phenotype after combination treatment. Our study sheds new light on the impact of Xkr8 knockdown on TME and solidifies the rationale of combining Xkr8 knockdown with chemotherapy to treat various types of cancers.

5.
Adv Sci (Weinh) ; 11(19): e2307940, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38482976

RESUMEN

PARP inhibitors (PARPi)-based synthetic lethal therapy demonstrates limited efficacy for most cancer types that are homologous recombination (HR) proficient. To potentiate the PARPi application, a nanocarrier based on 5-azacytidine (AZA)-conjugated polymer (PAZA) for the codelivery of AZA and a PARP inhibitor, BMN673 (BMN) is developed. AZA conjugation significantly decreased the nanoparticle (NP) size and increased BMN loading. Molecular dynamics simulation and experimental validations shed mechanistic insights into the self-assembly of effective NPs. The small PAZA NPs demonstrated higher efficiency of tumor targeting and penetration than larger NPs, which is mediated by a new mechanism of active targeting that involves the recruitment of fibronectin from serum proteins following systemic administration of PAZA NPs. Furthermore, it is found that PAZA carrier sensitize the HR-proficient nonsmall cell lung cancer (NSCLC) to BMN, a combination therapy that is more effective at a lower AZA/BMN dosage. To investigate the underlying mechanism, the tumor immune microenvironment and various gene expressions by RNAseq are explored. Moreover, the BMN/PAZA combination increased the immunogenicity and synergized with PD-1 antibody in improving the overall therapeutic effect in an orthotopic model of lung cancer (LLC).


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Fibronectinas , Neoplasias Pulmonares , Nanopartículas , Ratones , Animales , Humanos , Fibronectinas/metabolismo , Fibronectinas/genética , Nanopartículas/química , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Modelos Animales de Enfermedad , Línea Celular Tumoral , Azacitidina/farmacología , Portadores de Fármacos/química , Mutaciones Letales Sintéticas/genética , Epigénesis Genética/genética
7.
Nat Commun ; 15(1): 255, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38177179

RESUMEN

The multifaceted chemo-immune resistance is the principal barrier to achieving cure in cancer patients. Identifying a target that is critically involved in chemo-immune-resistance represents an attractive strategy to improve cancer treatment. iRhom1 plays a role in cancer cell proliferation and its expression is negatively correlated with immune cell infiltration. Here we show that iRhom1 decreases chemotherapy sensitivity by regulating the MAPK14-HSP27 axis. In addition, iRhom1 inhibits the cytotoxic T-cell response by reducing the stability of ERAP1 protein and the ERAP1-mediated antigen processing and presentation. To facilitate the therapeutic translation of these findings, we develop a biodegradable nanocarrier that is effective in codelivery of iRhom pre-siRNA (pre-siiRhom) and chemotherapeutic drugs. This nanocarrier is effective in tumor targeting and penetration through both enhanced permeability and retention effect and CD44-mediated transcytosis in tumor endothelial cells as well as tumor cells. Inhibition of iRhom1 further facilitates tumor targeting and uptake through inhibition of CD44 cleavage. Co-delivery of pre-siiRhom and a chemotherapy agent leads to enhanced antitumor efficacy and activated tumor immune microenvironment in multiple cancer models in female mice. Targeting iRhom1 together with chemotherapy could represent a strategy to overcome chemo-immune resistance in cancer treatment.


Asunto(s)
Células Endoteliales , Neoplasias , Humanos , Femenino , Animales , Ratones , Línea Celular Tumoral , Portadores de Fármacos , Proliferación Celular , Neoplasias/tratamiento farmacológico , Receptores de Hialuranos , Aminopeptidasas , Antígenos de Histocompatibilidad Menor , Proteínas de la Membrana
8.
Nat Commun ; 14(1): 7993, 2023 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-38042861

RESUMEN

Chemical reaction kinetics can be evaluated by probing dynamic changes of chemical substrates or physical phenomena accompanied during the reaction process. Chemiluminescence, a light emitting exoenergetic process, involves random reaction positions and kinetics in solution that are typically characterized by ensemble measurements with nonnegligible average effects. Chemiluminescent reaction dynamics at the single-molecule level remains elusive. Here we report direct imaging of single-molecule chemiluminescent reactions in solution and probing of their reaction dynamics under catalytic conditions. Double-substrate Michaelis-Menten type of catalytic kinetics is found to govern the single-molecule reaction dynamics in solution, and a heterogeneity is found among different catalyst particles and different catalytic sites on a single particle. We further show that single-molecule chemiluminescence imaging can be used to evaluate the thermodynamics of the catalytic system, resolving activation energy at the single-particle level. Our work provides fundamental insights into chemiluminescent reactions and offers an efficient approach for evaluating catalysts.

9.
Zhongguo Zhong Yao Za Zhi ; 48(22): 6154-6163, 2023 Nov.
Artículo en Chino | MEDLINE | ID: mdl-38114222

RESUMEN

This study aims to investigate the mechanism of muscone in inhibiting the opening of mitochondrial permeability transition pore(mPTP) to alleviate the oxygen and glucose deprivation/reoxygenation(OGD/R)-induced injury of mouse hippocampal neurons(HT22). An in vitro model of HT22 cells injured by OGD/R was established. CCK-8 assay was employed to examine the viability of HT22 cells, fluorescence microscopy to measure the mitochondrial membrane potential, the content of reactive oxygen species(ROS), and the opening of mPTP in HT22 cells. Enzyme-linked immunosorbent assay was employed to determine the level of ATP and the content of cytochrome C(Cyt C) in mitochondria of HT22 cells. Flow cytometry was employed to determine the Ca~(2+) content and apoptosis of HT22 cells. The expression of Bcl-2(B-cell lymphoma-2) and Bcl-2-associated X protein(Bax) was measured by Western blot. Molecular docking and Western blot were employed to examine the binding between muscone and methyl ethyl ketone(MEK) after pronase hydrolysis of HT22 cell proteins. After the HT22 cells were treated with U0126, an inhibitor of MEK, the expression levels of MEK, p-ERK, and CypD were measured by Western blot. The results showed that compared with the OGD/R model group, muscone significantly increased the viability, mitochondrial ATP activity, and mitochondrial membrane potential, lowered the levels of ROS, Cyt C, and Ca~(2+), and reduced mPTP opening to inhibit the apoptosis of HT22 cells. In addition, muscone up-regulated the expression of MEK, p-ERK, and down-regulated that of CypD. Molecular docking showed strong binding activity between muscone and MEK. In conclusion, muscone inhibits the opening of mPTP to inhibit apoptosis, thus exerting a protective effect on OGD/R-injured HT22 cells, which is associated with the activation of MEK/ERK/CypD signaling pathway.


Asunto(s)
Apoptosis , Oxígeno , Ratones , Animales , Especies Reactivas de Oxígeno/metabolismo , Simulación del Acoplamiento Molecular , Adenosina Trifosfato/farmacología , Quinasas de Proteína Quinasa Activadas por Mitógenos/farmacología , Glucosa/metabolismo
10.
Environ Sci Technol ; 57(45): 17278-17290, 2023 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-37919873

RESUMEN

Mercury, a pervasive global pollutant, primarily enters the atmosphere through human activities and legacy emissions from the land and oceans. A significant portion of this mercury subsequently settles on land through vegetation uptake. Characterizing mercury storage and distribution within vegetation is essential for comprehending regional and global mercury cycles. We conducted an unprecedented large-scale aboveground vegetation mercury survey across the expansive Tibetan Plateau. We find that mosses (31.1 ± 0.5 ng/g) and cushion plants (15.2 ± 0.7 ng/g) outstood high mercury concentrations. Despite exceptionally low anthropogenic mercury emissions, mercury concentrations of all biomes exceeded at least one-third of their respective global averages. While acknowledging the role of plant physiological factors, statistical models emphasize the predominant impact of atmospheric mercury on driving variations in mercury concentrations. Our estimations indicate that aboveground vegetation on the plateau accumulates 32-12+21 Mg (interquartile range) mercury. Forests occupy the highest biomass and store 82% of mercury, while mosses, representing only 3% of the biomass, disproportionally contribute 13% to mercury storage and account for 43% (2.5-1.4+3.0 Mg/year) of annual mercury assimilation by vegetation. Additionally, our study underscores that extrapolating aboveground vegetation mercury storage from lower-altitude regions to the Tibetan Plateau can lead to substantial overestimation, inspiring further exploration in alpine ecosystems worldwide.


Asunto(s)
Mercurio , Humanos , Mercurio/análisis , Ecosistema , Tibet , Monitoreo del Ambiente , Plantas
11.
Langmuir ; 39(42): 14904-14911, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37843191

RESUMEN

In recent years, many studies on photocatalysis focused on improving efficiency. However, the cycle performance is also an important index for industrialization. Here, an Ag2O/TiO2 heterostructure photocatalyst is prepared for continuous photodegradation of methylene blue (MB) under visible light, and the samples after the first and fifth round reactions are recycled to study the microstructure evolution of the photocatalyst. The results show that the performance is obviously improved in the second round and remains stable in the following reaction round. Due to the charge transfer, Ag2O/TiO2 gradually changes to Ag2O@Ag-TiO2-x during the photocatalytic reaction. The resulting localized surface plasmon resonance effect and the change of the interface structure greatly increase the number of carriers and prolong the lifetime of carriers. Such variations of microstructures and photoelectric properties of the samples due to the charge transfer and redox reaction on the surface of the photocatalyst dominate the cycle performance.

12.
Transl Cancer Res ; 12(8): 1992-2007, 2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37701108

RESUMEN

Background: High-grade bladder cancer (HGBC) has a higher malignant potential, recurrence and progression rate compared to low-grade phenotype. Its early symptoms are often vague, making non-invasive diagnosis using urinary biomarkers a promising approach. Methods: The gene expression data from urine samples of patients with HGBC was extracted from the GSE68020 dataset. The clinical information and gene expression data in tumor tissues of HGBC patients were obtained from The Cancer Genome Atlas (TCGA) database. Multivariate Cox analysis was used to predict the optimal risk model. The protein-protein interaction (PPI) analysis was performed via the Search Tool for the Retrieval of Interacting Genes (STRING) database and visualized using Cytoscape. Overall survival (OS) was evaluated in the Gene Expression Profiling Interactive Analysis (GEPIA) online platform. Competing endogenous RNA (ceRNA) network was also visualized using Cytoscape. The expression levels of specific genes were assessed through quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR). Moreover, co-expressed genes and potential biological functions related to specific genes were explored based on the Cancer Cell Line Encyclopedia (CCLE) database. Results: A total of 560 differentially expressed genes (DEGs) were identified when comparing the urine sediment samples from HGBC patients with the benign ones. Using these urinary DEGs and the clinical information of HGBC patients, we developed an optimal risk model consisting of eight genes to predict the patient outcome. By integrating the node degree values in the PPI network with the expression changes in both urine and tissue samples, eighteen hub genes were selected out. Among them, DKC1 and SNRPG had the most prominent comprehensive values, and EFTUD2, LOR and EBNA1BP2 were relevant to a worse OS in bladder cancer patients. The ceRNA network of hub genes indicated that DKC1 may be directly regulated by miR-150 in HGBC. The upregulation of both SNRPG and DKC1 were detected in HGBC cells, which were also observed in various tumor tissues and malignant cell lines, displaying high correlations with other hub genes. Conclusions: Our study may provide theoretical basis for the development of effective non-invasive detection and treatment strategies, and further research is necessary to explore the clinical applications of these findings.

13.
Adv Mater ; 35(47): e2304128, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37540571

RESUMEN

A high configurational entropy, achieved through a proper design of compositions, can minimize the Gibbs free energy and stabilize the quasi-equilibrium phases in a solid-solution form. This leads to the development of high-entropy materials with unique structural characteristics and excellent performance, which otherwise could not be achieved through conventional pathways. This work develops a high-entropy nonlinear dielectric system, based on the expansion of lead magnesium niobate-lead titanate. A dense and uniform distribution of nano-polar regions is observed in the samples owing to the addition of Ba, Hf, and Zr ions, which lead to enhanced performance of nonlinear dielectrics. The fact that no structural phase transformation is detected up to 250 °C, and no noticeable change or a steep drop in structural and electrical characteristics is observed at high temperatures suggests a robust thermal stability of the dielectric systems developed. With these advantages, these materials hold vast potential for applications such as dielectric energy storage, dielectric tunability, and electrocaloric effect. Thus, this work offers a new high-entropy configuration with elemental modulation, with enhanced dielectric material features.

14.
Phytomedicine ; 118: 154966, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37487254

RESUMEN

BACKGROUND: A proprietary Chinese herbal product called Dan-Deng-Tong-Nao softgel capsule (DDTNC) is used to treat ischemic stroke. However, the preventive mechanisms of DDTNC against cerebral ischemia reperfusion injury (CIRI) haven not been characterized. OBJECTIVE: To explore the mechanisms of protective effects of DDTNC against CIRI from both internal and external levels. METHODS: Chemical characterization was performed using UPLC. The potential protective mechanisms of DDTNC against CIRI were predicted using network pharmacology. Model of middle cerebral artery occlusion/reperfusion (MCAO/R) was established in rats. An model of brain microvascular endothelial cells (BMECs) induced by oxygen-glucose deprivation/reoxygenation (OGD/R) was also established. We evaluated neurological deficits, cerebral infarct volume, cortical neuron damage, and mitochondrial swelling in vivo. We evaluated the expression of VEGFR2, VEGFA, HIF-1α, CD31, and CD34 in ischemic cortex, and VEGF, bFGF, BDNF, angiostatin, and endostatin in serum of rats and in BMEC supernatants. We also evaluated cell viability, cytotoxicity, intracellular ROS, apoptosis, and migration ability in vitro. RESULTS: Seven components were detected in DDTNC. KEGG enrichment analysis showed that DDTNC may modulate angiogenesis via the HIF-1 signaling pathway. DDTNC treatment reduced neurological score and infarct volume, and improved cell morphology of damaged neurons. Transmission electron microscopy showed that DDTNC reduced mitochondria swelling in cortical neurons. Furthermore, DDTNC reduced intracellular ROS and inhibited apoptosis. DDTNC boosted the expression of CD31, CD34, VEGFR2, VEGFA and HIF-1α, highlighting its involvement in angiogenesis, according to immunofluorescence studies. Furthermore, DDTNC enhanced tube formation and migration of BMECs in vitro. ELISA and western blotting indicated that DDTNCCSF induced the expression of VEGF, BDNF and bFGF, reduced the level of angiostatin and endostatin, increased the protein expression of VEGFA, Notch1 and HIF-1α in vitro and in vivo. CONCLUSIONS: DDTNC promoted angiogenesis to protect brain tissue against MCAO/R, and exerted protective effects against OGD/R in BMECs via activating HIF-1α-VEGFA-NOTCH1 signal transduction pathway.


Asunto(s)
Isquemia Encefálica , Daño por Reperfusión , Ratas , Animales , Células Endoteliales , Factor A de Crecimiento Endotelial Vascular/metabolismo , Angiostatinas/metabolismo , Angiostatinas/farmacología , Angiostatinas/uso terapéutico , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Endostatinas/metabolismo , Endostatinas/farmacología , Endostatinas/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/metabolismo , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo , Microvasos/metabolismo , Receptor Notch1/metabolismo
15.
Adv Sci (Weinh) ; 10(23): e2300256, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37232232

RESUMEN

Lead halide perovskites have made remarkable progress in the field of radiation detection owing to the excellent and unique optoelectronic properties. However, the instability and the toxicity of lead-based perovskites have greatly hindered its practical applications. Alternatively, lead-free perovskites with high stability and environmental friendliness thus have fascinated significant research attention for direct X-ray detection. In this review, the current research progress of X-ray detectors based on lead-free halide perovskites is focused. First, the synthesis methods of lead-free perovskites including single crystals and films are discussed. In addition, the properties of these materials and the detectors, which can provide a better understanding and designing satisfactory devices are also presented. Finally, the challenge and outlook for developing high-performance lead-free perovskite X-ray detectors are also provided.

16.
J Biol Chem ; 299(3): 103026, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36796516

RESUMEN

Autoimmune hepatitis (AIH) is a typical T cell-mediated chronic liver disease with a higher incidence in females. However, the molecular mechanism for the female predisposition is poorly understood. Estrogen sulfotransferase (Est) is a conjugating enzyme best known for its function in sulfonating and deactivating estrogens. The goal of this study is to investigate whether and how Est plays a role in the higher incidence of AIH in females. Concanavalin A (ConA) was used to induce T cell-mediated hepatitis in female mice. We first showed that Est was highly induced in the liver of ConA-treated mice. Systemic or hepatocyte-specific ablation of Est, or pharmacological inhibition of Est, protected female mice from ConA-induced hepatitis regardless of ovariectomy, suggesting the effect of Est inhibition was estrogen independent. In contrast, we found that hepatocyte-specific transgenic reconstitution of Est in the whole-body Est knockout (EstKO) mice abolished the protective phenotype. Upon the ConA challenge, EstKO mice exhibited a more robust inflammatory response with elevated production of proinflammatory cytokines and changed liver infiltration of immune cells. Mechanistically, we determined that ablation of Est led to the hepatic induction of lipocalin 2 (Lcn2), whereas ablation of Lcn2 abolished the protective phenotype of EstKO females. Our findings demonstrate that hepatocyte Est is required for the sensitivity of female mice to ConA-induced and T cell-mediated hepatitis in an estrogen-independent manner. Est ablation may have protected female mice from ConA-induced hepatitis by upregulating Lcn2. Pharmacological inhibition of Est might be a potential strategy for the treatment of AIH.


Asunto(s)
Estrógenos , Hepatitis Autoinmune , Ratones , Femenino , Animales , Concanavalina A/toxicidad , Estrógenos/farmacología , Linfocitos T , Hepatocitos , Hígado , Hepatitis Autoinmune/genética , Hepatitis Autoinmune/prevención & control , Ratones Noqueados , Ratones Endogámicos C57BL
17.
Chem Commun (Camb) ; 59(15): 2157-2160, 2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36727587

RESUMEN

Ink jet printing is for the first time introduced into the synthesis of aluminophosphate (AlPO) and silicoaluminophosphate (SAPO) zeolite. As a high-throughput technique, 256 zeolite precursors with multiple formulations could be obtained within 2 h, while the product phase was regulated relative to the variant compositions.

19.
Theranostics ; 13(2): 578-595, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36632215

RESUMEN

Inhibition of Myc promotes the regression of many types of tumors, including prostate cancer. However, the success of anti-Myc therapy is hampered by the lack of a strategy to effectively deliver the inhibitors to the tumor site and by the feedback mechanisms that cancer cells use to adapt to metabolic reprogramming. Methods: The effects of Myc inhibitors (10074-G5 or 10058-F4), alone or in combination with 6-diazo-5-oxo-L-norleucine (DON), were evaluated in cultured human or murine prostate cancer cells by cell viability assay, qRT-PCR and Western blot. To facilitate the in vivo therapeutic evaluation, a prodrug conjugate of 10074-G4 and DON (10074-DON) was developed, which could be effectively loaded into a polysaccharide-based nanocarrier (PS). Results: The treatment with Myc inhibitors led to significant induction of glutamine: fructose-6-phosphate amidotransferase-1 (GFAT1) and enhanced protein glycosylation. Mechanistically, Myc inhibition triggered GFAT1 induction through the IREα-Xbp1s pathway. The combination use of Myc inhibitors and GFAT1 inhibitor DON led to a synergistic effect in inhibiting the proliferation and migration of prostate cancer cells. Enhanced in vivo delivery of 10074-DON via the PS nanocarrier led to a significant inhibition of tumor growth along with an improvement in tumor immune microenvironment in several PCa animal models. Conclusion: Simultaneous targeting of Myc and GFAT-1 may represent a novel strategy for the treatment of prostate cancer.


Asunto(s)
Terapia Molecular Dirigida , Neoplasias de la Próstata , Animales , Humanos , Masculino , Ratones , Glicosilación , Neoplasias de la Próstata/tratamiento farmacológico , Microambiente Tumoral
20.
Nat Commun ; 14(1): 21, 2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36596763

RESUMEN

Self-assembled systems have recently attracted extensive attention because they can display a wide range of phase morphologies in nanocomposites, providing a new arena to explore novel phenomena. Among these morphologies, a bicontinuous structure is highly desirable based on its high interface-to-volume ratio and 3D interconnectivity. A bicontinuous nickel oxide (NiO) and tin dioxide (SnO2) heteroepitaxial nanocomposite is revealed here. By controlling their concentration, we fabricated tuneable self-assembled nanostructures from pillars to bicontinuous structures, as evidenced by TEM-energy-dispersive X-ray spectroscopy with a tortuous compositional distribution. The experimentally observed growth modes are consistent with predictions by first-principles calculations. Phase-field simulations are performed to understand 3D microstructure formation and extract key thermodynamic parameters for predicting microstructure morphologies in SnO2:NiO nanocomposites of other concentrations. Furthermore, we demonstrate significantly enhanced photovoltaic properties in a bicontinuous SnO2:NiO nanocomposite macroscopically and microscopically. This research shows a pathway to developing innovative solar cell and photodetector devices based on self-assembled oxides.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...