Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Asian J Androl ; 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38727211

RESUMEN

ABSTRACT: Infections and inflammatory reactions in the male genital tract are the leading causes of male infertility with a prevalence of 6%-10%, primarily affecting testicular and epididymal function and ultimately compromising sperm quality. However, most infertile patients with genital infection/inflammation are asymptomatic and easily overlooked. Traditional indicators, including white blood cells, elastase, and other components in semen, can reflect inflammation of the genital tract, but there is still a lack of a uniform standard method of detection. Therefore, it is necessary to explore reliable markers in semen that reflect the inflammatory status of the genital tract. Using the experimental autoimmune orchitis (EAO) model to simulate noninfectious chronic orchitis, we successfully collected ejaculated seminal fluid from EAO rats using optimized electrical stimulation devices. Proteomic analysis was performed using isobaric tags for relative and absolute quantification (iTRAQ). Compared to the control group, 55 upregulated and 105 downregulated proteins were identified in seminal plasma samples from the EAO group. In a preliminary screening, the inflammation-related protein S100A8/A9 was upregulated. We further verified that S100A8/A9 was increased in seminal plasma and highly expressed in testicular macrophages of the EAO model. In patients with oligoasthenospermia and genital tract infections, we also found that S100A8/A9 levels were remarkably increased in seminal plasma and testicular macrophages. S100A8/A9 in semen may be a potential biomarker for chronic genital inflammation. Our study provides a new potential biomarker for early diagnosis and further understanding of male infertility caused by genital inflammation.

2.
Environ Sci Pollut Res Int ; 30(27): 71360-71370, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37165267

RESUMEN

2,5-Dichloro-1,4-benzenediol (2,5-DCBQ) is a putative disinfection by-product that belongs to the halogenated benzoquinone class. However, its developmental toxicity and related mechanism remained unclarified. In our study, we used zebrafish embryos as the model and exposed them to graded concentrations of 2,5-DCBQ (100, 200, 300, 400 µg/L). We found that the rate of epiboly abnormalities increased significantly in a concentration-dependent manner. The results of whole-mount in situ hybridization (WISH) indicated that the expression patterns and levels of chordin (dorsoventral marker), foxa2 (endodermal marker), eve1 (ventral mesodermal marker), and foxb1a (ectodermal marker) were altered, suggesting that 2,5-DCBQ might affect the germ layer development of zebrafish embryos. Integrated transcriptomic and metabolomic analyses were adopted to explore the molecular mechanisms of embryonic developmental delays. The results showed that 2,5-DCBQ exposure induced 1163 differentially expressed genes (DEGs) and 37 differential metabolites (DEMs). Bioinformatic analysis enriched the most affected molecular pathways (Wnt signaling pathway, cell adhesion molecules, actin cytoskeleton regulation) and metabolic pathways (purine metabolism, aminoacyl-tRNA biosynthesis, arginine and proline metabolism) in zebrafish embryos. To summarize, our findings broadened the molecular mechanisms of 2,5-DCBQ embryotoxicity through multi-omics and bioinformatic analyses.


Asunto(s)
Contaminantes Químicos del Agua , Pez Cebra , Animales , Transcriptoma , Embrión no Mamífero/metabolismo , Benzoquinonas , Contaminantes Químicos del Agua/toxicidad
3.
Ecotoxicol Environ Saf ; 255: 114754, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36931084

RESUMEN

As magnetic resonance imaging (MRI) scanners with ultra-high field (UHF) have optimal performance, scientists have been working to develop high-performance devices with strong magnetic fields to improve their diagnostic potential. However, whether an MRI scanner with UHF poses a risk to the safety of the organism require further evaluation. This study evaluated the effects of 11.4 Tesla (T) UHF on embryonic development using a zebrafish model. Multiple approaches, including morphological parameters, physiological behaviors, and analyses of the transcriptome at the molecular level, were determined during 5 days after laboratory-controlled exposure from 6 hour post fertilization (hpf) to 24 hpf. No significant effects were observed in embryo mortality, hatching rate, body length, Left-Right patterning, locomotor behavior, etc. RNA-sequencing analysis revealed up-regulated tumor necrosis factor (TNF) inflammatory factors and activated TNF signaling pathways in the 11.4 T exposure group. The results were further validated using qPCR. Our findings indicate that although UHF exposure under 11.4 T has no effect on the development of zebrafish embryos, it has specific effects on the immune response that require further investigation.


Asunto(s)
Embrión no Mamífero , Pez Cebra , Animales , Perfilación de la Expresión Génica , Transducción de Señal/genética , Regulación hacia Arriba , Pez Cebra/metabolismo , Factores de Necrosis Tumoral/metabolismo
4.
Biology (Basel) ; 12(2)2023 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-36829486

RESUMEN

Impaired invasion of EVTs results in inadequate remodelling of arteries and poor placentation, leading to PE. TMBIM4 was found to promote the migration and invasion of human osteosarcoma U2-OS and breast cancer MCF7 cell lines. However, the effect of TMBIM4 on trophoblast biological behaviour and its relevance to PE pathophysiology remain unclear. In this study, we confirmed that TMBIM4 was highly expressed in cytotrophoblasts, syncytiotrophoblasts, and EVTs of the human placenta during early pregnancy. By comparing the expression levels of TMBIM4 in the placenta of women with normal-term pregnancy and PE, TMBIM4 was found to be significantly decreased in PE. Thereafter, we determined the expression of TMBIM4 in the LPS-treated first-trimester human trophoblast cell line HTR-8/SVneo (mimicking a PE-like cell model), and determined the effect of TMBIM4 on trophoblast function and its underlying mechanism. LPS treatment reduced the expression of TMBIM4 and induced NLRP3 inflammasome activity in HTR-8/SVneo cells. KO of TMBIM4 in the HTR-8/SVneo cell line impaired cell viability, migration, and invasion, which was more severe in the LPS/ATP-treated TMBIM4-KO cell line. Moreover, TMBIM4 deficiency enhanced NLRP3 inflammasome activity and promoted subsequent pyroptosis, with or without LPS/ATP treatment. The negative relationship between TMBIM4 expression and NLRP3 inflammatory activity was verified in PE placentas. Inhibiting the NLRP3 inflammasome with MCC950 in HTR-8/SVneo cells alleviated LPS/ATP-induced pyroptosis and damaged cell function in the TMBIM4-KO cell line. Overall, this study revealed a new PE-associated protein, TMBIM4, and its biological significance in trophoblast pyroptosis mediated by the NLRP3 inflammasome. TMBIM4 may serve as a potential target for the treatment of placental inflammation-associated PE.

5.
J Reprod Immunol ; 155: 103781, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36463798

RESUMEN

Autophagy is a lysosomal degradation pathway that supports metabolic adaptation and energy cycling. It is essential for cell homeostasis, differentiation, development, and survival. Recent studies have shown that autophagy could influence immune responses by regulating immune cell functions. Reciprocally, immune cells strongly influence autophagy. Immune cells at the maternal-fetal interface are thought to play essential roles in pregnancy. Here, we review the induction of autophagy at the maternal-fetal interface and its role in decidualization and placental development. Additionally, we emphasize the role of autophagy in the immune microenvironment at the maternal-fetal interface, including innate immunity, adaptive immunity, and immune tolerance molecules. It also suggests new research directions and prospects.


Asunto(s)
Inmunidad Innata , Placenta , Humanos , Embarazo , Femenino , Inmunidad Adaptativa , Tolerancia Inmunológica , Autofagia , Intercambio Materno-Fetal
6.
Asian J Androl ; 25(3): 389-397, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35915541

RESUMEN

Male reproductive infections are known to shape the immunological homeostasis of the testes, leading to male infertility. However, the specific pathogenesis of these changes remains poorly understood. Exosomes released in the inflammatory microenvironment are important in communication between the local microenvironment and recipient cells. Here, we aim to identify the immunomodulatory properties of inflammatory testes-derived exosomes (IT-exos) and explore their underlying mechanisms in orchitis. IT-exos were isolated using a uropathogenic Escherichia coli (UPEC)-induced orchitis model and confirmed that IT-exos promoted proinflammatory M1 activation with increasing expression of tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), and interleukin-6 (IL-6) in vitro. We further used small RNA sequencing to identify the differential miRNA profiles in exosomes and primary testicular macrophages (TMs) from normal and UPEC-infected testes, respectively, and identified that miR-155-5p was highly enriched in IT-exos and TMs from inflammatory testes. Further study of bone marrow derived macrophages (BMDMs) transfected with miR-155-5p mimic showed that macrophages polarized to proinflammatory phenotype. In addition, the mice that were administrated IT-exos showed remarkable activation of TM1-like macrophages; however, IT-exos with silencing miR-155-5p showed a decrease in proinflammatory responses. Overall, we demonstrate that miR-155-5p delivered by IT-exos plays an important role in the activation of TM1 in UPEC-induced orchitis. Our study provides a new perspective on the immunological mechanisms underlying inflammation-related male infertility.


Asunto(s)
Exosomas , Infertilidad Masculina , MicroARNs , Orquitis , Escherichia coli Uropatógena , Humanos , Masculino , Ratones , Animales , Escherichia coli Uropatógena/genética , Escherichia coli Uropatógena/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Exosomas/genética , Exosomas/metabolismo , Macrófagos/metabolismo , Fenotipo , Infertilidad Masculina/metabolismo
7.
Sci Total Environ ; 855: 158924, 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36152845

RESUMEN

Mono(2-ethylhexyl) phthalate (MEHP) is a metabolite of DEHP which is one of phthalic acid esters (PAEs) widely used in daily necessities. Moreover, MEHP has been proven to have stronger biological toxicity comparing to DEHP. In particular, several recent population-based studies have reported that intrauterine exposure to MEHP results in adverse pregnancy outcomes. To explore the mechanisms and metabolic biomarkers of MEHP exposure, we examined the metabolic status of HTR-8/Svneo cell lines exposed to different doses of MEHP (0, 1.25, 5.0, 20 µM). Global and dose-response metabolomics tools were used to identify metabolic perturbations and sensitive markers associated with MEHP. Only 22 metabolic features (accounted for <1 %) were significantly changed when exposed to 1.25 µM. However, when the exposure dose was increased to 5 or 20 µM, the number of significantly changed metabolic features exceeded 300 (approximately 10 %). In particular, amino acid metabolism, pyrimidine metabolism and glutathione metabolism were widely affected according to the enrich analysis of those significant altered metabolites, which has and have previously been reported to be closely related to fetal development. Moreover, 5'-UMP and N-acetylputrescine with the lowest effective concentrations (EC-10 = 0.1 µM and EC+10 = 0.11 µM, respectively) were identified as sensitive endogenous biomarkers of MEHP exposure.


Asunto(s)
Dietilhexil Ftalato , Ácidos Ftálicos , Embarazo , Femenino , Humanos , Dietilhexil Ftalato/toxicidad , Dietilhexil Ftalato/metabolismo , Trofoblastos/química , Trofoblastos/metabolismo , Ácidos Ftálicos/toxicidad , Ácidos Ftálicos/metabolismo , Biomarcadores/análisis
8.
BMC Health Serv Res ; 22(1): 1401, 2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36424590

RESUMEN

BACKGROUND: Fast track surgery has shown its effectiveness to accelerate recovery and gained acceptance in many operations. However, data for paramedics using fast track surgery are limited in China. The aims of our study are to evaluate the knowledge, attitude and application status of fast track surgery in paramedics and to provide suggestions for the better application of fast track surgery. METHODS: Two Hundred Ninety-one operating room paramedics were investigated by simple random sampling from October 20 to December 20, 2019 time. A self-reported questionnaire was used to collect data with five dimensions: demographic data, cognitive level, knowledge, attitude and application of fast track surgery. Data were analyzed using qualitative and quantitative methods. RESULTS: 19.93% of participants never heard fast track surgery and only 3.32% of participants were very familiar with it. Gender (0.702, 95% CI 0.109-1.294), technical title (0.342, 95% CI 0.126-0.558) and awareness of the concept of fast track surgery (0.471, 95% CI 0.165-0.776) had a correlation with the knowledge level of paramedics towards fast track surgery. In terms of attitude towards fast track surgery, gender (- 1.944, 95% CI -3.830- -0.058), age (0.303, 95% CI 0.021-0.585) and knowledge score of fast track surgery (0.426, 95% CI 0.014-0.838) are related. Half of the paramedics believe the most difficult problem in the application of fast track surgery was the lack of multi-team communication and cooperation. CONCLUSION: The knowledge of fast track surgery among paramedics in Wuhan is poor, and some paramedics have a negative attitude towards it. As the attitude is positively correlated with the knowledge, it is necessary to improve the knowledge level of fast track surgery among paramedics in Wuhan.


Asunto(s)
Conocimientos, Actitudes y Práctica en Salud , Quirófanos , Humanos , Estudios Transversales , Técnicos Medios en Salud , Encuestas y Cuestionarios
9.
Chem Biol Interact ; 368: 110226, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36280156

RESUMEN

1,1-Dichloro-2,2-bis(p-chlorophenyl)ethylene (p,p'-DDE) is the primary molecular metabolite of 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT), a pesticide used to control the spread of dengue and Zika viruses, and can be detected in the majority of human blood samples. However, whether p,p'-DDE affects embryonic cardiac development remains unknown. This study aimed to explore the cardiotoxicity of p,p'-DDE and its potential mechanisms of action in zebrafish embryos. We demonstrated for the first time that zebrafish embryos exposed to p,p'-DDE exhibited cardiac development abnormalities, including morphological and functional abnormalities, such as pericardial edema, thinning of the ventricular wall, reduced erythrocyte intensity, and increased heart rate. The results of Kyoto Encyclopedia of Genes and Genomes analysis of differentially expressed genes and qRT-PCR showed that JAK-STAT-related genes (il17d, socs3a, and bcl2b) and Notch-related genes (notch1a, notch1b, bmp10, efnb2a, tbx2b, and tbx5a) were altered after p,p'-DDE treatment, leading to reduced proliferation and increased apoptosis of cardiomyocytes and irregular formation of ventricular and abnormal atrioventricular junctions. These results were verified using acridine orange staining, 5-ethynyl-2'-deoxyuridine assays, and whole-mount in situ hybridization. Our research suggests that p,p'-DDE affects cardiac development in zebrafish embryos and that its cardiotoxicity may be associated with the JAK-STAT and Notch signaling pathways. Our findings may provide the basis for future population-based cohort studies.


Asunto(s)
Cardiotoxicidad , Diclorodifenil Dicloroetileno , Transducción de Señal , Animales , DDT/toxicidad , Diclorodifenil Dicloroetileno/toxicidad , Pez Cebra/metabolismo
10.
Ecotoxicol Environ Saf ; 243: 114007, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-36030688

RESUMEN

2, 5-dichloro-1, 4-benuinone (2, 5-DCBQ) is an emerging disinfection by-product belonging to the class of halobenzoquinones (HBQs). However, there is limited evidence regarding the neurotoxic effects of 2, 5-DCBQ. To better understand the toxicological mechanisms of aquatic organisms, zebrafish embryos were exposed to 0.2 mg/L, 0.4 mg/L, and 0.6 mg/L of 2, 5-DCBQ from 4 h post-fertilization (hpf) to 120 hpf. Developmental defects, such as reduced body length, decreased heart rate, decreased pigmentation, and abnormal motor axon structure was observed. In particular, the locomotor activity of zebrafish larvae reduced with exposure to increasing 2, 5-DCBQ concentrations, and this effect was more pronounced under dark stimulation. The results indicated that the genes associated with neuronal development (gfap, mbp, syn2a, elavl3, ache, and a1-tubulin) were significantly downregulated after treatment with 2, 5-DCBQ. Furthermore, the KEGG result showed the neuroactive ligand-receptor interaction and apoptosis pathways were visibly disrupted, and we found acetylcholinesterase activity was also affected. In summary, the disinfection by-product, 2, 5-DCBQ, exhibits neurodevelopmental toxicity in zebrafish embryos, providing novel evidence for comprehensive analyses of its toxicity.


Asunto(s)
Contaminantes Químicos del Agua , Pez Cebra , Acetilcolinesterasa/metabolismo , Animales , Desinfección/métodos , Embrión no Mamífero , Larva , Contaminantes Químicos del Agua/metabolismo , Pez Cebra/metabolismo
11.
Ecotoxicol Environ Saf ; 226: 112798, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34592528

RESUMEN

Mancozeb (MZ), an antibacterial pesticide, has been linked to reproductive toxicity, neurotoxicity, and endocrine disruption. However, whether MZ has cardiactoxicity is unclear. In this study, the cardiotoxic effects of exposure to environment-related MZ concentrations ranging from 1.88 µM to 7.52 µM were evaluated at the larval stage of zebrafish. Transcriptome sequencing predicted the mechanism of MZ-induced cardiac developmental toxicity in zebrafish by enrichment analysis of Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO). Consistent with morphological changes, the osm, pfkfb3, foxh1, stc1, and nrarpb genes may effect normal development of zebrafish heart by activating NOTCH signaling pathways, resulting in pericardial edema, myocardial fibrosis, and congestion in the heart area. Moreover, differential gene expression analysis indicated that cyp-related genes (cyp1c2 and cyp3c3) were significantly upregulated after MZ treatment, which may be related to apoptosis of myocardial cells. These results were verified by real-time quantitative RT-qPCR and acridine orange staining. Our findings suggest that MZ-mediated cardiotoxic development of zebrafish larvae may be related to the activation of Notch and apoptosis-related signaling pathways.


Asunto(s)
Contaminantes Químicos del Agua , Zineb , Animales , Embrión no Mamífero , Perfilación de la Expresión Génica , Maneb , Transcriptoma , Contaminantes Químicos del Agua/toxicidad , Pez Cebra/genética , Zineb/toxicidad
12.
Chemosphere ; 278: 130349, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33838424

RESUMEN

Triclocarban (TCC), considered an endocrine-disrupting, persistent, and bioaccumulating organic matter, has attracted a great deal of attention for its pollution and health risks. However, studies on its toxicological mechanism, especially for embryo development are limited. This article explores the cardiac developmental toxicity induced in zebrafish embryos after exposure to different TCC concentrations. First, liquid chromatography-tandem mass spectrometry was used in detecting TCC in embryos in vivo after exposure to various TCC. Results showed that embryonic TCC content reached 9.23 ng after exposure to 300 µg/L TCC, the heart rates of the embryos markedly decreased, heart abnormalities significantly increased. In addition, obvious pericardial effusion was observed in the larvae. Through transcriptome sequencing, 200 differential gene expression (DGE) patterns were detected in the TCC (300 µg/L) experimental and control groups. The results of GO function analysis and KEGG pathway of DGE showed that aryl hydrocarbon receptor (AhR) activation and cyp-related genes (cyp1a, cyp1b1 and cyp1c) were significantly up-regulated. these affected the normal development of zebrafish embryonic heart, tissue edema, and hemorrhage. TCC exhibited strong cardiac teratogenic effects and developmental toxicity, which is partly related to AhR activation. Transcriptome-based results are helpful in precisely determining the risk of TCC exposure. The potential mechanism between TCC and AhR should be further investigated.


Asunto(s)
Carbanilidas , Pez Cebra , Animales , Embrión no Mamífero/metabolismo , Receptores de Hidrocarburo de Aril/metabolismo , Transcriptoma , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética
13.
Environ Entomol ; 40(6): 1405-9, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22217755

RESUMEN

Camponotus ants harbor the obligate intracellular endosymbiont Blochmannia in their midgut bacteriocytes, but little is known about intestinal bacteria living in the gut lumen. In this paper we reported the results of a survey of the intestinal microflora of Camponotus japonicus Mayr based on small-subunit rRNA genes (16S rRNAs) polymerase chain reaction (PCR)-restriction fragment-length polymorphism analysis of worker guts. From 107 clones, 11 different restriction fragment-length polymorphism profiles were identified, and sequences blasting analysis found these represent four types of bacteria. Most (91.6%) of the clones were "Candidatus Blochmannia", the obligate endosymbionts of Camponotus ants, and 6.5% of the clones were "Candidatus Serratia symbiotica", a secondary endosymbiont of aphids; the remaining 2% clones were Fructobacillus fructosus and uncultured Burkholderiales bacterium, respectively. These results show that the diversity of gut bacteria in C. japonicus was low. "Candidatus Serratia symbiotica" was identified from Camponotus ants for the first time, an interesting result because Blochmannia's closest bacterial relative is also in the genus Serratia. This discovery supports the scenario that consumption of aphid honeydew or tissue provides an initial step in the evolution of an advanced symbiosis, and suggests that Camponotus ant could acquire other secondary endosymbionts from Hemiptera host through their diet. In addition, Burkholderiales bacterium also was identified from the gut of C. japonicus for the first time, and whether it is a nitrogen-recycling endosymbiont in Camponotus ants needs to be investigated further.


Asunto(s)
Hormigas/microbiología , Bacterias/genética , Animales , Hormigas/fisiología , Bacterias/clasificación , China , ADN Bacteriano/química , ADN Bacteriano/genética , Intestinos/microbiología , Intestinos/fisiología , Datos de Secuencia Molecular , Filogenia , Reacción en Cadena de la Polimerasa , Polimorfismo de Longitud del Fragmento de Restricción , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Simbiosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...