Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 132(25): 250604, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38996251

RESUMEN

As quantum circuits become more integrated and complex, additional error sources that were previously insignificant start to emerge. Consequently, the fidelity of quantum gates benchmarked under pristine conditions falls short of predicting their performance in realistic circuits. To overcome this problem, we must improve their robustness against pertinent error models besides isolated fidelity. Here, we report the experimental realization of robust quantum gates in superconducting quantum circuits based on a geometric framework for diagnosing and correcting various gate errors. Using quantum process tomography and randomized benchmarking, we demonstrate robust single-qubit gates against quasistatic noise and spatially correlated noise in a broad range of strengths, which are common sources of coherent errors in large-scale quantum circuits. We also apply our method to nonstatic noises and to realize robust two-qubit gates. Our Letter provides a versatile toolbox for achieving noise-resilient complex quantum circuits.

2.
Aging (Albany NY) ; 16(11): 9933-9943, 2024 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-38850526

RESUMEN

BACKGROUND: Ginsenoside Rg3 is an active saponin isolated from ginseng, which can reduce renal inflammation. However, the role and mechanism of Rg3 in diabetic kidney disease (DKD) are far from being studied. METHODS: The effects of Rg3 and miR-216a-5p on the proliferation, apoptosis, and MAPK pathway in high glucose (HG)-induced SV40 MES 13 were monitored by CCK-8, TUNEL staining, and western blot. RESULTS: Rg3 treatment could accelerate proliferation and suppress apoptosis in HG-induced SV40 MES. Moreover, miR-216a-5p inhibition also could alleviate renal injury, prevent apoptosis, and activate the MAPK pathway in kidney tissues of diabetic model mice. CONCLUSION: Rg3 could attenuate DKD progression by downregulating miR-216a-5p, suggesting Rg3 and miR-216a-5p might be the potential drug and molecular targets for DKD therapy.


Asunto(s)
Apoptosis , Proliferación Celular , Diabetes Mellitus Experimental , Nefropatías Diabéticas , Ginsenósidos , Sistema de Señalización de MAP Quinasas , Células Mesangiales , MicroARNs , Ginsenósidos/farmacología , MicroARNs/metabolismo , MicroARNs/genética , Animales , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/patología , Nefropatías Diabéticas/tratamiento farmacológico , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Ratones , Células Mesangiales/efectos de los fármacos , Células Mesangiales/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Diabetes Mellitus Experimental/metabolismo , Masculino , Línea Celular
3.
Chem Sci ; 15(9): 3262-3272, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38425519

RESUMEN

The precisely engineered structures of materials greatly influence the manifestation of their properties. For example, in the process of alkali metal ion storage, a carefully designed structure capable of accommodating inserted and extracted ions will improve the stability of material cycling. The present study explores the uniform distribution of self-grown carbon nanotubes to provide structural support for the conductive and elastic MXene layers of Ti3C2Tx-Co@NCNTs. Furthermore, a compatible electrolyte system has been optimized by analyzing the solvation structure and carefully regulating the component in the solid electrolyte interphase (SEI) layer. Mechanistic studies demonstrate that the decomposition predominantly controlled by FSI- leads to the formation of a robust inorganic SEI layer enriched with KF, thus effectively inhibiting irreversible side reactions and major structural deterioration. Confirming our expectations, Ti3C2Tx-Co@NCNTs exhibits an impressive reversible capacity of 260 mA h g-1, even after 2000 cycles at 500 mA g-1 in 1 M KFSI (DME), surpassing most MXene-based anodes reported for PIBs. Additionally, density functional theory (DFT) calculations verify the superior electronic conductivity and lower K+ diffusion energy barriers of the novel superstructure of Ti3C2Tx-Co@NCNTs, thereby affirming the improved electrochemical kinetics. This study presents systematic evaluation methodologies for future research on MXene-based anodes in PIBs.

4.
Aging (Albany NY) ; 16(2): 1237-1248, 2024 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-38289593

RESUMEN

Diabetic nephropathy (DN) is one of the most serious complications in diabetic patients. And m6A modifications mediated by METTL3 are involved multiple biological processes. However, the specific function and mechanism of METTL3 in DN remains unclear. DN model mice were first established with streptozotocin, and WISP1 expression was confirmed by qRT-PCR. Then the influences of WISP1 or/and METTL3 on the proliferation, migration, and epithelial-mesenchymal transition (EMT) and fibrosis-related proteins of high glucose (HG)-induced HK2 cells or HK2 cells were tested through CCK-8, wound healing, and western blot. We first revealed that WISP1 was highly expressed in renal tissues of DN model mice and HG-induced HK2 cells. Functionally, WISP1 or METTL3 silencing could weaken the proliferation, migration, EMT, and fibrosis of HG-treated HK2 cells, and WISP1 or METTL3 overexpression could induce the proliferation, migration, EMT, and fibrosis of HK2 cells. Additionally, METTL3 silencing could decrease WISP1 m6A modification, and silencing of METTL3 also could notably suppress the biological functions of HG-induced HK2 cells by downregulating WISP1. Silencing of METTL3 prevents DN development process by decreasing WISP1 with m6A modification pattern. Therefore, we suggest that METTL3/WISP1 axis might be a novel therapeutic target for DN.


Asunto(s)
Proteínas CCN de Señalización Intercelular , Nefropatías Diabéticas , Transición Epitelial-Mesenquimal , Metiltransferasas , Animales , Humanos , Ratones , Adenina/análogos & derivados , Proliferación Celular/genética , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/metabolismo , Fibrosis , Glucosa/toxicidad , Metiltransferasas/metabolismo , Proteínas CCN de Señalización Intercelular/genética , Proteínas CCN de Señalización Intercelular/metabolismo
5.
Phys Rev Lett ; 132(2): 020601, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38277590

RESUMEN

Anyons, exotic quasiparticles in two-dimensional space exhibiting nontrivial exchange statistics, play a crucial role in universal topological quantum computing. One notable proposal to manifest the fractional statistics of anyons is the toric code model; however, scaling up its size through quantum simulation poses a serious challenge because of its highly entangled ground state. In this Letter, we demonstrate that a modular superconducting quantum processor enables hardware-pragmatic implementation of the toric code model. Through in-parallel control across separate modules, we generate a 10-qubit toric code ground state in four steps and realize six distinct braiding paths to benchmark the performance of anyonic statistics. The path independence of the anyonic braiding statistics is verified by correlation measurements in an efficient and scalable fashion. Our modular approach, serving as a hardware embodiment of the toric code model, offers a promising avenue toward scalable simulation of topological phases, paving the way for quantum simulation in a distributed fashion.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA