Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Biol ; 22(1): 88, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38641823

RESUMEN

BACKGROUND: Immunosuppressive status is prevalent in cancer patients and increases the complexity of tumor immunotherapy. It has been found that Listeria-vectored tumor vaccines had the potential ability of two-side regulatory effect on the immune response during immunotherapy. RESULTS: The results show that the combined immunotherapy with the LM∆E6E7 and LI∆E6E7, the two cervical cancer vaccine candidate strains constructed by our lab, improves the antitumor immune response and inhibits the suppressive immune response in tumor-bearing mice in vivo, confirming the two-sided regulatory ability of the immune response caused by Listeria-vectored tumor vaccines. The immunotherapy reduces the expression level of myeloid-derived suppressor cells (MDSCs)-inducing factors and then inhibits the phosphorylation level of STAT3 protein, the regulatory factor of MDSCs differentiation, to reduce the MDSCs formation ability. Moreover, vaccines reduce the expression of functional molecules associated with MDSCs may by inhibiting the phosphorylation level of the JAK1-STAT1 and JAK2-STAT3 pathways in tumor tissues to attenuate the immunosuppressive function of MDSCs. CONCLUSIONS: Immunotherapy with Listeria-vectored cervical cancer vaccines significantly reduces the level and function of MDSCs in vivo, which is the key point to the destruction of immunosuppression. The study for the first to elucidate the mechanism of breaking the immunosuppression.


Asunto(s)
Vacunas contra el Cáncer , Células Supresoras de Origen Mieloide , Neoplasias del Cuello Uterino , Femenino , Humanos , Ratones , Animales , Células Supresoras de Origen Mieloide/metabolismo , Células Supresoras de Origen Mieloide/patología , Vacunas contra el Cáncer/metabolismo , Neoplasias del Cuello Uterino/prevención & control , Neoplasias del Cuello Uterino/metabolismo , Fosforilación , Transducción de Señal
2.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(2): 441-446, 2024 Mar 20.
Artículo en Chino | MEDLINE | ID: mdl-38645870

RESUMEN

Objective: To study the immunoadjuvant effects of chitosan oligosaccharide (COS), including the immune activation and the triggering of lysosomal escape, and to explore whether COS can be used as an adjuvant for attenuated live bacteria vector vaccines. Methods: 1) Mouse macrophages RAW264.7 cells were cultured with COS at 0 mg/mL (the control group) and 0.1-4 mg/mL for 24 h and the effect on cell viability was measured by CCK8 assay. Mouse macrophages RAW264.7 were treated with COS at 0 (the control group), 1, 2, and 4 mg/mL for 24 h. Then, the mRNA expression levels of the cytokines, including IFN-γ, IL-10, TGF-ß, and TLR4, were determined by RT-qPCR assay. 2) RAW264.7 cells were treated with 1 mL of PBS containing different components, including calcein at 50 µg/mL, COS at 2 mg/mL, and bafilomycin A1, an inhibitor, at 1 µmol/mL, for culturing. The cells were divided into the Calcein group, Calcein+COS group, and Calcein+COS+Bafilomycin A1 group accordingly. Laser scanning confocal microscopy was used to observe the phagocytosis and the intracellular fluorescence distribution of calcein, a fluorescent dye, in RAW264.7 cells in the presence or absence of COS intervention to determine whether COS was able to trigger lysosomal escape. 3) LM∆E6E7 and LI∆E6E7, the attenuated Listeria vector candidate therapeutic vaccines for cervical cancer, were encapsulated with COS at the mass concentrations of 0.5 mg/mL, 1 mg/mL, 2 mg/mL , 4 mg/mL, and 8 mg/mL. Then, the changes in zeta potential were measured to select the concentration of COS that successfully encapsulated the bacteria. Phagocytosis of the vaccine strains by RAW264.7 cells was measured before and after LM∆E6E7 and LI∆E6E7 were coated with COS at 2 mg/mL. Results: 1) CCK8 assays showed that, compared with the findings for the control group, the intervention of RAW264.7 cells with COS at different concentrations for 24 h was not toxic to the cells and promoted cell proliferation, with the difference being statistically significant (P<0.05). According to the RT-qPCR results, compared with those of the control group, the COS intervention up-regulated the mRNA levels of TLR4 and IFN-γ in RAW264.7 cells, while it inhibited the mRNA expression levels of TGF-ß and IL-10, with the most prominent effect being observed in the 4 mg/mL COS group (P<0.05). 2) Laser scanning confocal microscopy revealed that the amount of fluorescent dye released from lysosomes into the cells was greater in the Calcein+COS group than that in the Calcein group. In other words, a greater amount of fluorescent dye was released from lysosomes into the cells under COS intervention. Furthermore, this process could be blocked by bafilomycin A1. 3) The zeta potential results showed that COS could successfully encapsulate the surface of bacteria when its mass concentration reached 2 mg/mL. Before and after the vaccine strain was encapsulated by COS, the phagocytosis of LM∆E6E7 by RAW264.7 cells was 5.70% and 22.00%, respectively, showing statistically significant differences (P<0.05); the phagocytosis of LI∆E6E7 by RAW264.7 cells was 1.55% and 6.12%, respectively, showing statistically significant differences (P<0.05). Conclusion: COS has the effect of activating the immune response of macrophages and triggering lysosomal escape. The candidates strains of coated live attenuated bacterial vector vaccines can promote the phagocytosis of bacteria by macrophages. Further research is warranted to develop COS into an adjuvant for bacterial vector vaccine.


Asunto(s)
Adyuvantes Inmunológicos , Vacunas Bacterianas , Quitosano , Oligosacáridos , Animales , Ratones , Células RAW 264.7 , Oligosacáridos/farmacología , Adyuvantes Inmunológicos/farmacología , Vacunas Bacterianas/inmunología , Macrófagos/metabolismo , Macrófagos/inmunología , Macrófagos/efectos de los fármacos , Vacunas Atenuadas/inmunología , Citocinas/metabolismo , Supervivencia Celular/efectos de los fármacos
3.
BMC Cancer ; 24(1): 288, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38439023

RESUMEN

BACKGROUND: Although HPV prophylactic vaccines can provide effective immune protection against high-risk HPV infection, studies have shown that the protective effect provided by them would decrease with the increased age of vaccination, and they are not recommended for those who are not in the appropriate age range for vaccination. Therefore, in those people who are not suitable for HPV prophylactic vaccines, it is worth considering establishing memory T-cell immunity to provide long-term immune surveillance and generate a rapid response against lesional cells to prevent tumorigenesis. METHODS: In this study, healthy mice were preimmunized with LM∆E6E7 and LI∆E6E7, the two Listeria-vectored cervical cancer vaccine candidate strains constructed previously by our laboratory, and then inoculated with tumor cells 40 d later. RESULTS: The results showed that preimmunization with LM∆E6E7 and LI∆E6E7 could establish protective memory T-cell immunity against tumor antigens in mice, which effectively eliminate tumor cells. 60% of mice preimmunized with vaccines did not develop tumors, and for the remaining mice, tumor growth was significantly inhibited. We found that preimmunization with vaccines may exert antitumor effects by promoting the enrichment of T cells at tumor site to exert specific immune responses, as well as inhibiting intratumoral angiogenesis and cell proliferation. CONCLUSION: Altogether, this study suggests that preimmunization with LM∆E6E7 and LI∆E6E7 can establish memory T-cell immunity against tumor antigens in vivo, which provides a viable plan for preventing tumorigenesis and inhibiting tumor progression.


Asunto(s)
Vacunas contra el Cáncer , Listeria , Infecciones por Papillomavirus , Vacunas contra Papillomavirus , Neoplasias del Cuello Uterino , Humanos , Animales , Ratones , Femenino , Memoria Inmunológica , Células T de Memoria , Infecciones por Papillomavirus/complicaciones , Infecciones por Papillomavirus/prevención & control , Carcinogénesis , Transformación Celular Neoplásica , Neoplasias del Cuello Uterino/prevención & control , Antígenos de Neoplasias
4.
Macromol Rapid Commun ; 44(24): e2300453, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37800610

RESUMEN

An effective and practical antibacterial strategy is to design multifunctional and stimuli-responsive materials that exhibit antibacterial activity in response to bacterial triggers. In this study, because the metabolism of Staphylococcus aureus (S. aureus) can acidify the surrounding environment and pH level can affect the lower critical solution temperature of temperature/pH dual-sensitive polymers, a monomer containing a temperature-sensitive N-isopropyl amide derivative and pH-sensitive tertiary amine groups is first synthesized. Then, the monomer is copolymerized with a polyurethane chain, and partial tertiary amine groups are quaternized to obtain bactericidal activity. The modified polyurethane exhibits temperature/pH sensitivity, antibacterial adhesion activity, bactericidal activity, and good cytocompatibility. An in situ investigation of bacterial behavior and pH changes in the bacterial suspension during the process confirms that the temperature/pH dual-sensitive polyurethane successfully achieves antibacterial activity though the metabolic activity of S. aureus without external intervention. This design concept provides a new perspective for antibacterial material design.


Asunto(s)
Poliuretanos , Staphylococcus aureus , Poliuretanos/farmacología , Temperatura , Aminas , Antibacterianos/farmacología , Concentración de Iones de Hidrógeno
5.
Chemistry ; 29(57): e202301591, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37476914

RESUMEN

Some organic dyes and photosensitizers with strong visible absorption can behave as photo-responsive oxidase mimics. However, the relationship between the photo-oxidase activity and molecular structure remains unclear to date. In this work, a new type of photosensitizer with the characteristics of molecular rotors, namely DPPy, served as the molecular scaffold for further investigation. To adjust the photocatalytic oxidation ability, DAPy and CBPy were designed and synthesized based on the enhancement and diminishment of the intramolecular charge transfer (ICT) process, respectively. Kinetic studies revealed that DAPy and CBPy both exhibited highly efficient photo-activated oxidase-like activity with 3,3',5,5'-tetramethylbenzidine (TMB) as the substrate, which were in good accordance with their molecular engineering to promote either type I or type II reactive oxygen species (ROS) generation. Impressively a colorimetric method based on the visible light induced oxidase-like activity of molecular rotors was developed to determine the environmental temperature for the first time. Both DAPy and CBPy showed distinct sensitivities toward temperature as compared with several molecular rotors based on the typical fluorimetric detection. This work provides a new strategy for the application of molecular rotors to overcome the non-emissive challenge in temperature sensing.

6.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 54(6): 1159-1166, 2023 Nov 20.
Artículo en Chino | MEDLINE | ID: mdl-38162066

RESUMEN

Objective: To construct Listeria monocytogenes (LM) and Listeria ivanovii (LI) balanced lethal systems expressing cervical cancer antigens, to study their basic biological characteristics, and to provide reference data for the immunotherapy of cervical cancer. Methods: Through seamless cloning via in vitro ligation kit, the HPV16 E6E7 fusion protein antigen gene constructed in our lab was spliced to the complement plasmid pCWgfp-LM dal-Amp that contained the nutritional gene dal. Then, we replaced the ampicillin (Amp) resistance gene of the complement plasmid with the asd nutrition gene. The ligation reaction mixture was transformed into Escherichia coli (E. coli) recipient bacteria DH5αΔasd and the complement plasmid pCWgfp-E6E7-LM dal-Ampfree, which expressed cervical cancer antigens and had no Amp resistance, was obtained by nutrition screening from the E. coli DH5αΔasd. The plasmid pCWgfp-E6E7-LM dal-Ampfree was complemented into LMΔdd and LIΔdd, the attenuated nutrition-deficient Listeria strains with the virulence genes actA and plcB and nutrition genes dal and dat deleted by electroporation, thereby obtaining LM and LI balanced lethal systems expressing cervical cancer antigen genes. The in vitro growth of the strains was observed. Western blot was performed to examine the status of antigen protein expression. PCR was performed to measure the in vitro passage stability of complement plasmid pCWgfp-E6E7-LM dal-Ampfree. Their basic biological characteristics were examined by biochemical reaction tests and hemolysis assay. Results: Two Listeria balanced lethal systems expressing cervical cancer antigen were successfully constructed. The HPV16 type E6E7 fusion protein was successfully expressed in the two Listeria balanced lethal systems. pCWgfp-E6E7-LM dal-Ampfree, the positive plasmid expressing cervical cancer antigen, maintained stable existence in the two Listeria balanced lethal systems. The two Listeria balanced lethal systems expressing cervical cancer antigen showed significantly better recovery growth in comparison with Listeria nutrition deficiency strains. The results of biochemical reaction tests showed that most of the biochemical reaction of the two Listeria balanced lethal systems expressing cervical cancer antigen were consistent with those of Listeria attenuated strains. The two Listeria balanced lethal systems expressing cervical cancer antigen still maintained the hemolytic ability, although their hemolytic ability was slightly inferior to that of the Listeria balanced lethal systems not expressing cervical cancer antigen and the Listeria attenuated strains. Conclusion: The two Listeria balanced lethal systems expressing cervical cancer antigen genes are constructed successfully. They display normal in vitro growth. The complement plasmid pCWgfp-E6E7-LM dal-Ampfree can maintain stable existence in vitro, showing little change in its biochemical characteristics and hemolytic ability. Further research should be conducted to investigate the potential of these two recombinant strains to be used as candidate strains for cervical cancer therapeutic vaccine.


Asunto(s)
Listeria monocytogenes , Listeria , Neoplasias del Cuello Uterino , Femenino , Humanos , Neoplasias del Cuello Uterino/genética , Escherichia coli/genética , Listeria/genética , Listeria monocytogenes/genética , Proteínas Recombinantes
7.
Vet Res ; 53(1): 113, 2022 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-36587206

RESUMEN

Listeriolysin O (LLO) is the main virulence protein of Listeria monocytogenes (LM), that helps LM escape lysosomes. We previously found that the cellular immune response elicited by L.ivanovii (LI) is weaker than that elicited by LM. We speculated that this may be related to the function of ivanolysin O (ILO). Here, we constructed hemolysin gene deletion strain, LIΔilo, and a modified strain, LIΔilo::hly, in which ilo was replaced by hly. Prokaryotic transcriptome sequencing was performed on LI, LIΔilo, and LIΔilo::hly. Transcriptome differences between the three strains were compared, and genes and pathways with significant differences between the three strains were analyzed. Prokaryotic transcriptome sequencing results revealed the relationship of ilo to the ribosome, quorum sensing, and phosphotransferase system (PTS) pathways, etc. LIΔilo exhibited attenuated biofilm formation ability compared to LI. Biofilm formation was significantly recovered or even increased after replenishing hly. After knocking out ilo, the relative expression levels of some virulence genes, including sigB, prfA, actA, smcL, and virR, were up-regulated compared to LI. After replenishing hly, these genes were down-regulated compared to LIΔilo. The trend and degree of such variation were not completely consistent when cultured in media containing only monosaccharides or disaccharides. The results confirmed that hemolysin is related to some important biological properties of Listeria, including biofilm formation and virulence gene expression levels. This is the first comprehensive study on ILO function at the transcriptomic level and the first evidence of a relationship between Listeria hemolysin and biofilm formation.


Asunto(s)
Listeria monocytogenes , Listeria , Animales , Listeria/genética , Listeria/metabolismo , Proteínas Hemolisinas/genética , Transcriptoma , Listeria monocytogenes/genética , Biopelículas , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
8.
Front Microbiol ; 13: 962326, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35935244

RESUMEN

Listeria monocytogenes (LM) induces efficient and specific T-cell immune responses in the host. Listeriolysin O (LLO) is the main virulence protein of LM. LLO helps LM escape from the lysosome. However, the pronounced pathogenicity of LM limits its practical application as a live bacterial vector. Listeria ivanovii (LI) also displays intracellular parasitic abilities, cell to cell transfer, and other LM properties, with an elevated biosafety relative to LM. We have confirmed that LI can be used as a viable bacterial vaccine vector. However, we have also observed in vivo that LI vector vaccine candidates survive in the immune organ (spleen) for a shorter time compared with the survival time of LM and elicit weaker immune responses compared with LM. Studies have confirmed that hemolysin correlates with some important biological properties of Listeria, including cell invasion, intracellular proliferation, and the ability to induce immune responses. We speculated that the weaker immunogenicity of LI compared to LM may be related to the function of ivanolysin O (ILO). Here, we established a hemolysin gene deletion strain, LIΔilo, and a modified strain, LIΔilo:hly, whose ilo was replaced by hly. The hemolysin-modified strain was attenuated; however, it led to significantly improved invasive and proliferative activities of antigen-presenting cells, including those of RAW 264.7 macrophages, compared with the effects of LI. Mice immunized twice with LIΔilo:hly showed higher cytokine levels and better challenge protection rates than LI-immunized mice. This is the first description in Listeria carrier vaccine research of the modification of LI hemolysin to obtain a better vaccine carrier than LI. The recombinant strain LIΔilo:hly showed good biosafety and immunogenicity, and thus appears to be a good vector strain for vaccine development.

9.
Colloids Surf B Biointerfaces ; 216: 112577, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35623259

RESUMEN

Surface patterning is a promising approach to prevent bacterial adhesion and biofilm formation without the concerns of antimicrobial resistance. To determine the parameters of a patterned surface that can affect bacterial behavior, a sphere-like coccus (Staphylococcus aureus) was investigated on a series of polyurethane films with ordered hemisphere patterns. The bacterial retention data in a growth medium indicated that the surface patterns significantly decreased bacterial adhesion and proliferation. The most notable effects were observed with the 2 µm-pattern as well as the patterned polycaprolactone and polystyrene films, and the accessible contact area of the polyurethane films, surface wettability, and spatial confinement, did not show an influence. An optical microscope with a modified incubation cell was used for in situ real-time observations of bacterial colonization, proliferation, and migration. Based on appropriate statistical analyses, it was concluded that topographical geometry played a dominant role. In combination with the retention assessment in a nongrowth medium, it was found that pattern-mediated inhibition of biofilm formation was mainly achieved by affecting bacterial proliferation rather than adhesion. This study provides new insight for designing biofilm-resistant biomimetic materials.


Asunto(s)
Infecciones Estafilocócicas , Staphylococcus aureus , Bacterias , Adhesión Bacteriana , Biopelículas , Humanos , Poliuretanos/farmacología , Propiedades de Superficie
10.
Faraday Discuss ; 233(0): 190-205, 2022 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-34889342

RESUMEN

Copper is the most widely used substrate for Li deposition and dissolution in lithium metal anodes, which is complicated by the formation of solid electrolyte interphases (SEIs), whose physical and chemical properties can affect Li deposition and dissolution significantly. However, initial Li nucleation and growth on bare Cu creates Li nuclei that only partially cover the Cu surface so that SEI formation could proceed not only on Li nuclei but also on the bare region of the Cu surface with different kinetics, which may affect the follow-up processes distinctively. In this paper, we employ in situ atomic force microscopy (AFM), together with X-ray photoelectron spectroscopy (XPS), to investigate how SEIs formed on a Cu surface, without Li participation, and on the surface of growing Li nuclei, with Li participation, affect the components and structures of the SEIs, and how the formation sequence of the two kinds of SEIs, along with Li deposition, affect subsequent dissolution and re-deposition processes in a pyrrolidinium-based ionic liquid electrolyte containing a small amount of water. Nanoscale in situ AFM observations show that sphere-like Li deposits may have differently conditioned SEI-shells, depending on whether Li nucleation is preceded by the formation of the SEI on Cu. Models of integrated-SEI shells and segmented-SEI shells are proposed to describe SEI shells formed on Li nuclei and SEI shells sequentially formed on Cu and then on Li nuclei, respectively. "Top-dissolution" is observed for both types of shelled Li deposits, but the integrated-SEI shells only show wrinkles, which can be recovered upon Li re-deposition, while the segmented-SEI shells are apparently top-opened due to mechanical stresses introduced at the junctions of the top regions and become "dead" SEIs, which forces subsequent Li nucleation and growth in the interstice of the dead SEIs. Our work provides insights into the impact mechanism of SEIs on the initial stage Li deposition and dissolution on foreign substrates, revealing that SEIs could be more influential on Li dissolution and that the spatial integration of SEI shells on Li deposits is important to improving the reversibility of deposition and dissolution cycling.

11.
ACS Omega ; 5(47): 30444-30453, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-33283092

RESUMEN

In this work, well-dispersed fumed SiO2/cis-1,4-polyisoprene rubber (IR) masterbatch was first obtained through an effective wet mixing method, and the properties of the corresponding vulcanizate were studied. Before curing with activator and sulfur, IR solution was blended and co-coagulated with SiO2 suspension modified by bis(3-trimethoxysilypropyl) tetrasulfide in n-hexane. The modification of TESPT imparted evenly distributed SiO2 particles in IR and improved interfacial binding among SiO2 and IR. Hence, the prepared compound presented better processability and the corresponding vulcanizate presented higher physical performance, including higher tensile strength, lower heat buildup, and better fatigue resistance than that prepared in the dry mixing method. Additionally, higher wet skid resistance and lower rolling resistance could be observed in fabricated SiO2/IR vulcanizate. The employed wet mixing method is economical and efficient, which is promising in preparing rubber composites with comprehensive performance.

12.
Eng Life Sci ; 20(5-6): 181-185, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32874181

RESUMEN

The micropore structure is prerequisite for fast and durable endothelialization of artificial small diameter blood vessels (ASDBVs). Although some methods, such as salt leaching, coagulation, and electrospinning, have been developed to construct micropores for ASDBVs, the uncontrollability of the structure and the complicated procedures of the process are still the issues to be concerned about. In this study, a compact device based on the principle of centrifugal force is established and used to prepare polyurethane (PU) ASDBVs with micropore structures by blasting different porogens. It is found that the glass beads could construct micropores with regular round shape, uniform distribution, and controllable size (60-350 µm), which significantly improves the endothelialization of PU-based ASDBVs, especially when the pore size is about 60 µm. This method is easy-accessible and wide-applicable, which provides a new pathway for the research and development of ASDBVs.

13.
Anal Chim Acta ; 1125: 144-151, 2020 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-32674760

RESUMEN

Targeted metabolomics has significant advantages for quantification but suffers from reduced metabolite coverage. In this study, we developed a large-scale targeted metabolomics method and expanded its applicability to various human samples. This approach initially involved unbiased identification of metabolites in human cells, tissues and body fluids using ultra high-performance liquid chromatography (UHPLC) coupled to high-resolution Orbitrap mass spectrometry (MS). Targeted metabolomics method was established with utility of UHPLC-triple quadrupole MS, which enables targeted profiling of over 400 biologically important metabolites (e.g., amino acids, sugars, nucleotides, dipeptides, coenzymes, and fatty acids), covering 92 metabolic pathways (e.g., Krebs cycle, glycolysis, amino acids metabolism, ammonia recycling, and one-carbon metabolism). The present method displayed better sensitivity, repeatability and linearity than the Orbitrap MS-based untargeted metabolomics approach and demonstrated excellent performance in lung cancer biomarker discovery, in which 107 differential metabolites were able to discriminate between carcinoma and adjacent normal tissues, implicating the Warburg effect, alteration of redox state, and nucleotide metabolism of lung cancer. This new method is flexible and expandable and offers many advantages for metabolomics analysis, such as wide metabolite coverage, good repeatability and linearity and excellent capability in biomarker discovery, making it useful for both basic and clinical metabolic research.


Asunto(s)
Biomarcadores de Tumor/análisis , Metaboloma , Metabolómica/métodos , Línea Celular Tumoral , Cromatografía Líquida de Alta Presión , Humanos , Espectrometría de Masas
14.
Sci Adv ; 6(22): eaba6714, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32524003

RESUMEN

Two-dimensional van der Waals heterojunctions (2D-vdWHs) stacked from atomically thick 2D materials are predicted to be a diverse class of electronic materials with unique electronic properties. These properties can be further tuned by sandwiching monolayers of planar organic molecules between 2D materials to form molecular 2D-vdWHs (M-2D-vdWHs), in which electricity flows in a cross-plane way from one 2D layer to the other via a single molecular layer. Using a newly developed cross-plane break junction technique, combined with density functional theory calculations, we show that M-2D-vdWHs can be created and that cross-plane charge transport can be tuned by incorporating guest molecules. The M-2D-vdWHs exhibit distinct cross-plane charge transport signatures, which differ from those of molecules undergoing in-plane charge transport.

15.
Aging Male ; 23(5): 1259-1265, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32396485

RESUMEN

Depressive symptoms are throughout our life, especially in the older population, the sex hormones reduction link to a high risk of depression. In this study, we investigated whether bilateral orchiectomy (ORX) modifies mice behaviors and antidepressant drugs effects through tail suspension test (TST). We evaluated behavioral changes at 1 week, 2 weeks, 1 month, and up to 2 months after ORX. The behavior responses to doxepin, fluoxetine, and venlafaxine at 1 week, 2 weeks, 1 month, and 2 months after ORX were evaluated. No apparent difference was detected among the durations of immobility of the control group, sham operation group, and ORX group in the TST at 1 week and 2 weeks after ORX. But the immobility time of ORX group was obvious longer than that of both control group and sham operation group at 1 month and 2 months after ORX. Only the antidepressant effect of venlafaxine was observed at 1 week and 2 weeks after ORX, while the antidepressant response to fluoxetine decreased 1 month and 2 months after ORX. The response to antidepressant drugs was strongly modified in ORX mice. Our results suggest that not all antidepressant drugs are suitable for depression with androgen deficiency.HighlightsMice with low androgen were more prone to depression-like behaviors.The response to antidepressants changed under the condition of low androgen in mice.Not all antidepressant drugs are appropriate for patients with low androgen.


Asunto(s)
Andrógenos , Suspensión Trasera , Animales , Antidepresivos/farmacología , Depresión/tratamiento farmacológico , Humanos , Ratones
16.
iScience ; 23(1): 100770, 2020 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-31954978

RESUMEN

The manipulation of molecule-electrode interaction is essential for the fabrication of molecular devices and determines the connectivity from electrodes to molecular components. Although the connectivity of molecular devices could be controlled by molecular design to place anchor groups in different positions of molecule backbones, the reversible switching of such connectivities remains challenging. Here, we develop an electric-field-induced strategy to switch the connectivity of single-molecule junctions reversibly, leading to the manipulation of different connectivities in the same molecular backbone. Our results offer a new concept of single-molecule manipulation and provide a feasible strategy to regulate molecule-electrode interaction.

17.
Sci Adv ; 5(6): eaaw3072, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31245539

RESUMEN

Oriented external electric fields (OEEFs) offer a unique chance to tune catalytic selectivity by orienting the alignment of the electric field along the axis of the activated bond for a specific chemical reaction; however, they remain a key experimental challenge. Here, we experimentally and theoretically investigated the OEEF-induced selective catalysis in a two-step cascade reaction of the Diels-Alder addition followed by an aromatization process. Characterized by the mechanically controllable break junction (MCBJ) technique in the nanogap and confirmed by nuclear magnetic resonance (NMR) in bottles, OEEFs are found to selectively catalyze the aromatization reaction by one order of magnitude owing to the alignment of the electric field on the reaction axis. Meanwhile, the Diels-Alder reaction remained unchanged since its reaction axis is orthogonal to the electric fields. This orientation-selective catalytic effect of OEEFs reveals that chemical reactions can be selectively manipulated through the elegant alignment between the electric fields and the reaction axis.

18.
Front Cell Neurosci ; 13: 199, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31133815

RESUMEN

Previous studies have demonstrated that T cells and microglia could fight against cerebral Listeria monocytogenes (Listeria); however, their synergistic anti-Listeria mechanisms remain unknown. Following Listeria infection in a culture system, we found that microglia, but not nerve cells, could release extracellular traps (ETs) which originated from microglial vesicles. Specific inhibitor analysis showed that extracellular DNA (eDNA), matrix metallopeptidases (MMP9 and MMP12), citrullinated histone H3, and peptidyl arginine deiminase 2 were the major components of microglial ETs (MiETs) and were also the components of vesicles. Systematic analysis indicated that Listeria-induced MiETs were cytosolic reactive oxygen species (ROS)- and NADPH oxidase (NOX)-dependent and involved ERK. MiETs were exhibited in Listeria-infected mouse brain and might protected against Listeria infection via bacterial killing in a mouse meningitis model, and MiETs existed in cerebrospinal fluid (CSF) from Listeria meningitis patients in vivo and in vitro. Additionally, interferon-γ could induce MiET formation in Listeria-infected microglia in vitro that was mediated by NOX, and there was a positive relationship between the elevated level of IFN-γ and eDNA and nucleosomes in the brain homogenates and CSF of Listeria meningitis model mice and in the CSF before treatment in clinical Listeria meningitis patients. Together, this is the first report of MiET formation, these findings pave the way for deeper exploration of the innate immune response to pathogens in CNS.

19.
Nat Commun ; 10(1): 1748, 2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30988310

RESUMEN

Full-carbon electronics at the scale of several angstroms is an expeimental challenge, which could be overcome by exploiting the versatility of carbon allotropes. Here, we investigate charge transport through graphene/single-fullerene/graphene hybrid junctions using a single-molecule manipulation technique. Such sub-nanoscale electronic junctions can be tuned by band gap engineering as exemplified by various pristine fullerenes such as C60, C70, C76 and C90. In addition, we demonstrate further control of charge transport by breaking the conjugation of their π systems which lowers their conductance, and via heteroatom doping of fullerene, which introduces transport resonances and increase their conductance. Supported by our combined density functional theory (DFT) calculations, a promising future of tunable full-carbon electronics based on numerous sub-nanoscale fullerenes in the large family of carbon allotropes is anticipated.

20.
Macromol Biosci ; 19(5): e1800482, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30840365

RESUMEN

Cardiovascular diseases are a severe threat to human health. Implantation of small-diameter vascular substitutes is a promising therapy in clinical operations. Polyurethane (PU) is considered one of the most suitable materials for this substitution due to its good mechanical properties, controlled biostability, and proper biocompatibility. According to biodegradability and biostability, in this review, PU small-diameter vascular substitutes are divided into two groups: biodegradable scaffolds and biostable prostheses, which are applied to the body for short- and long-term, respectively. Following this category, the degradation principles and mechanisms of different kinds of PUs are first discussed; then the chemical and physical methods for adjusting the properties and the research advances are summarized. On the basis of these discussions, the problems remaining at present are addressed, and the contour of future research and development of PU-based small-diameter vascular substitutes toward clinical applications is outlined.


Asunto(s)
Implantes Absorbibles , Materiales Biocompatibles/química , Prótesis Vascular , Poliuretanos/química , Humanos , Ensayo de Materiales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...