Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 392
Filtrar
1.
Heliyon ; 10(16): e36258, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39224337

RESUMEN

Natural bone tissue has the certain function of self-regeneration and repair, but it is difficult to repair large bone damage. Recently, although autologous bone grafting is the "gold standard" for improving bone repair, it has high cost, few donor sources. Besides, allogeneic bone grafting causes greater immune reactions, which hardly meet clinical needs. The bone tissue engineering (BTE) has been developed to promote bone repair. Gelatin, due to its biocompatibility, receives a great deal of attention in the BTE research field. However, the disadvantages of natural gelatin are poor mechanical properties and single structural property. With the development of BTE, gelatin is often used in combination with a range of natural, synthetic polymers, and inorganic materials to achieve synergistic effects for the complex physiological process of bone repair. The review delves into the fundamental structure and unique properties of gelatin, as well as the excellent properties necessary for bone scaffold materials. Then this review explores the application of modified gelatin three-dimensional (3D) scaffolds with various structures in bone repair, including 3D fiber scaffolds, hydrogels, and nanoparticles. In addition, the review focuses on the excellent efficacy of composite bone tissue scaffolds consisting of modified gelatin, various natural or synthetic polymeric materials, as well as bioactive ceramics and inorganic metallic/non-metallic materials in the repair of bone defects. The combination of these gelatin-based composite scaffolds provides new ideas for the design of scaffold materials for bone repair with good biosafety.

2.
Nat Commun ; 15(1): 6887, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39134557

RESUMEN

Tin-lead halide perovskites with a bandgap near 1.2 electron-volt hold great promise for thin-film photovoltaics. However, the film quality of solution-processed Sn-Pb perovskites is compromised by the asynchronous crystallization behavior between Sn and Pb components, where the crystallization of Sn-based perovskites tends to occur faster than that of Pb. Here we show that the rapid crystallization of Sn is rooted in its stereochemically active lone pair, which impedes coordination between the metal ion and Lewis base ligands in the perovskite precursor. From this perspective, we introduce a noncovalent binding agent targeting the open metal site of coordinatively unsaturated Sn(II) solvates, thereby synchronizing crystallization kinetics and homogenizing Sn-Pb alloying. The resultant single-junction Sn-Pb perovskite solar cells achieve a certified power conversion efficiency of 24.13 per cent. The encapsulated device retains 90 per cent of the initial efficiency after 795 h of maximum power point operation under simulated one-sun illumination.

3.
J Hematol Oncol ; 17(1): 67, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39143574

RESUMEN

BACKGROUND: The interleukin-1 receptor accessory protein (IL1RAP) is highly expressed on acute myeloid leukemia (AML) bulk blasts and leukemic stem cells (LSCs), but not on normal hematopoietic stem cells (HSCs), providing an opportunity to target and eliminate the disease, while sparing normal hematopoiesis. Herein, we report the activity of BIF002, a novel anti-IL1RAP/CD3 T cell engager (TCE) in AML. METHODS: Antibodies to IL1RAP were isolated from CD138+ B cells collected from the immunized mice by optoelectric positioning and single cell sequencing. Individual mouse monoclonal antibodies (mAbs) were produced and characterized, from which we generated BIF002, an anti-human IL1RAP/CD3 TCE using Fab arm exchange. Mutations in human IgG1 Fc were introduced to reduce FcγR binding. The antileukemic activity of BIF002 was characterized in vitro and in vivo using multiple cell lines and patient derived AML samples. RESULTS: IL1RAP was found to be highly expressed on most human AML cell lines and primary blasts, including CD34+ LSC-enriched subpopulation from patients with both de novo and relapsed/refractory (R/R) leukemia, but not on normal HSCs. In co-culture of T cells from healthy donors and IL1RAPhigh AML cell lines and primary blasts, BIF002 induced dose- and effector-to-target (E:T) ratio-dependent T cell activation and leukemic cell lysis at subnanomolar concentrations. BIF002 administered intravenously along with human T cells led to depletion of leukemic cells, and significantly prolonged survival of IL1RAPhigh MOLM13 or AML patient-derived xenografts with no off-target side effects, compared to controls. Of note, BiF002 effectively redirects T cells to eliminate LSCs, as evidenced by the absence of disease initiation in secondary recipients of bone marrow (BM) from BIF002+T cells-treated donors (median survival not reached; all survived > 200 days) compared with recipients of BM from vehicle- (median survival: 26 days; p = 0.0004) or isotype control antibody+T cells-treated donors (26 days; p = 0.0002). CONCLUSIONS: The novel anti-IL1RAP/CD3 TCE, BIF002, eradicates LSCs and significantly prolongs survival of AML xenografts, representing a promising, novel treatment for AML.


Asunto(s)
Proteína Accesoria del Receptor de Interleucina-1 , Leucemia Mieloide Aguda , Células Madre Neoplásicas , Linfocitos T , Leucemia Mieloide Aguda/inmunología , Leucemia Mieloide Aguda/tratamiento farmacológico , Humanos , Animales , Ratones , Proteína Accesoria del Receptor de Interleucina-1/inmunología , Linfocitos T/inmunología , Células Madre Neoplásicas/inmunología , Células Madre Neoplásicas/patología , Células Madre Neoplásicas/efectos de los fármacos , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Monoclonales/inmunología , Línea Celular Tumoral , Ratones Endogámicos NOD
4.
Anal Chem ; 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39103289

RESUMEN

Digital microfluidics (DMF) features programmed manipulation of fluids in multiple steps, making it a valuable tool for sample pretreatment. However, the integration of sample pretreatment with its downstream reaction and detection requires transferring droplets from the DMF device to the outside world. To address this issue, the present study developed a modified DMF device that allows automated droplet ejection out of the chip, facilitated by a tailor-designed interface. A double-layered DMF microchip with an oil-filled medium was flipped over, with a liquid infusion port and a liquid expulsion port accommodated on the top working PCB plate and the bottom grounded ITO plate, respectively, to facilitate chip-to-world delivery of droplets. Using chemiluminescent immunoassay (CLIA) as an illustrative application, the sample pretreatment was programmed on the DMF device, and CLIA droplets were ejected from the chip for signal reading. In our workflow, CLIA droplets can be ejected from the DMF device through the chip-to-world interface, freeing up otherwise occupied electrodes for more sample pretreatment and enabling streamlined droplet microreactions and batch-mode operation for bioanalysis. Integrated with these interfacing portals, the DMF system achieved a single-channel throughput of 17 samples per hour, which can be further upscaled for more productive applications by parallelizing the DMF modules. The results of this study demonstrate that the droplet ejection function that is innovated in a DMF sample pretreatment microsystem can significantly improve analytical throughput, providing an approach to establishing an automated but decentralized biochemical sample preparation workstation for large-scale and continuous bioanalysis.

5.
Cell Rep Med ; 5(7): 101645, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39019012

RESUMEN

Fms-like tyrosine kinase 3 (FLT3) mutations, present in over 30% of acute myeloid leukemia (AML) cases and dominated by FLT3-internal tandem duplication (FLT3-ITD), are associated with poor outcomes in patients with AML. While tyrosine kinase inhibitors (TKIs; e.g., gilteritinib) are effective, they face challenges such as drug resistance, relapse, and high costs. Here, we report that metformin, a cheap, safe, and widely used anti-diabetic agent, exhibits a striking synergistic effect with gilteritinib in treating FLT3-ITD AML. Metformin significantly sensitizes FLT3-ITD AML cells (including TKI-resistant ones) to gilteritinib. Metformin plus gilteritinib (low dose) dramatically suppresses leukemia progression and prolongs survival in FLT3-ITD AML mouse models. Mechanistically, the combinational treatment cooperatively suppresses polo-like kinase 1 (PLK1) expression and phosphorylation of FLT3/STAT5/ERK/mTOR. Clinical analysis also shows improved survival rates in patients with FLT3-ITD AML taking metformin. Thus, the metformin/gilteritinib combination represents a promising and cost-effective treatment for patients with FLT3-mutated AML, particularly for those with low income/affordability.


Asunto(s)
Compuestos de Anilina , Proteínas de Ciclo Celular , Sinergismo Farmacológico , Leucemia Mieloide Aguda , Metformina , Mutación , Quinasa Tipo Polo 1 , Proteínas Serina-Treonina Quinasas , Proteínas Proto-Oncogénicas , Pirazinas , Transducción de Señal , Tirosina Quinasa 3 Similar a fms , Metformina/farmacología , Metformina/uso terapéutico , Tirosina Quinasa 3 Similar a fms/genética , Tirosina Quinasa 3 Similar a fms/metabolismo , Tirosina Quinasa 3 Similar a fms/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Humanos , Animales , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Transducción de Señal/efectos de los fármacos , Pirazinas/farmacología , Pirazinas/uso terapéutico , Compuestos de Anilina/farmacología , Compuestos de Anilina/uso terapéutico , Ratones , Mutación/genética , Línea Celular Tumoral , Tiofenos/farmacología , Tiofenos/uso terapéutico , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Factor de Transcripción STAT5/metabolismo , Factor de Transcripción STAT5/genética , Femenino , Ensayos Antitumor por Modelo de Xenoinjerto , Masculino , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Serina-Treonina Quinasas TOR/metabolismo
6.
Cell Mol Life Sci ; 81(1): 292, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38976080

RESUMEN

Cisplatin resistance is a major challenge for systemic therapy against advanced bladder cancer (BC). Little information is available on the regulation of cisplatin resistance and the underlying mechanisms require elucidation. Here, we detected that downregulation of the tumor suppressor, PPP2R2B (a serine/threonine protein phosphatase 2 A regulatory subunit), in BC promoted cell proliferation and migration. What's more, low PPP2R2B expression was correlated with cisplatin resistance. In vitro and in vivo experiments verified that PPP2R2B could promote BC sensitivity to cisplatin. In terms of mechanism, we identified a novel function of PPP2R2B as a nucleocytoplasmic transport molecule. PPP2R2B promoted ISG15 entry into the nucleus by mediating binding of IPO5 with ISG15. Nuclear translocation of ISG15 inhibited DNA repair, further increasing ISG15 expression through activation of the STING pathway. Besides, PPP2R2B was down-regulated by SUV39H1-mediated histone 3 lysine 9 trimethylation, which could be restored by the SUV39H1-specific inhibitor, chaetocin. Our data suggest that PPP2R2B expression level is a potential biomarker for chemotherapy response and that chemotherapy in combination with chaetocin may be a feasible treatment strategy for patients with BC.


Asunto(s)
Cisplatino , Citocinas , Resistencia a Antineoplásicos , Proteína Fosfatasa 2 , Ubiquitinas , Neoplasias de la Vejiga Urinaria , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/metabolismo , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/patología , Proteína Fosfatasa 2/metabolismo , Proteína Fosfatasa 2/genética , Humanos , Cisplatino/farmacología , Resistencia a Antineoplásicos/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Ubiquitinas/metabolismo , Ubiquitinas/genética , Citocinas/metabolismo , Animales , Línea Celular Tumoral , Ratones , Proliferación Celular/efectos de los fármacos , Ratones Desnudos , Núcleo Celular/metabolismo , Antineoplásicos/farmacología , Ratones Endogámicos BALB C , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Femenino , Proteínas del Tejido Nervioso
7.
Anal Chem ; 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39018349

RESUMEN

The digital nucleic acid detection assay features the capability of absolute quantitation without the need for calibration, thereby facilitating the rapid identification of pathogens. Although several integrated digital nucleic acid detection techniques have been developed, there are still constraints in terms of automation and analysis throughput. To tackle these challenges, this study presents a digital-to-droplet microfluidic device comprising a digital microfluidics (DMF) module at the bottom and a droplet microfluidics module at the top. Following sample introduction, the extraction of nucleic acid and the dispensation of nucleic acid elution for mixing with the multiple amplification reagents are carried out in the DMF module. Subsequently, the reaction droplets are transported to the sample inlet of the droplet microfluidic module via a liquid outlet, and then droplet generation in four parallel units within the droplet microfluidics module is actuated by negative pressure generated by a syringe vacuum. The digital-to-droplet microfluidic device was employed to execute an integrated multiplex digital droplet nucleic acid detection assay (imDDNA) incorporating loop-mediated isothermal amplification (LAMP). This assay was specifically designed to enable simultaneous detection of four uropathogens, namely, Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Enterococcus faecalis. The entire process of the imDDNA is completed within 75 min, with a detection range spanning 5 orders of magnitude (9.43 × 10-2.86 × 104 copies µL-1). The imDDNA was employed for the detection of batched clinical specimens, showing a consistency of 91.1% when compared with that of the conventional method. The imDDNA exhibits simplicity in operation and accuracy in quantification, thus offering potential advantages in achieving rapid pathogen detection.

8.
Biosens Bioelectron ; 262: 116563, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39013359

RESUMEN

Early and rapid diagnostic of acute myocardial infarction (AMI) during its developing stage is crucial due to its high fatality rate. Heart-type fatty acid binding protein (h-FABP) is an ideal biomarker for the quantitative diagnosis of AMI, surpassing traditional markers such as myoglobin, creatine phosphokinase-MB, and troponin in terms of sensitivity, specificity, and prognostic value. To obtain diagnostic and prognostic information, a precise and fully quantitative measurement of h-FABP is essential, typically achieved through an immunosorbent assay like the enzyme-linked immunosorbent assay. Nevertheless, this method has several limitations, including extended detection time, complex assay procedures, the necessity for skilled technicians, and challenges in implementing automated detection. This research introduces a novel biosensor, utilizing aggregation-induced emission nanoparticles (AIENPs) and integrated with a digital microfluidic (DMF) workstation, designed for the sensitive, rapid, and automated detection of h-FABP in low-volume serum samples. AIENPs and magnetic beads in nanoscale were served as the capture particles and the fluorescent probe, which were linked covalently to anti-h-FABP antibodies respectively. The approach was based on a sandwich immunoassay and performed on a fully automated DMF workstation with assay time by 15 min. We demonstrated the determination of h-FABP in serum samples with detection limit of 0.14 ng/mL using this biosensor under optimal condition. Furthermore, excellent correlations (R2 = 0.9536, n = 50) were obtained between utilizing this biosensor and commercialized ELISA kits in clinical serum detecting. These results demonstrate that our flexible and reliable biosensor is suitable for direct integration into clinical diagnostics, and it is expected to be promising diagnostic tool for early detection and screening tests as well as prognosis evaluation for AMI patients.


Asunto(s)
Técnicas Biosensibles , Proteína 3 de Unión a Ácidos Grasos , Infarto del Miocardio , Nanopartículas , Técnicas Biosensibles/instrumentación , Humanos , Proteína 3 de Unión a Ácidos Grasos/sangre , Infarto del Miocardio/diagnóstico , Infarto del Miocardio/sangre , Nanopartículas/química , Límite de Detección , Biomarcadores/sangre , Proteínas de Unión a Ácidos Grasos/sangre , Proteínas de Unión a Ácidos Grasos/análisis , Inmunoensayo/métodos , Inmunoensayo/instrumentación , Microfluídica/métodos , Diseño de Equipo , Anticuerpos Inmovilizados/química , Ensayo de Inmunoadsorción Enzimática
9.
Food Chem X ; 23: 101564, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-39007119

RESUMEN

Osmanthus fragrans is an evergreen shrub with a pleasant fragrance and a wide range of applications in many fields. The condensed hydrolat obtained during the drying process of its fresh flowers was collected in a low-temperature vacuum environment and its sensory evaluation and volatile components were studied. The main aroma compounds in Osmanthus fragrans were dihydro-ß-ionone, nonanal, ß-cyclocitral, ß-ionone, benzaldehyde, α-ionone, and 6-methyl-5-hepten-2-one, whose contents were used as the main evaluation criteria, and the hydrolats obtained under different scenting and drying times were compared. This process can effectively collect the aroma components in Osmanthus fragrans and the optimal drying conditions were 50 °C for 5 h. The hydrolat was used to provide the scent of osmanthus black tea, which had a fresher and mellower taste, while the fragrance of osmanthus was abundant. These results show that osmanthus hydrolat can be used to provide the scent of floral black tea. Chemical compounds studied in this article: (-)-Catechin (PubChem CID: 1203); (-)-epigallocatechin gallate (PubChem CID: 65064); (-)-epicatechin gallate (PubChem CID: 367141); (-)-epigallocatechin (PubChem CID: 72277); (-)-epicatechin (PubChem CID: 72276); (-)-gallocatechin gallate (PubChem CID: 199472); (-)-catechin gallate (PubChem CID: 6419835); (-)-gallocatechin (PubChem CID: 9882981).

10.
Plant Cell ; 36(8): 2873-2892, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-38723594

RESUMEN

Grain size and weight are crucial yield-related traits in rice (Oryza sativa). Although certain key genes associated with rice grain size and weight have been successfully cloned, the molecular mechanisms underlying grain size and weight regulation remain elusive. Here, we identified a molecular pathway regulating grain size and weight in rice involving the MPS ONE BINDER KINASE ACTIVATOR-LIKE 1A-SERINE/THREONINE-PROTEIN KINASE 38-CYCLIN C (OsMOB1A-OsSTK38-OsCycC) module. OsSTK38 is a nuclear Dbf2-related kinase that positively regulates grain size and weight by coordinating cell proliferation and expansion in the spikelet hull. OsMOB1A interacts with and enhances the autophosphorylation of OsSTK38. Specifically, the critical role of the OsSTK38 S322 site in its kinase activity is highlighted. Furthermore, OsCycC, a component of the Mediator complex, was identified as a substrate of OsSTK38, with enhancement by OsMOB1A. Notably, OsSTK38 phosphorylates the T33 site of OsCycC. The phosphorylation of OsCycC by OsSTK38 influenced its interaction with the transcription factor KNOTTED-LIKE HOMEOBOX OF ARABIDOPSIS THALIANA 7 (OsKNAT7). Genetic analysis confirmed that OsMOB1A, OsSTK38, and OsCycC function in a common pathway to regulate grain size and weight. Taken together, our findings revealed a connection between the Hippo signaling pathway and the cyclin-dependent kinase module in eukaryotes. Moreover, they provide insights into the molecular mechanisms linked to yield-related traits and propose innovative breeding strategies for high-yielding varieties.


Asunto(s)
Ciclina C , Grano Comestible , Regulación de la Expresión Génica de las Plantas , Oryza , Proteínas de Plantas , Oryza/genética , Oryza/metabolismo , Oryza/enzimología , Fosforilación , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Ciclina C/metabolismo , Ciclina C/genética , Grano Comestible/genética , Grano Comestible/metabolismo , Grano Comestible/crecimiento & desarrollo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Plantas Modificadas Genéticamente
11.
Eur J Pharm Biopharm ; 199: 114309, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38704102

RESUMEN

Oral colon targeted drug delivery system (OCTDDS) is desirable for the treatment of ulcerative colitis (UC). In this study, we designed a partially oxidized sodium alginate-chitosan crosslinked microsphere for UC treatment. Dissipative particle dynamics (DPD) was used to study the formation and enzyme response of gel beads from a molecular perspective. The formed gel beads have a narrow particle size distribution, a compact structure, low cytotoxicity and great colon targeting in vitro and in vivo. Animal experiments demonstrated that gel beads promoted colonic epithelial barrier integrity, decreased the level of pro-inflammatory factors, accelerated the recovery of intestinal microbial homeostasis in UC rats and restored the intestinal metabolic disorders. In conclusion, our gel bead is a promising approach for the treatment of UC and significant for the researches on the pathogenesis and treatment mechanism of UC.


Asunto(s)
Alginatos , Quitosano , Colitis Ulcerosa , Sistemas de Liberación de Medicamentos , Geles , Microesferas , Saponinas , Colitis Ulcerosa/tratamiento farmacológico , Animales , Ratas , Alginatos/química , Quitosano/química , Sistemas de Liberación de Medicamentos/métodos , Masculino , Saponinas/farmacología , Saponinas/administración & dosificación , Saponinas/química , Tamaño de la Partícula , Humanos , Colon/efectos de los fármacos , Colon/metabolismo , Colon/patología , Ratas Sprague-Dawley , Polímeros/química , Modelos Animales de Enfermedad , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de los fármacos , Administración Oral
12.
J Transl Med ; 22(1): 427, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38711144

RESUMEN

BACKGROUND: Circular RNAs (circRNAs), one of the major contents of exosomes, have been shown to participate in the occurrence and progression of cancers. The role and the diagnostic potential of exosome-transported circRNAs in non-small-cell lung cancer (NSCLC) remain largely unknown. METHODS: The NSCLC-associated exosomal circ_0061407 and circ_0008103 were screened by circRNA microarray. The role of circ_0061407 and circ_0008103 in NSCLC was examined in vitro and in vivo. The encapsulation of the two circRNAs into exosomes and the transport to recipient cells were observed by confocal microscopy. The effects of exosome-transported circ_0061407 and circ_0008103 on recipient cells were investigated using a co-culture device. Bioinformatics analyses were performed to predict the mechanisms by which circ_0061407 and circ_0008103 affected NSCLC. The quantitative polymerase chain reaction was used to quantify the exosome-containing circ_0061407 and circ_0008103 in the serum samples of healthy, pneumonia, benign lung tumours, and NSCLC. The diagnostic efficacy was evaluated using receiver operating characteristic curves. RESULTS: The levels of circ_0061407 and circ_0008103 within exosomes were down-regulated in the serum of patients with NSCLC. The up-regulation of circ_0061407 and circ_0008103 inhibited the proliferation, migration/invasion, cloning formation of NSCLC cells in vitro and inhibited lung tumour growth in vivo. Circ_0061407 and circ_0008103 were observed to be packaged in exosomes and transported to recipient cells, where they inhibited the proliferation, migration/invasion, and cloning formation abilities of the recipient cells. Moreover, circ_0061407 and circ_0008103 might be involved in the progression of NSCLC by interacting with microRNAs and proteins. Additionally, lower serum exosomal circ_0061407 and circ_0008103 levels were associated with advanced pathological staging and distant metastasis. CONCLUSIONS: This study identified two novel exosome-transported circRNAs (circ_0061407 and circ_0008103) associated with NSCLC. These findings may provide additional insights into the development of NSCLC and potential diagnostic biomarkers for NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Exosomas , Neoplasias Pulmonares , ARN Circular , Exosomas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/sangre , ARN Circular/genética , ARN Circular/sangre , ARN Circular/metabolismo , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/sangre , Animales , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Masculino , Regulación Neoplásica de la Expresión Génica , Femenino , Ratones Desnudos , Persona de Mediana Edad , Ratones Endogámicos BALB C , Curva ROC , Ratones
13.
Leukemia ; 38(6): 1236-1245, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38643304

RESUMEN

Targeting the metabolic dependencies of acute myeloid leukemia (AML) cells is a promising therapeutical strategy. In particular, the cysteine and methionine metabolism pathway (C/M) is significantly altered in AML cells compared to healthy blood cells. Moreover, methionine has been identified as one of the dominant amino acid dependencies of AML cells. Through RNA-seq, we found that the two nucleoside analogs 8-chloro-adenosine (8CA) and 8-amino-adenosine (8AA) significantly suppress the C/M pathway in AML cells, and methionine-adenosyltransferase-2A (MAT2A) is one of most significantly downregulated genes. Additionally, mass spectrometry analysis revealed that Venetoclax (VEN), a BCL-2 inhibitor recently approved by the FDA for AML treatment, significantly decreases the intracellular level of methionine in AML cells. Based on these findings, we hypothesized that combining 8CA or 8AA with VEN can efficiently target the Methionine-MAT2A-S-adenosyl-methionine (SAM) axis in AML. Our results demonstrate that VEN and 8CA/8AA synergistically decrease the SAM biosynthesis and effectively target AML cells both in vivo and in vitro. These findings suggest the promising potential of combining 8CA/8AA and VEN for AML treatment by inhibiting Methionine-MAT2A-SAM axis and provide a strong rationale for our recently activated clinical trial.


Asunto(s)
Compuestos Bicíclicos Heterocíclicos con Puentes , Sinergismo Farmacológico , Leucemia Mieloide Aguda , Metionina Adenosiltransferasa , Metionina , S-Adenosilmetionina , Sulfonamidas , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Humanos , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Sulfonamidas/farmacología , Metionina/metabolismo , Metionina/análogos & derivados , Metionina Adenosiltransferasa/metabolismo , Metionina Adenosiltransferasa/antagonistas & inhibidores , Metionina Adenosiltransferasa/genética , Animales , Ratones , S-Adenosilmetionina/farmacología , S-Adenosilmetionina/metabolismo , Adenosina/análogos & derivados , Adenosina/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto , Línea Celular Tumoral
14.
Bioorg Chem ; 147: 107351, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38593530

RESUMEN

Eleven triterpenoid saponins, including five new compounds, which were named densiflorasides A - E (1 - 5), were isolated from aerial parts of Mussaenda densiflora (Rubiaceae). Their structures were elucidated based on spectroscopic and single-crystal X-ray diffraction analyses and chemical methods. All the isolated compounds and the aglycone heinsiagenin A were evaluated for their immunosuppressive and antiosteoclastogenic activities in vitro. Compounds 6 - 8 and heinsiagenin A inhibited osteoclastogenesis, with IC50 values ranging from 8.24 to 17.7 µM. Furthermore, compounds 3, 6 - 8, and heinsiagenin A significantly inhibited T-cell proliferation, with IC50 values ranging from 2.56 to 8.60 µM, and compounds 3 - 5 and 11 inhibited the proliferation of B lymphocytes, with IC50 values ranging from 1.29 to 8.49 µM. Further in vivo experiments indicated that heinsiagenin A could significantly attenuate IMQ-induced psoriasis and DSS-induced colitis in mice.


Asunto(s)
Proliferación Celular , Relación Dosis-Respuesta a Droga , Inmunosupresores , Saponinas , Triterpenos , Saponinas/farmacología , Saponinas/química , Saponinas/aislamiento & purificación , Animales , Ratones , Proliferación Celular/efectos de los fármacos , Inmunosupresores/farmacología , Inmunosupresores/química , Inmunosupresores/aislamiento & purificación , Relación Estructura-Actividad , Triterpenos/química , Triterpenos/farmacología , Triterpenos/aislamiento & purificación , Estructura Molecular , Linfocitos T/efectos de los fármacos , Colitis/tratamiento farmacológico , Colitis/inducido químicamente , Masculino , Osteoclastos/efectos de los fármacos
15.
J Leukoc Biol ; 116(3): 621-631, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-38456763

RESUMEN

Immune evasion by cancer cells poses a significant challenge for natural killer cell-based immunotherapy. Pyroptosis, a newly discovered form of programmed cell death, has shown great potential for enhancing the antitumor immunity of natural killer cells. Consequently, targeting pyroptosis has become an attractive strategy for boosting natural killer cell activity against cancer. In this study, various assays were conducted, including natural killer cell cytotoxicity assays, flow cytometry, xenograft tumor models, real-time polymerase chain reaction, and enzyme-linked immunosorbent assay, to assess natural killer cell-mediated cell killing, as well as gene and protein expressions. The results indicated that euphohelioscopin A, a potential pyroptosis activator, enhances natural killer cell-mediated lysis of tumor cells, resulting in inhibiting tumor growth that could be reversed by natural killer cell depletion. Furthermore, we found that euphohelioscopin A significantly enhanced IFNγ production in natural killer cells and synergistically upregulated GSDME with IFNγ in cancer cells. Euphohelioscopin A also increased the cleavage of GSDME, promoting granzyme B-induced pyroptosis, which could be reversed by GSDME knockdown and IFNγ blockade. Overall, the findings suggested that euphohelioscopin A enhanced natural killer cell-mediated killing of cancer cells by triggering pyroptosis, making euphohelioscopin A a promising pyroptosis activator with great potential for use in natural killer cell-based cancer immunotherapy.


Asunto(s)
Interferón gamma , Células Asesinas Naturales , Piroptosis , Piroptosis/efectos de los fármacos , Piroptosis/inmunología , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/efectos de los fármacos , Humanos , Animales , Ratones , Interferón gamma/metabolismo , Línea Celular Tumoral , Granzimas/metabolismo , Citotoxicidad Inmunológica/efectos de los fármacos , Neoplasias/inmunología , Neoplasias/patología , Ensayos Antitumor por Modelo de Xenoinjerto , Femenino , Gasderminas
16.
Vaccine ; 42(9): 2317-2325, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38433065

RESUMEN

BACKGROUND: Vaccination has been proven effective against infection with enterovirus A71 (EV-A71) in clinical trials, but vaccine effectiveness in real-world situations remains incompletely understood. Furthermore, it is not clear whether previous vaccination will result in symptom attenuation among post-vaccinated cases. METHODS: Based on long-term data extracted from the only designed referral hospital for infectious diseases, we used a test-negative case-control design and multivariate logistic regression models to analyze the effectiveness of EV-A71 vaccine against hand, foot and mouth disease (HFMD). And then, generalized linear regression models were used to evaluate the associations between prior vaccination and disease profiles. RESULTS: We selected 4883 inpatients for vaccine efficacy estimations and 2188 inpatients for disease profile comparisons. Vaccine effectiveness against EV-A71-induced HFMD for complete vaccination was 63.4 % and 51.7 % for partial vaccination. The vaccine effectiveness was higher among cases received the first dose within 12 months. No protection was observed against coxsackievirus (CV) A6-, CV-A10- or CV-A16-associated HFMD among children regardless of vaccination status. Completely vaccinated cases had shorter hospital stay and disease course compared to unvaccinated cases (P < 0.05). CONCLUSIONS: These findings reiterate the need to continue the development of a multivalent vaccine or combined vaccines, and have implications for introducing optimized vaccination strategies.


Asunto(s)
Enfermedades Transmisibles , Enterovirus Humano A , Infecciones por Enterovirus , Enterovirus , Enfermedad de Boca, Mano y Pie , Vacunas Virales , Niño , Humanos , Enfermedad de Boca, Mano y Pie/prevención & control , Infecciones por Enterovirus/prevención & control , Vacunación , Anticuerpos Antivirales , Antígenos Virales , Vacunas Combinadas , China
17.
Cancer Lett ; 593: 216807, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38462037

RESUMEN

The tumour microenvironment (TME) drives bladder cancer (BLCA) progression. Targeting the TME has emerged as a promising strategy for BLCA treatment in recent years. Furthermore, checkpoint blockade therapies are only beneficial for a minority of patients with BLCA, and drug resistance is a barrier to achieving significant clinical effects of anti-programmed cell death protein-1 (PD-1)/programmed death protein ligand-1 (PD-L1) therapy. In this study, higher low-density lipoprotein receptor-related protein 1 (LRP1) levels were related to a poorer prognosis for patients with various cancers, including those with higher grades and later stages of BLCA. Enrichment analysis demonstrated that LRP1 plays a role in the epithelial-mesenchymal transition (EMT), NOTCH signalling pathway, and ubiquitination. LRP1 knockdown in BLCA cells delayed BLCA progression both in vivo and in vitro. Furthermore, LRP1 knockdown suppressed EMT, reduced DLL4-NOTCH2 signalling activity, and downregulated M2-like macrophage polarisation. Patients with BLCA and higher LRP1 levels responded weakly to anti-PD-1 therapy in the IMvigor210 cohort. Moreover, LRP1 knockdown enhanced the therapeutic effects of anti-PD-1 in mice. Taken together, our findings suggest that LRP1 is a potential target for improving the efficacy of anti-PD-1/PD-L1 therapy by preventing EMT and M2-like macrophage polarisation by blocking the DLL4-NOTCH2 axis.


Asunto(s)
Resistencia a Antineoplásicos , Transición Epitelial-Mesenquimal , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad , Receptor Notch2 , Transducción de Señal , Microambiente Tumoral , Neoplasias de la Vejiga Urinaria , Humanos , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/patología , Neoplasias de la Vejiga Urinaria/metabolismo , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/inmunología , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Animales , Ratones , Transición Epitelial-Mesenquimal/efectos de los fármacos , Línea Celular Tumoral , Receptor Notch2/metabolismo , Receptor Notch2/genética , Macrófagos/metabolismo , Macrófagos/inmunología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Receptor de Muerte Celular Programada 1/metabolismo , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/genética , Proteínas de Unión al Calcio/metabolismo , Proteínas de Unión al Calcio/genética , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Femenino , Masculino , Ensayos Antitumor por Modelo de Xenoinjerto , Quimiocina CCL2
18.
Cancer Res ; 84(10): 1659-1679, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38382068

RESUMEN

The tumor microenvironment (TME) in renal cell carcinomas (RCC) is marked by substantial immunosuppression and immune resistance despite having extensive T-cell infiltration. Elucidation of the mechanisms underlying immune evasion could help identify therapeutic strategies to boost the efficacy of immune checkpoint blockade (ICB) in RCC. This study uncovered a mechanism wherein the polyadenylate-binding protein PABPC1L modulates indoleamine 2,3-dioxygenase 1 (IDO1), a prospective target for immunotherapy. PABPC1L was markedly upregulated in RCC, and high PABPC1L expression correlated with unfavorable prognosis and resistance to ICB. PABPC1L bolstered tryptophan metabolism by upregulating IDO1, inducing T-cell dysfunction and Treg infiltration. PABPC1L enhanced the stability of JAK2 mRNA, leading to increased JAK2-STAT1 signaling that induced IDO1 expression. Additionally, PABPC1L-induced activation of the JAK2-STAT1 axis created a positive feedback loop to promote PABPC1L transcription. Conversely, loss of PABPC1L diminished IDO1 expression, mitigated cytotoxic T-cell suppression, and enhanced responsiveness to anti-PD-1 therapy in patient-derived xenograft models. These findings reveal the crucial role of PABPC1L in facilitating immune evasion in RCC and indicate that inhibiting PABPC1L could be a potential immunotherapeutic approach in combination with ICB to improve patient outcomes. SIGNIFICANCE: PABPC1L functions as a key factor in renal cell carcinoma immune evasion, enhancing IDO1 and impeding T-cell function, and represents a potential target to enhance the efficacy of immune checkpoint blockade therapy.


Asunto(s)
Carcinoma de Células Renales , Indolamina-Pirrol 2,3,-Dioxigenasa , Neoplasias Renales , Triptófano , Animales , Humanos , Ratones , Carcinoma de Células Renales/inmunología , Carcinoma de Células Renales/metabolismo , Carcinoma de Células Renales/patología , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/tratamiento farmacológico , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenasa/genética , Janus Quinasa 2/metabolismo , Neoplasias Renales/inmunología , Neoplasias Renales/metabolismo , Neoplasias Renales/patología , Neoplasias Renales/genética , Neoplasias Renales/tratamiento farmacológico , Factor de Transcripción STAT1/metabolismo , Factor de Transcripción STAT1/genética , Triptófano/metabolismo , Microambiente Tumoral/inmunología , Ensayos Antitumor por Modelo de Xenoinjerto
19.
J Hematol Oncol ; 17(1): 7, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38302992

RESUMEN

BACKGROUND: While liver cancer stem cells (CSCs) play a crucial role in hepatocellular carcinoma (HCC) initiation, progression, recurrence, and treatment resistance, the mechanism underlying liver CSC self-renewal remains elusive. We aim to characterize the role of Methyltransferase 16 (METTL16), a recently identified RNA N6-methyladenosine (m6A) methyltransferase, in HCC development/maintenance, CSC stemness, as well as normal hepatogenesis. METHODS: Liver-specific Mettl16 conditional KO (cKO) mice were generated to assess its role in HCC pathogenesis and normal hepatogenesis. Hydrodynamic tail-vein injection (HDTVi)-induced de novo hepatocarcinogenesis and xenograft models were utilized to determine the role of METTL16 in HCC initiation and progression. A limiting dilution assay was utilized to evaluate CSC frequency. Functionally essential targets were revealed via integrative analysis of multi-omics data, including RNA-seq, RNA immunoprecipitation (RIP)-seq, and ribosome profiling. RESULTS: METTL16 is highly expressed in liver CSCs and its depletion dramatically decreased CSC frequency in vitro and in vivo. Mettl16 KO significantly attenuated HCC initiation and progression, yet only slightly influenced normal hepatogenesis. Mechanistic studies, including high-throughput sequencing, unveiled METTL16 as a key regulator of ribosomal RNA (rRNA) maturation and mRNA translation and identified eukaryotic translation initiation factor 3 subunit a (eIF3a) transcript as a bona-fide target of METTL16 in HCC. In addition, the functionally essential regions of METTL16 were revealed by CRISPR gene tiling scan, which will pave the way for the development of potential inhibitor(s). CONCLUSIONS: Our findings highlight the crucial oncogenic role of METTL16 in promoting HCC pathogenesis and enhancing liver CSC self-renewal through augmenting mRNA translation efficiency.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Células Madre Neoplásicas , Animales , Humanos , Ratones , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Autorrenovación de las Células/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Metiltransferasas/genética , Metiltransferasas/metabolismo , Células Madre Neoplásicas/patología , Biosíntesis de Proteínas , Ribosomas/metabolismo , ARN
20.
Hepatology ; 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38407233

RESUMEN

BACKGROUND AND AIMS: Liver ischemia-reperfusion injury (IRI) is a common complication of liver transplantation and hepatectomy and causes acute liver dysfunction and even organ failure. Myeloid-derived suppressor cells (MDSCs) accumulate and play immunosuppressive function in cancers and inflammation. However, the role of MDSCs in liver IRI has not been defined. APPROACH AND RESULTS: We enrolled recipients receiving OLT and obtained the pre-OLT/post-OLT blood and liver samples. The proportions of MDSCs were significantly elevated after OLT and negatively associated with liver damage. In single-cell RNA-sequencing analysis of liver samples during OLT, 2 cell clusters with MDSC-like phenotypes were identified and showed maturation and infiltration in post-OLT livers. In the mouse model, liver IRI mobilized MDSCs and promoted their infiltration in the damaged liver, and intrahepatic MDSCs were possessed with enhanced immunosuppressive function by upregulation of STAT3 signaling. Under treatment with αGr-1 antibody or adoptive transfer MDSCs to change the proportion of MDSCs in vivo, we found that intrahepatic MDSCs alleviated liver IRI-induced inflammation and damage by inhibiting M1 macrophage polarization. Mechanistically, bulk RNA-sequencing analysis and in vivo experiments verified that C-X-C motif chemokine ligand 17 (CXCL17) was upregulated by YAP/TEAD1 signaling and subsequently recruited MDSCs through binding with GPR35 during liver IRI. Moreover, hepatic endothelial cells were the major cells responsible for CXCL17 expression in injured livers, among which hypoxia-reoxygenation stimulation activated the YAP/TEAD1 complex to promote CXCL17 transcription. CONCLUSIONS: Endothelial YAP/TEAD1-CXCL17 signaling recruited MDSCs to attenuate liver IRI, providing evidence of therapeutic potential for managing IRI in liver surgery.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA