Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
2.
J Biosci ; 492024.
Artículo en Inglés | MEDLINE | ID: mdl-38726826

RESUMEN

Lung cancer (LC) is the leading cause of cancer-associated deaths worldwide, among which non-small-cell lung cancer (NSCLC) accounts for 80%. Stromal cell-derived factor-1 (SDF-1) inhibition results in a significant depletion of NSCLC metastasis. Additionally, SDF-1 is the only natural chemokine known to bind and activate the receptor CXCR4. Thus, we attempted to clarify the molecular mechanism of SDF-1 underlying NSCLC progression. Transwell migration, adhesion, and G-LISA assays were used to assess megakaryocytic chemotaxis in vitro and in vivo in terms of megakaryocytic migration, adherence, and RhoA activation, respectively. Western blotting was used to assess PI3K/Akt-associated protein abundances in MEG-01 cells and primary megakaryocytes under the indicated treatment. A hematology analyzer and flow cytometry were used to assess platelet counts in peripheral blood and newly formed platelet counts in Lewis LC mice under different treatments. Immunochemistry and flow cytometry were used to measure CD41+ megakaryocyte numbers in Lewis LC mouse tissue under different treatments. ELISA was used to measure serum TPO levels, and H&E staining was used to detect NSCLC metastasis.SDF-1 receptor knockdown suppressed megakaryocytic chemotaxis in Lewis LC mice. SDF-1 receptor inhibition suppressed megakaryocytic chemotaxis via the PI3K/Akt pathway. SDF-1 receptor knockdown suppressed CD41+ megakaryocyte numbers in vivo through PI3K/Akt signaling. SDF-1 receptor inhibition suppressed CD41+ megakaryocytes to hinder NSCLC metastasis. SDF-1 facilitates NSCLC metastasis by enhancing the chemoattraction of megakaryocytes via the PI3K/Akt signaling pathway, which may provide a potential new direction for seeking therapeutic plans for NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Quimiocina CXCL12 , Quimiotaxis , Neoplasias Pulmonares , Megacariocitos , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Receptores CXCR4 , Transducción de Señal , Quimiocina CXCL12/metabolismo , Quimiocina CXCL12/genética , Megacariocitos/metabolismo , Megacariocitos/patología , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Animales , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Ratones , Humanos , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/secundario , Línea Celular Tumoral , Receptores CXCR4/metabolismo , Receptores CXCR4/genética , Metástasis de la Neoplasia , Movimiento Celular/genética , Regulación Neoplásica de la Expresión Génica
3.
Sci Total Environ ; 931: 172707, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38657816

RESUMEN

Formaldehyde (HCHO) is one of the key indicators of severe photochemical pollution and strong atmospheric oxidation capacity in southern China. However, current information on the origins of regional HCHO and the impacts of polluted air masses remains scarce and unclear. In this study, an intensive observation of HCHO was conducted at a mountainous background site in southern China during typical photochemical pollution episodes. The concentrations of HCHO reached up to 6.14 ppbv and averaged at 2.68 ± 1.11 ppbv. Source appointment using a photochemical age-based parameterization method revealed significant contributions of secondary formation (50 %) and biomass burning (42 %). Meanwhile, under the influence of the East Asian Winter Monsoon, polluted air masses from central and western China can significantly increase the regional HCHO levels. The simulation results adopting the Rapid Adaptive Optimization Model for Atmospheric Chemistry model further demonstrated that the intrusion of active anthropogenic pollutants (e.g., small-molecule alkenes) can accelerate the net production rate of HCHO, particularly through BVOC-oxidation pathways. This study suggests a potential enhanced mechanism of HCHO production resulting from anthropogenic-biogenic interactions. It highlights that polluted air masses carrying abundant HCHO from upwind areas may facilitate severe photochemical pollution in the Greater Bay Area.

4.
Food Chem X ; 22: 101255, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38444558

RESUMEN

In this study, three eugenol fragment-containing haptens were synthesized, and a monoclonal antibody (mAb) selective for five commonly-found eugenol compounds (EUGs, i.e., eugenol, isoeugenol, methyl eugenol, methyl isoeugenol, and acetyl isoeugenol) was obtained. Based on this mAb, a broad-spectrum indirect competitive ELISA for high-throughput detection of five EUGs was developed. The detection limits for eugenol, isoeugenol, methyl eugenol, methyl isoeugenol and acetyl isoeugenol in both tilapia and shrimp samples were 25.3/ 50.6 µg/kg, 0.075/0.15 µg/kg, 0.48/0.96 µg/kg, 0.16/0.32 µg/kg, and 18.16/36.32 µg/kg, respectively. The recoveries for five EUGs ranged from 80.4 to 114.0 % with a coefficient of variation less than 11.5 %. Moreover, homology modelling and molecular docking were conducted to elucidate the interactions mechanism of mAb-EUGs. The work provides a promising tool for high-throughput screening of EUGs in aquatic products, which can serve as a benchmark for designing haptens and developing immunoassays for other small molecules.

5.
Anal Chim Acta ; 1298: 342408, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38462333

RESUMEN

BACKGROUND: In vitro screening strategies based on the inhibition of α-glucosidase (GAA) activity have been widely used for the discovery of potential antidiabetic drugs, but they still face some challenges, such as poor enzyme stability, non-reusability and narrow range of applicability. To overcome these limitations, an in vitro screening method based on GAA@GOx@Cu-MOF reactor was developed in our previous study. However, the method was still not satisfactory enough in terms of construction cost, pH stability, organic solvent resistance and reusability. Thence, there is still a great need for the development of in vitro screening methods with lower cost and wider applicability. RESULTS: A colorimetric sensing strategy based on GAA/(Au-Au/IrO2)@Cu(PABA) cascade catalytic reactor, which constructed through simultaneous encapsulating Au-Au/IrO2 nanozyme with glucose oxidase-mimicking and peroxidase-mimicking activities and GAA in Cu(PABA) carrier with peroxidase-mimicking activity, was innovatively developed for in vitro screening of GAA inhibitors in this work. It was found that the reactor not only exhibited excellent thermal stability, pH stability, organic solvent resistance, room temperature storage stability, and reusability, but also possessed cascade catalytic performance, with approximately 12.36-fold increased catalytic activity compared to the free system (GAA + Au-Au/IrO2). Moreover, the in vitro GAA inhibitors screening method based on this reactor demonstrated considerable anti-interference performance and detection sensitivity, with a detection limit of 4.79 nM for acarbose. Meanwhile, the method owned good reliability and accuracy, and has been successfully applied to the in vitro screening of oleanolic acid derivatives as potential GAA inhibitors. SIGNIFICANCE: This method not only more effectively solved the shortcomings of poor stability, narrow scope of application, and non-reusability of natural enzymes in the classical method compared with our previous work, but also broaden the application scope of Au-Au/IrO2 nanozyme with glucose oxidase and peroxidase mimicking activities, and Cu(PABA) carrier with peroxidase mimicking activity, which was expected to be a new generation candidate method for GAA inhibitor screening.


Asunto(s)
Ácido 4-Aminobenzoico , Inhibidores de Glicósido Hidrolasas , Inhibidores de Glicósido Hidrolasas/farmacología , Glucosa Oxidasa , Reproducibilidad de los Resultados , Colorimetría/métodos , Peroxidasas , Solventes , Peróxido de Hidrógeno
6.
Open Med (Wars) ; 19(1): 20230874, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38463530

RESUMEN

Advances in lung cancer research applying machine learning (ML) technology have generated many relevant literature. However, there is absence of bibliometric analysis review that aids a comprehensive understanding of this field and its progress. Present article for the first time performed a bibliometric analysis to clarify research status and focus from 2010 to 2021. In the analysis, a total of 2,312 relevant literature were searched and retrieved from the Web of Science Core Collection database. We conducted a bibliometric analysis and further visualization. During that time, exponentially growing annual publication and our model have shown a flourishing research prospect. Annual citation reached the peak in 2017. Researchers from United States and China have produced most of the relevant literature and strongest partnership between them. Medical image analysis and Nature appeared to bring more attention to the public. The computer-aided diagnosis, precision medicine, and survival prediction were the focus of research, reflecting the development trend at that period. ML did make a big difference in lung cancer research in the past decade.

7.
Angew Chem Int Ed Engl ; 63(14): e202319480, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38317379

RESUMEN

Controlled synthesis of lead-halide perovskite crystals is challenging yet attractive because of the pivotal role played by the crystal structure and growth conditions in regulating their properties. This study introduces data-driven strategies for the controlled synthesis of oriented quasi-spherical CsPbBr3, alongside an investigation into the synthesis mechanism. High-throughput rapid characterization of absorption spectra and color under ultraviolet illumination was conducted using 23 possible ligands for the synthesis of CsPbBr3 crystals. The links between the absorption spectra slope (difference in the absorbance at 400 nm and 450 nm divided by a wavelength interval of 50 nm) and crystal size were determined through statistical analysis of more than 100 related publications. Big data analysis and machine learning were employed to investigate a total of 688 absorption spectra and 652 color values, revealing correlations between synthesis parameters and properties. Ex situ characterization confirmed successful synthesis of oriented quasi-spherical CsPbBr3 perovskites using polyvinylpyrrolidone and Acacia. Density functional theory calculations highlighted strong adsorption of Acacia on the (110) facet of CsPbBr3. Optical properties of the oriented quasi-spherical perovskites prepared with these data-driven strategies were significantly improved. This study demonstrates that data-driven controlled synthesis facilitates morphology-controlled perovskites with excellent optical properties.

8.
Nat Commun ; 15(1): 887, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38291087

RESUMEN

Textile-based wearable electronics have attracted intensive research interest due to their excellent flexibility and breathability inherent in the unique three-dimensional porous structures. However, one of the challenges lies in achieving highly conductive patterns with high precision and robustness without sacrificing the wearing comfort. Herein, we developed a universal and robust in-textile photolithography strategy for precise and uniform metal patterning on porous textile architectures. The as-fabricated metal patterns realized a high precision of sub-100 µm with desirable mechanical stability, washability, and permeability. Moreover, such controllable coating permeated inside the textile scaffold contributes to the significant performance enhancement of miniaturized devices and electronics integration through both sides of the textiles. As a proof-of-concept, a fully integrated in-textiles system for multiplexed sweat sensing was demonstrated. The proposed method opens up new possibilities for constructing multifunctional textile-based flexible electronics with reliable performance and wearing comfort.

9.
Biosens Bioelectron ; 246: 115872, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38039731

RESUMEN

Multicolor-based visual immunosensor is a promising tool for rapid analysis without the use of bulky instruments. Herein, an anti-fenitrothion nanobody-alkaline phosphatase fusion protein (VHHjd8-ALP) was employed to develop a multicolor visual immunosensor (MVIS) and a ratiometric fluorescence MVIS (RFMVIS, respectively). After one-step competitive immunoassay, the VHHjd8-ALP bound to microplate catalyzed phenyl phosphate disodium salt (ArP) into phenol. Under high alkaline condition (pH 12), the phenol reduced KMnO4 to intermediate (K2MnO4) and further to MnO2 in alkaline condition (pH 12), accompanied by a visible color transition of purple-green-yellow, which can be used for semiquantitative visual analysis or qualitative detection by measuring RGB value. RFMVIS was proposed on the basis of MVIS to further improve sensitivity. The CdTe quantum dot and fluorescein were used as signal probes to develop the fluorescent immunosensor. The CdTe dots with red emission (644 nm) was quenched by oxidation of KMnO4, whereas the fluorescein with green emission (520 nm) remained constant, accompanied by a fluorescent color transition of green-yellow-red. By measuring the ratio of the fluorescence intensity (I644/I520), the ratiometric fluorescence immunosensor was developed for qualitative analysis. The two visual immunosensors were sensitive and simple, and they showed good accuracy and practicability in the recovery test, thus are ideal tools for rapid screening.


Asunto(s)
Técnicas Biosensibles , Compuestos de Cadmio , Puntos Cuánticos , Permanganato de Potasio , Fenitrotión , Fosfatos , Compuestos de Manganeso , Telurio , Inmunoensayo , Óxidos , Fluoresceínas , Fenoles , Colorantes Fluorescentes , Límite de Detección , Espectrometría de Fluorescencia
10.
Emerg Med Pract ; 26(1): 1-28, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38085610

RESUMEN

Afflicting millions of people across the world, "long COVID" is a new disease entity that can present with a diverse array of symptoms of variable severity, affecting nearly every organ system. The presumptive diagnosis of long COVID is largely clinical, and should be made only after other serious etiologies have been excluded. Workup is driven by the patient's presenting acute symptoms, comorbidities, and physical examination findings. This issue reviews the research and current evidence on the etiology of COVID-19 infection and long COVID and presents a practice-based approach to the management of patients presenting with its postacute sequelae.


Asunto(s)
COVID-19 , Síndrome Post Agudo de COVID-19 , Humanos , COVID-19/terapia , Pacientes , Progresión de la Enfermedad , Servicio de Urgencia en Hospital
11.
Front Immunol ; 14: 1279677, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38077401

RESUMEN

Several studies have demonstrated great potential implications for the gut-lung axis in lung disease etiology and treatment. The gut environment can be influenced by diet, metabolites, microbiotal composition, primary diseases, and medical interventions. These changes modulate the functions of alveolar macrophages (AMs) to shape the pulmonary immune response, which greatly impacts lung health. The immune modulation of AMs is implicated in the pathogenesis of various lung diseases. However, the mechanism of the gut-lung axis in lung diseases has not yet been determined. This mini-review aimed to shed light on the critical nature of communication between the gut and AMs during the development of pulmonary infection, injury, allergy, and malignancy. A better understanding of their crosstalk may provide new insights into future therapeutic strategies targeting the gut-AM interaction.


Asunto(s)
Hipersensibilidad , Enfermedades Pulmonares , Humanos , Macrófagos Alveolares , Pulmón , Hipersensibilidad/metabolismo
12.
Lipids Health Dis ; 22(1): 192, 2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37950285

RESUMEN

BACKGROUND: Statins are routinely prescribed to lower cholesterol and have been demonstrated to have significant benefits in atherosclerotic cardiovascular disease. However, whether statin therapy has effects on cancer risk remains controversial. In this study, we investigated the influence of statin therapy on cancer incidence and mortality by conducting a comprehensive meta-analysis of randomized controlled trials. METHODS: Systematic searches by Cochrane, Embase, Medline, and PubMed were performed to locate data from eligible randomized controlled trials related to statin therapy and oncology. Our main endpoints were cancer incidence and mortality. Fixed-effects models were used in this study. RESULTS: This meta-analysis comprised thirty-five randomized controlled studies. Twenty-eight included studies reported cancer incidence, and eighteen reported cancer mortality. The pooled results indicated no reduction in cancer incidence with statins compared to placebo [OR = 0.99, 95% CI (0.95, 1.03)]. In addition, statins did not decrease cancer mortality [OR = 0.99, 95% CI (0.91, 1.07)]. This study also performed a number of subgroup analyses, which showed no effect of statins on cancer subtypes such as genitourinary and breast cancer. Neither the type of statin nor long-term treatment with statins had an effect on cancer incidence and mortality. CONCLUSION: Through comprehensive analysis, we found that statin therapy does not reduce cancer incidence or mortality while protecting the cardiovascular system. TRIAL REGISTRATION: Prospero CRD42022377871.


Asunto(s)
Aterosclerosis , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Neoplasias , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/efectos adversos , Colesterol , Aterosclerosis/tratamiento farmacológico , Neoplasias/tratamiento farmacológico , Riesgo
13.
Front Immunol ; 14: 1231057, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37809088

RESUMEN

Transplantation is an important life-saving therapeutic choice for patients with organ or tissue failure once all other treatment options are exhausted. However, most allografts become damaged over an extended period, and post-transplantation survival is limited. Ischemia reperfusion injury (IRI) tends to be associated with a poor prognosis; resultant severe primary graft dysfunction is the main cause of transplant failure. Targeting the cGAS-STING pathway has recently been shown to be an effective approach for improving transplantation outcomes, when activated or inhibited cGAS-STING pathway, IRI can be alleviated by regulating inflammatory response and programmed cell death. Thus, continuing efforts to develop selective agonists and antagonists may bring great hopes to post-transplant patient. In this mini-review, we reviewed the role of the cGAS-STING pathway in transplantation, and summarized the crosstalk between this pathway and inflammatory response and programmed cell death during IRI, aiming to provide novel insights into the development of therapies to improve patient outcome after transplantation.


Asunto(s)
Trasplante de Riñón , Daño por Reperfusión , Humanos , Daño por Reperfusión/metabolismo , Apoptosis , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Trasplante de Riñón/efectos adversos
14.
J Transl Med ; 21(1): 670, 2023 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-37759298

RESUMEN

BACKGROUND: Gastric cancer (GC) is a fatal cancer with unclear pathogenesis. In this study, we explored the function and potential mechanisms of intercellular adhesion molecule 2 (ICAM2) in the development and advancement of GC. METHODS: Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting were performed to quantify ICAM2 expression in harvested GC tissues and cultured cell lines. Immunohistochemical analyses were conducted on a GC tissue microarray to quantify ICAM2 expression and explore its implication on the prognosis of GC patients. In vitro experiments were carried out to reveal the biological functions of ICAM2 in GC cell lines. Further, in vivo experiments were conducted using xenograft models to assess the impact of ICAM2 on GC development and metastasis. Western blot, immunofluorescence, immunoprecipitation, luciferase assay, chromatin immunoprecipitation, and ubiquitination analysis were employed to investigate the underlying mechanisms. RESULTS: ICAM2 expression was downregulated in GC, positively correlating with advanced T stage, distant metastasis, advanced clinical stage, vessel invasion, and shorter patient survival time. ICAM2 overexpression suppressed the proliferation, migration, invasion, metastasis of GC cells as well as their ability to form tumors, whereas ICAM2 knockdown yielded opposite results. Erythroblast transformation-specific-related gene (ERG) as a transcription factor promoted the transcription of ICAM2 by binding to the crucial response element localized within its promoter region. Further analysis revealed that ICAM2 reduced radixin (RDX) protein stability and expression. In these cells, ICAM2 bound to the RDX protein to promote the ubiquitination and degradation of RDX via NEDD4 Like E3 Ubiquitin Protein Ligase (NEDD4L), and this post-translational modification resulted in the inhibition of GC. CONCLUSIONS: In summary, this study demonstrates that ICAM2, which is induced by ERG, suppresses GC progression by enhancing the ubiquitination and degradation of RDX in a NEDD4L-dependent manner. Therefore, these results suggest that ICAM2 is a potential prognostic marker and a therapeutic target for GC.


Asunto(s)
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Estudios Prospectivos , Ubiquitinación , Moléculas de Adhesión Celular , Regulador Transcripcional ERG
16.
J Transl Med ; 21(1): 632, 2023 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-37718450

RESUMEN

BACKGROUND: Ladinin-1 (LAD1), an anchoring filament protein, has been associated with several cancer types, including cancers of the colon, lungs, and breast. However, it is still unclear how and why LAD1 causes gastric cancer (GC). METHODS: Multiple in vitro and in vivo, functional gains and loss experiments were carried out in the current study to confirm the function of LAD1. Mass spectrometry was used to find the proteins that interact with LAD1. Immunoprecipitation analyses revealed the mechanism of LAD1 involved in promoting aggressiveness. RESULTS: The results revealed that the LAD1 was overexpressed in GC tissues, and participants with increased LAD1 expression exhibited poorer disease-free survival (DFS) and overall survival (OS). Functionally, LAD1 promotes cellular invasion, migration, proliferation, and chemoresistance in vivo and in vitro in the subcutaneous patient-and cell-derived xenograft (PDX and CDX) tumor models. Mechanistically, LAD1 competitively bound to Vimentin, preventing it from interacting with the E3 ubiquitin ligase macrophage erythroblast attacher (MAEA), which led to a reduction in K48-linked ubiquitination of Vimentin and an increase in Vimentin protein levels in GC cells. CONCLUSIONS: In conclusion, the current investigation indicated that LAD1 has been predicted as a possible prognostic biomarker and therapeutic target for GC due to its ability to suppress Vimentin-MAEA interaction.


Asunto(s)
Neoplasias Gástricas , Humanos , Animales , Ubiquitina , Vimentina , Ubiquitinación , Mama , Modelos Animales de Enfermedad
17.
Anal Chem ; 95(33): 12321-12328, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37527540

RESUMEN

Photoinduced electron-transfer (PET) immunoassay based on a fluorescence site-specifically labeled nanobody, also called mini Quenchbody (Q-body), exhibits extraordinary sensitivity and saves much time in the homogeneous noncompetitive mode and is therefore regarded as a valuable method. However, limited by the efficiency of both quenching and dequenching of the fluorescence signal before and after antigen binding associated with the PET principle, not all original nanobodies can be used as candidates for mini Q-bodies. Herein, with the anti-quinalphos nanobody 11A (Nb-11A) as the model, we, for the first time, adopt a strategy by combining X-ray structural analysis with site-directed mutagenesis to design and produce a mutant Nb-R29W, and then successfully generate a mini Q-body by labeling with ATTO520 fluorescein. Based on this, a novel PET immunoassay is established, which exhibits a limit of detection of 0.007 µg/mL with a detection time of only 15 min, 25-fold improved sensitivity, and faster by 5-fold compared to the competitive immunoassay. Meanwhile, the recovery test of vegetable samples and validation by the standard ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) both demonstrated that the established PET immunoassay is a novel, sensitive, and accurate detection method for quinalphos. Ultimately, the findings of this work will provide valuable insights into the development of triggered PET fluorescence probes by using existing antibody resources.


Asunto(s)
Colorantes Fluorescentes , Espectrometría de Masas en Tándem , Cromatografía Liquida , Colorantes Fluorescentes/química , Inmunoensayo/métodos , Antígenos , Tomografía de Emisión de Positrones
18.
Adv Mater ; 35(49): e2305630, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37566544

RESUMEN

Skin electronics provides remarkable opportunities for non-invasive and long-term monitoring of a wide variety of biophysical and physiological signals that are closely related to health, medicine, and human-machine interactions. Nevertheless, conventional skin electronics fabricated on elastic thin films are difficult to adapt to the wet microenvironments of the skin: Elastic thin films are non-permeable, which block the skin perspiration; Elastic thin films are difficult to adhere to wet skin; Most skin electronics are difficult to work underwater. Here, a Wet-Adaptive Electronic Skin (WADE-skin) is reported, which consists of a next-to-skin wet-adhesive fibrous layer, a next-to-air waterproof fibrous layer, and a stretchable and permeable liquid metal electrode layer. While the electronic functionality is determined by the electrode design, this WADE-skin simultaneously offers superb stretchability, wet adhesion, permeability, biocompatibility, and waterproof property. The WADE-skin can rapidly adhere to human skin after contact for a few seconds and stably maintain the adhesion over weeks even under wet conditions, without showing any negative effect to the skin health. The use of WADE-skin is demonstrated for the stable recording of electrocardiogram during intensive sweating as well as underwater activities, and as the strain sensor for the underwater operation of virtual reality-mediated human-machine interactions.


Asunto(s)
Dispositivos Electrónicos Vestibles , Humanos , Electrónica , Piel , Sudor , Electrocardiografía
19.
J Agric Food Chem ; 71(35): 13137-13146, 2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37611148

RESUMEN

A heavy-chain antibody (VHH) library against procymidone (PRM) was constructed via immunizing Bactrian camels. Through careful biopanning, seven nanobodies (Nbs) with different sequences were obtained. The variability in their performance was primarily attributed to the amino acid differences in complementarity-determining region 3 (CDR3), as analyzed by molecular docking. The Nb exhibiting the highest sensitivity, named NbFM5, was biotinylated and conjugated to streptavidin-labeled gold nanoparticles to preserve the epitope's activity and prevent a decrease in sensitivity due to traditional random electrostatic adsorption. Subsequently, a simple and sensitive immunochromatographic assay (ICA) was developed for rapid detection of PRM based on biotinylated Nb (btNb). The developed btNb-ICA showed a cut-off value of 200 ng/mL for visual judgment and a half-inhibitory concentration (IC50) of 6.04 ng/mL for quantitative detection. The limit of detection (LOD) was as low as 0.88 ng/mL. The recoveries in actual samples of crops ranged from 82.2 to 117.3%, aligning well with the results obtained from GC-MS/MS (R2 = 0.995). In summary, the developed btNb-ICA demonstrated high specificity and good accuracy for the rapid detection of PRM residues in vegetables. The total analysis time from preparing the sample to obtaining the result was less than 25 min.


Asunto(s)
Oro , Nanopartículas del Metal , Animales , Simulación del Acoplamiento Molecular , Espectrometría de Masas en Tándem , Productos Agrícolas , Camelus , Inmunoensayo
20.
Cell Signal ; 111: 110866, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37619822

RESUMEN

BACKGROUND: While ADAMTS12 (A disintegrin and metalloproteinase with thrombospondin motifs 12) has been established as an important regulator of gastrointestinal tumor development and angiogenic activity, the precise mechanistic functions of ADAMTS12 have yet to be fully clarified in gastric cancer (GC). Accordingly, this study was developed to explore the molecular functions of ADAMTS12 in GC and to examine its utility as a biomarker associated with chemoresistance and prognostic outcomes in this cancer type. METHODS: The ability of ADAMTS12 to modulate the proliferative, migratory, invasive, chemoresistant, and tube formation activity of tumor cells was assessed in vivo and in vitro through gain- and loss-of-function approaches. Correlations between ADAMTS12, CD31, and VEGF expression levels in GC patient tumor tissue samples from individuals that did and did not undergo neoadjuvant chemotherapy (NAC) treatment were analyzed via immunohistochemical staining. RESULTS: These analyses revealed the ability of ADAMTS12 to promote in vivo and in vitro cellular proliferative and angiogenic activity, promoting the activation of ERK and the consequent upregulation of VEGF, thereby inducing angiogenesis and decreasing GC cell oxaliplatin sensitivity. A positive correlation between ADAMTS12 levels and both the expression of VEGF as well as the density of microvessels was observed in GC patient tumor tissues. Moreover, those GC patients exhibiting higher intratumoral ADAMTS12 expression exhibited worse responses to NAC treatment and worse overall survival outcomes. CONCLUSIONS: These findings suggest that ADAMTS12 can modulate signaling via the MAPK/VEGF axis in GC cells to enhance tumor cell resistance to oxaliplatin treatment under hypoxic and normoxic conditions. Elevated ADAMTS12 levels can additionally predict vascular abnormalities, worse survival outcomes, and chemoresistance in patients with GC.


Asunto(s)
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/metabolismo , Oxaliplatino/farmacología , Oxaliplatino/uso terapéutico , Factor A de Crecimiento Endotelial Vascular/metabolismo , Regulación hacia Arriba , Resistencia a Antineoplásicos , Línea Celular Tumoral , Proteínas ADAMTS/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...