Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Geochem Health ; 42(4): 1211-1228, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31455989

RESUMEN

Aquaculture production continues to grow in West Bengal, where on average people consume 8.2 kg capita-1 of fish each year, and an extensive mosaic of aquaculture ponds has developed along the River Hugli as clay pits are repurposed. The adjacent brickworks and industry (especially tanneries) are a source of environmental pollution, with potential for bioaccumulation of potentially harmful elements (PHEs) in fish farmed in these ponds. Fish from aquaculture present an opportunity to meet food sufficiency in West Bengal; however, an investigation to assess their effectiveness for micronutrient supply balanced against food safety is required. Five ponds close to industrial brick manufacture (urban) and three from rural areas were assessed for the degree of pollution within their pond sediments and waters. Fish were also sampled from each location including a subset from the market in Kolkata to determine the concentrations of PHEs in their fish muscle tissue. Dietary intake and PHE loading were calculated for four fish species to evaluate their nutrient content with respect to recommended daily intakes for adults, e.g. calcium (Ca), potassium (K), magnesium (Mg), iron (Fe), zinc (Zn) and selenium (Se), and to establish whether the provisional maximum tolerable intakes (PMTIs) are exceeded for PHEs, e.g. aluminium (Al), arsenic (As), mercury (Hg), chromium (Cr), tin (Sn), copper (Cu) and lead (Pb). Preliminary results suggest that aquaculture is making an important contribution to nutrition, with fish being a good source of Se. However, in contrast to small wild-caught fish, aquaculture fish in the present study were poor sources of Fe, Ca and Zn. The fish also made substantial contributions (> 10%) to the PMTI of Hg and As. Therefore, there is an urgent need for ongoing monitoring and an expanded sampling programme, as well as research into approaches which might improve the nutritional quality of the farmed fish.


Asunto(s)
Peces , Contaminación de Alimentos/análisis , Oligoelementos/análisis , Contaminantes Químicos del Agua/análisis , Animales , Acuicultura , Exposición Dietética/análisis , Monitoreo del Ambiente/métodos , Inocuidad de los Alimentos , India , Metales/análisis , Músculos/química , Estanques , Ríos
2.
J Hazard Mater ; 320: 55-66, 2016 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-27513370

RESUMEN

Biochar, a by-product from the production of biofuel and syngas by gasification, was tested as a material for adsorption and fixation of UVI from aqueous solutions. A batch experiment was conducted to study the factors that influence the adsorption and time-dependent fixation on biochar at 20°C, including pH, initial concentration of UVI and contact time. Uranium (UVI) adsorption was highly dependent on pH but adsorption on biochar was high over a wide range of pH values, from 4.5 to 9.0, and adsorption strength was time-dependent over several days. The experimental data for pH>7 were most effectively modelled using a Freundlich adsorption isotherm coupled to a reversible first order kinetic equation to describe the time-dependent fixation of UVI within the biochar structure. Desorption experiments showed that UVI was only sparingly desorbable from the biochar with time and isotopic dilution with 233UVI confirmed the low, or time-dependent, lability of adsorbed 238UVI. Below pH 7 the adsorption isotherm trend suggested precipitation, rather than true adsorption, may occur. However, across all pH values (4.5-9) measured saturation indices suggested precipitation was possible: autunite below pH 6.5 and either swartzite, liebigite or bayleyite above pH 6.5.

3.
Environ Monit Assess ; 186(4): 2465-85, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24292951

RESUMEN

Concentrations of trace elements (Cd, Cu, Ni, Pb, V, and Zn) were determined in the soft tissues (adductor muscle and gills) of the pearl oyster Pinctada radiata and surficial sediments from two sampling sites located in the northern part of the Persian Gulf by Graphite Furnace Atomic Absorption Spectrophotometer (GFAAS). Moreover, the levels of Li, Mg, Al, Mn, Fe, Cu, Sr, Ba, Pb, and Zn were measured in two shell layers (prismatic and nacreous) using Laser Ablation Inductively Coupled Plasma Mass Spectrometer (LA-ICP-MS). There were significant differences between the sampling sites with regard to mean concentrations of Cu, Mn, and Al in the prismatic layers of the shells. But in terms of the soft tissues, only in the case of Ni accumulation in the muscle significant differences between the sites could be observed. No significant differences could be found between the sites from the elements concentrations in the sediments point of view. The levels of Cd, Cu, Ni, and Zn in the gills were markedly higher than those in the muscle. Concentrations of Mn, Mg, Li, and Cu in the prismatic layer were significantly higher than in the nacreous but the reverse case could be found for Sr. The patterns of metal occurrence in the selected tissues, shell layers, and sediments exhibited the following descending order: Zn, Ni > Cd, Cu > V, and Pb and Zn, Ni, Cd > Cu, V, and Pb for muscle and gills, respectively; Zn > Cu, Ni, Pb, Cd, and V for sediments; Mg > Sr, Mn, Li, Al, Fe, Ba, Cu, Pb, and Zn for the prismatic layer; and Sr, Mg > Mn, Al, Fe, Li, Ba, Cu, Pb, and Zn for the nacreous layer. In most cases, the temporal variations of the elements levels in the prismatic layer were clearer than those in the nacreous layer (especially for Li, Mg, Mn, Pb, and Fe). Comparison of the gained data from this study with the other relevant researches shows that in most cases the levels of the elements in this investigation either fell within the range for other world areas or were lower. Generally, it can be concluded that the shell (especially prismatic layer) of P. radiata can be considered as a suitable proxy for temporal and spatial variations of the trace elements (and probably some environmental parameters) in the study area.


Asunto(s)
Exoesqueleto/química , Monitoreo del Ambiente , Pinctada/metabolismo , Oligoelementos/análisis , Contaminantes Químicos del Agua/análisis , Animales , Análisis Multivariante , Pinctada/química , Contaminación Química del Agua/estadística & datos numéricos
4.
Sci Total Environ ; 408(2): 397-407, 2009 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-19853279

RESUMEN

Uranium oxide particles were dispersed into the environment from a factory in Colonie (NY, USA) by prevailing winds during the 1960s and '70s. Uranium concentrations and isotope ratios from bulk soil samples have been accurately measured using inductively coupled plasma quadrupole mass spectrometry (ICP-QMS) without the need for analyte separation chemistry. The natural range of uranium concentrations in the Colonie soils has been estimated as 0.7-2.1 microg g(-1), with a weighted geometric mean of 1.05 microg g(-1); the contaminated soil samples comprise uranium up to 500+/-40 microg g(-1). A plot of (236)U/(238)U against (235)U/(238)U isotope ratios describes a mixing line between natural uranium and depleted uranium (DU) in bulk soil samples; scatter from this line can be accounted for by heterogeneity in the DU particulate. The end-member of DU compositions aggregated in these bulk samples comprises (2.05+/-0.06) x 10(-3)(235)U/(238)U, (3.2+/-0.1)x10(-5)(236)U/(238)U, and (7.1+/-0.3) x 10(-6)(234)U/(238)U. The analytical method is sensitive to as little as 50 ng g(-1) DU mixed with the natural uranium occurring in these soils. The contamination footprint has been mapped northward from site, and at least one third of the uranium in a soil sample from the surface 5 cm, collected 5. 1km NNW of the site, is DU. The distribution of contamination within the surface soil horizon follows a trend of exponential decrease with depth, which can be approximated by a simple diffusion model. Bioturbation by earthworms can account for dispersal of contaminant from the soil surface, in the form of primary uranium oxide particulates, and uranyl species that are adsorbed to organic matter. Considering this distribution, the total mass of uranium contamination emitted from the factory is estimated to be c. 4.8 tonnes.


Asunto(s)
Contaminantes Radiactivos del Suelo/química , Compuestos de Uranio/química , Espectrometría de Masas , New York , Contaminantes Radiactivos del Suelo/análisis , Compuestos de Uranio/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...