Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Environ Manage ; 271: 110836, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32778255

RESUMEN

Conservation managers are required to make decisions in complex and uncertain contexts. To strengthen the robustness of conservation decisions, several approaches have been proposed to facilitate stakeholder engagement in the setting of conservation objectives and priority actions. While such processes have led to the formulation of several invasive alien plant management strategies to achieve specific objectives, the long-term consequences and trade-offs inherent in these strategies have not been tested. The performance of five of these strategies over 50 years was tested in the protected area context using empirical data from Table Mountain National Park, South Africa. A simulation model based on data for invasive Acacia species in a fire-driven ecosystem, focused on the interaction between strategy performance and clearing efficacy in achieving a management goal or reducing Acacia density to below 1 plant per hectare. At near perfect levels of clearing efficacy, all strategies converged towards reaching the management goal, while at lower efficacy levels the strategies diverged in their ability to achieve desired outcomes. Despite working across the largest area, strategies that focussed on clearing low density invasions, maintained the least area in a maintenance state over time. In contrast, strategies that focussed on a mix of post-fire, low density areas and high altitude areas cleared less area annually, but maintained a much larger area in a maintenance state. At higher levels of efficacy, strategies that return to previously worked areas were more successful than a post-fire strategy. Strategies that focused solely on securing water, performed poorly in maintaining low overall density of aliens. However, the influence of efficacy was significant and substantial and a much larger difference in area reaching the management goal was achieved by varying efficacy than varying strategy. As such, improving quality of work and implementation will have a far greater effect than which areas are prioritized or how this prioritization is done. While acacias are likely to persist in the long-term, improving work quality coupled with correct strategy selection will ensure continued gains in the area under maintenance and improved return on investment over time.


Asunto(s)
Ecosistema , Incendios , Conservación de los Recursos Naturales , Especies Introducidas , Sudáfrica
2.
J Environ Manage ; 238: 274-282, 2019 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-30852404

RESUMEN

In many protected areas in South Africa, invasive Australian Acacia species pose on-going management challenges, perpetuating high long-term management costs. Due to limited availability of resources, conservation actions need to be prioritised within and across Protected Areas (PA). We draw on comprehensive datasets spanning over 20 years from the Table Mountain National Park to model long-term outcomes of clearing Acacia species at different levels of management clearing efficacy. We test a 50 year outlook based on current and 38 incremental levels of management efficacy, ranging from 5 to 100%, to assess under which scenarios a management goal of reducing Acacia density to below 1 plant per hectare for the 22,671 ha protected area is achieved. With the current clearing resources and maximum clearing efficacy (100% control), it would take between 32 and 42 years to attain the management goal. The modelling revealed two main drivers of Acacia persistence. Firstly, germination of seeds added to the seedbank from standing plants made a significantly larger contribution to future clearing requirements than fire stimulated seed germination or the existing (pre-management) seedbank. Secondly the relationship between the number of hectares and management units that could be treated and the efficacy of the treatment was non-linear. When clearing efficacy was decreased from 100% to the current project minimum target of 80% efficacy, the goal was not achieved in all areas, but the area that reached a density of <1 plant per hectare was significantly reduced to 53% of the PA for the simulated 50 years. Results emphasize the need to differentiate between increasing financial resources and increasing efficacy. While increasing financial resources allows for increased effort, this is of little value for Acacia management in the absence of an increase in clearing efficacy, as low quality implementation perpetuates the need for large budgets over time. Conversely, improving efficacy allows for decreased budget requirements over time, allowing fund re-direction to additional areas of alien species management such as the early detection and rapid control of newly introduced species.


Asunto(s)
Acacia , Especies Introducidas , Australia , Conservación de los Recursos Naturales , Banco de Semillas , Sudáfrica
3.
J Environ Manage ; 190: 283-289, 2017 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-28064035

RESUMEN

To aid prescribed burn decision making in Table Mountain National Park, in South Africa a priority ranking system was tested. Historically a wildfire suppression strategy was adopted due to wildfires threatening urban areas close to the park, with few prescribed burns conducted. A large percentage of vegetation across the park exceeded the ecological threshold of 15 years. We held a multidisciplinary workshop, to prioritize areas for prescribed burning. Fire Management Blocks were mapped and assessed using the following seven categories: (1) ecological, (2) management, (3) tourism, (4) infrastructure, (5) invasive alien vegetation, (6) wildland-urban interface and (7) heritage. A priority ranking system was used to score each block. The oldest or most threatened vegetation types were not necessarily the top priority blocks. Selected blocks were burnt and burning fewer large blocks proved more effective economically, ecologically and practically due to the limited burning days permitted. The prioritization process was efficient as it could be updated annually following prescribed burns and wildfire incidents. Integration of prescribed burn planning and wildfire suppression strategies resulted in a reduction in operational costs. We recommend protected areas make use of a priority ranking system developed with expert knowledge and stakeholder engagement to determine objective prescribed burn plans.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Incendios , Parques Recreativos , Modelos Teóricos , Sudáfrica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA