Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Pollut ; 342: 123038, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38030109

RESUMEN

Mercury (Hg) contamination in aquatic systems can lead to adverse human and environmental health outcomes. Yellowknife, a city in Canada's Northwest Territories, is a historic mining community, with two large gold mines (Giant Mine and Con Mine) that used Hg amalgamation methods to extract gold between ∼1938 and 1960. We analyzed dated sediment cores from 20 small lakes to investigate the spatial and temporal Hg deposition patterns within 50 km of Giant Mine. Breakpoint analysis of the within-lake z-score normalized anthropogenic Hg flux indicates two significant time periods of changing emission rates. The first is a significant increase in Hg deposition rate (∼1925) during the time of gold exploration in the region and onset of Hg amalgamation (1938) and the second is a significant decrease in deposition rate that begins around the time of the cessation of Hg amalgamation at Giant Mine (∼1959). Sediment Hg concentrations exceeded the Canadian Council for Ministers of the Environment Interim Sediment Quality Guideline (ISQG) for Hg (0.17 mg/kg dw) in 55% of the lakes (n = 11) during mining (1948-1999). All lakes within 5 km of the Giant Mine roaster stack exceeded CCME ISQG during mining (n = 8), with a 4-fold increase in total Hg concentration observed during mining at these near-field (<5 km from stack) sites. We observed evidence of enriched Hg in near-field, mid-field, and far-field sites. The elevated sedimentary Hg concentrations during mining in near-field sites would have posed a hazard to human and wildlife health during the height of emissions, however the significant decrease in Hg concentrations since the closure of mines in the region demonstrate the potential for recovery in these aquatic ecosystems.


Asunto(s)
Mercurio , Contaminantes Químicos del Agua , Humanos , Lagos , Mercurio/análisis , Canadá , Oro/análisis , Ecosistema , Contaminantes Químicos del Agua/análisis , Sedimentos Geológicos/análisis , Monitoreo del Ambiente
2.
Environ Pollut ; 278: 116815, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-33689946

RESUMEN

Precious metal mining activities have left complex environmental legacies in lakes around the world, including some sites in climatically sensitive regions of the Canadian sub-Arctic. Here, we examined the long-term impacts of past regional gold mining activities on sub-Arctic lakes near Con Mine (Yellowknife, Northwest Territories) based on sediment core analysis (paleolimnology). In addition to receiving metal(loid)s from roaster stack emissions, the study lakes were also influenced by salt-rich mine drainage from Con Mine tailings. Water samples from these lakes had some of the highest concentrations for salinity-related variables (e.g. Ca2+, Cl-, Na+) and metal(loid)s (e.g. As, Cu, Ni, Sb) in the Yellowknife area. Furthermore, the presence of halophilic diatom (Bacillariophyceae) taxa (Achnanthes thermalis and Navicula incertata) in the recent sediments of Keg and Peg lakes suggest that the extreme saline conditions are strongly influencing the present biota, more than 10 years after the cessation of gold mining activities at Con Mine. The sedimentary metal(loid) profiles (e.g. As, Cu, Ni) of Kam Lake tracked the influence of regional gold mining activities, particularly those at Con Mine, while the algal assemblages recorded the biological responses to salinization and metal(loid) pollution (e.g. marked decreases in diatom species richness, Hill's N2 diversity, and chrysophyte cyst:diatom valve ratio). At Kam Lake, the algal assemblage changes in the post-mining era were indicative of climate-mediated changes to lake thermal properties (e.g. rise in planktonic diatoms), nutrient enrichment related to urbanization (e.g. increase in eutrophic Stephanodisucs taxa), and/or a combination of both stressors. The lack of biological recovery (i.e. return to pre-mining assemblages) is consistent with investigations of mine-impacted lakes in temperate regions where elevated contaminant levels and emerging stressors (e.g. climate warming, land-use changes) are influencing lake recovery.


Asunto(s)
Metaloides , Contaminantes Químicos del Agua , Regiones Árticas , Biota , Canadá , Monitoreo del Ambiente , Sedimentos Geológicos , Oro , Lagos , Territorios del Noroeste , Contaminantes Químicos del Agua/análisis
3.
Sci Total Environ ; 718: 137308, 2020 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-32088480

RESUMEN

Ore processing techniques used in Yellowknife's largest mining operation, Giant Mine, is responsible for the atmospheric release of approximately 20,000 t of particulate arsenic trioxide and other heavy metal(loids). This rapid deposition of heavy metal(loids) may have caused ecological disturbances to aquatic food webs. Here we use 210Pb and 137Cs dated lake sediment cores from 20 lakes within a 40 km radius of Yellowknife to examine the spatial-temporal distribution of arsenic, antimony and lead. Further, we model the toxicity of the sediment to aquatic biota pre-, during, and post-mining using palaeotoxicity modelling, enrichment factor assessment, and comparisons to national sediment quality guidelines. We found that metal(loid) profiles in sediment peaked during the height of mining operations. These peak metal(loid) concentrations were highest in lakes near the mine's roaster stack, and decreased with distance from the historic mine. Palaeotoxicity modelling of lake sediment archives indicate that there is no significant difference in the mean predicted toxicity of pre- and post-mining samples (p = 0.14), however mining activities in the region significantly increased the predicted toxicity of sediments to aquatic organisms during mining operations (p < 0.001). In the years since roasting processes ceased, the mean palaeotoxicity of all lakes has decreased significantly (p < 0.05), indicating a projected pattern of biological recovery. Importantly, some lakes remain at an elevated risk, indicating that aquatic ecosystems in Yellowknife may continue to have lingering effects on aquatic biota despite the closure of the mine two decades ago.


Asunto(s)
Oro , Minería , Ecosistema , Monitoreo del Ambiente , Sedimentos Geológicos , Lagos , Contaminantes Químicos del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...